OBFUSCURO: A Commodity
Obfuscation Engine for Intel SGX

Adil Ahmad*, Byunggill Joe*, Yuan Xiao

Yingian Zhang, Insik Shin, Byoungyoung Lee

(* denotes equal contribution)

PURDUE I(AI ST THE OHIO STATE

UNIVERSIT Y. UNIVERSITY

PR SEOUL
T Y NATIONAL
X UNIVERSITY

Program Obfuscation

Program Obfuscation

Trusted Untrusted (except the Black box)

Sender’s Goal
Protect the internals of
private program P,

P priv

Trusted

Sender’s Goal
Protect the internals of
private program P,

P priv
1

Encryption
Engine

_/-

Program Obfuscation

Untrusted (except the Black box)

Trusted

Program Obfuscation

Sender’s Goal
Protect the internals of
private program P,

P priv
1

Encryption
Engine

\/-

-d

priv ;,

Untrusted (except the Black box)

Trusted

Program Obfuscation

Sender’s Goal
Protect the internals of
private program P,

P priv
1

Encryption
Engine

_/-

P priv]

Attacke%

: | chooses inputs

IO 11 IN

Untrusted (except the Black box)

Program Obfuscation

Trusted Untrusted (except the Black box)

Sender’s Goal
Protect the internals of
private program P,

l Ppriv l ,l Pprivm

. Attacker
Encryption D | ,
UL chooses inputs
Englne IO 11 IN
J

Program Obfuscation

Trusted Untrusted (except the Black box)
Sender’s Goal Receiver’s Goal
Protect the internals of | | Disclose the internals
private program P, | of program P,.;,
Ppriv) (
priv Pprivm
. i | Attacker
Encryption : | :
UL chooses inputs
Englne IO 11 IN
\/-

Program Obfuscation

Trusted Untrusted (except the Black box)
Sender’s Goal Receiver’s Goal
Protect the internals of | Disclose the internals '
. ! | ! | If the black box is “secure”?
private program P,.;;, | | of program P,.;,
| P, . | [
priv Pprivm
. P Attacker
Encryption : | .
UL chooses inputs
Englne IO 11 IN
\/-

Program Obfuscation

Trusted Untrusted (except the Black box)
Sender’s Goal Receiver’s Goal
Protect the internals of | Disclose the internals ' :
. | If the black box is “secure”?
private program P,.;;, | | of program P,.;,
| After constant time T
| >[Output]
leriv l ,l P. . -
;| priv;.,
. P Attacker
Encryption D :
UL chooses inputs
Englne IO 11 IN
J

Program Obfuscation

Trusted Untrusted (except the Black box)
Sender’s Goal Receiver’s Goal
Protect the internals of | Disclose the internals ' :
. i If the black box is “secure”?
private program P,.;;, | | of program P,.;,
| After constanttime T
| >[Output]
leriv l ,l P . -
PTiva 'L, Observable execution traces
. . " NC
Encryption : | Attacl.<er D0 Pl D Q\w
UL chooses inputs
Engine 0 11 v IN .
— =1 -1 Execution traces should not

leak information about P.;;,

Wait, isn’t that what Intel SGX does?

Wait, isn’t that what Intel SGX does?

Program

4)

Wait, isn’t that what Intel SGX does?

Program

m
>
o
Q
<
M

Non-
Enclave

Wait, isn’t that what Intel SGX does?

Program
4)
r T :
Trusted execution I :
- |
resion I Enclave :
. Yy)) |
Confidentiality and integrity | |, !
guarantees = - — - - I
Non-
Enclave

-
_

Wait, isn’t that what Intel SGX does?

Program

Trusted execution
region

Confidentiality and integrity

guarantees

Non-
Enclave

g _/

|

Restricted by the
processor

Operating System

(and other untrusted software)

Intel SGX is not perfect!

Intel SGX is not perfect!

Enclave

gt ENI EII =EIE =N =N = -y

Intel SGX is not perfect!

Enclave

’_______

Memory accessed
by the enclave

Intel SGX is not perfect!

Enclave

Memory accessed
by the enclave

Visible traces on
_____ 7 untrusted/shared components!

\
h ff im
T B imi
CPU Cache Branch Target Butfer Timing
Taken | Address

— L
—

L=
Page Table

Access Frame #

Intel SGX is not perfect!

Enclave

’_______

Memory accessed

Visible traces on

by the enclave
£
j:; —-—— = 7 untrusted/shared components!
/ \ _

L=
Page Table

|"Access | Frame#

Granularity:
4KB (1 page)

CPU Cache Branch Target Buffer Timing

H Taken | Address O

Operating System

Intel SGX is not perfect!

Enclave

Memory accessed

by the enclave
Visible traces on

_______ 7 untrusted/shared components!

\
I
|
I
|

Page Table CPU Cache Branch Target Buffer Timing
“Access | Frame # Taken | Address
Granularity: Granularity: L
4KB (1 page) 64B (1 line)

Operating System

&

Intel SGX is not perfect!

Enclave

gl NI EII =N IIE IE = -y

L \
Memory accessed PH

|
|
by the enclave :
| Visible traces on

- - - = = = = 7 untrusted/shared components!

L=
Page Table

“Access | Frame #
Granularity:

4KB (1 page)

= -

Branch Target Buffer Timing

CPU Cache
Taken | Address
Granularity: Granularity: L
64B (1 line) Jmp address

&

Operating System

Intel SGX is not perfect!

Enclave

L \
Memory accessed I H

|
by the enclave :
|

Visible traces on
= - — — — = < = 7 untrusted/shared components!
Page Ta ble CPU Cache Bra;ilgn-rariitezu'ffer Timini

Granularity:
Jmp address

Granularity:
Execution Time

“Access | Frame #
Granularity: Granularity:
4KB (1 page) 64B (1 line)

Operating System

&

Intel SGX is not perfect!

Enclave
\

Memory accessed
by the enclave

[
[
[
] Visible traces on
e ——— 7 untrusted/shared components!
— / '\h‘ ff .
Page Table CPU Cache Branch Target Buftfer Timing
I Access I Frame # Taken Address \

i

Granularity:
4KB (1 page)

Granularity:
64B (1 line)

Granularity:
Jmp address

Granularity:
Execution Time

Learning from existing solutions!

Learning from existing solutions!

I Access patterns attacks! i

o o o o o e -

_

Transactional

Memory

[NDSS17, SEC17]

J

Incomplete

Learning from existing solutions!

e Possible Soln.

Learning from existing solutions!

~
-7 Possible Soln.
- |
// ,
A‘/ \ 4
4 N/)
Transactional Cache
Memory Partitioning
[NDSS17, SEC17] [SEC18]
_ VAN ,

Incomplete

ring-0 required

Learning from existing solutions!

l
l
l
A 4

~
~~Possible Soln.
~

~
~

~a

Transactional
Memory

[NDSS17, SEC17]
G J

Incomplete

_

\
Cache

Partitioning

[SEC18]
J

(")

Address
Randomization

[NDSS17]
_ J

ring-0 required

Insecure

Learning from existing solutions!

l
l
l
A 4

~
~~Possible Soln.
~

~
~

A

Transactional
Memory

[NDSS17, SEC17]
_ J

Incomplete

_

\
Cache

Partitioning

[SEC18]
J

4)
Address

Randomization

[NDSS17]
_ J

ring-0 required

Insecure

Lesson #1

Ring-3 enclaves cannot hide access
patterns through side-channels!

Learning from existing solutions!

o o o o o o o e e e
//7,<\\ H
_- ,l ~Possible Soln.
7~ ~

-7 | > i
&= 4 . i
4 Y4 Y4 N
Transactional Cache Address |
Memory Partitioning Randomization | |
[NDSS17, SEC17] [SEC18] [NDSS17] |
_ VAN VAN J
Incomplete ring-0 required Insecure |

Lesson #1

Ring-3 enclaves cannot hide access
patterns through side-channels!

Learning from existing solutions!

Transactional

Memory
[NDSS17, SEC17]

G J

Incomplete

_

\
Cache

Partitioning
[SEC18]

J

Address
Randomization

[NDSS17]

N\ J

] () I
] Timing attacks! !
St I
Possible Soln.
r T
RDTSC
. Y,

ring-0 required

Insecure

Lesson #1

Ring-3 enclaves cannot hide access
patterns through side-channels!

OS-controllable

Learning from existing solutions!

Transactional

Memory
[NDSS17, SEC17]

G J

Incomplete

_

\
Cache

Partitioning

[SEC18]
J

Address

Randomization
[NDSS17]

G J

7~

-7

P |

-~ |

Pl A 4
4 N\ [)

Network
RDTSC]
timers

_ J y,

ring-0 required

Insecure

Lesson #1

Ring-3 enclaves cannot hide access
patterns through side-channels!

OS-controllable

OS-controllable

Learning from existing solutions!

Transactional

Memory
[NDSS17, SEC17]

G J

Incomplete

_

\
Cache

Partitioning

[SEC18]
J

Address

Randomization
[NDSS17]

G J

e [] I
] Timing attacks! !
Y D -
_-~"1 "~ Possible Soln.
B N
it 4 A
4 N\ N\)
Network Thread
RDTSC . .
timers timers
. J VAN J

ring-0 required

Insecure

Lesson #1

Ring-3 enclaves cannot hide access
patterns through side-channels!

OS-controllable

OS-controllable

OS-controllable

Learning from existing solutions!

Transactional

Memory
[NDSS17, SEC17]

G J

Incomplete

_

\
Cache

Partitioning

[SEC18]
J

Address

Randomization
[NDSS17]

G J

[] [} I
] Timing attacks! !
I N -
_-~"1 "~ Possible Soln.
N Y
it 4 A
4 N\ N\)
Network Thread
RDTSC . .
timers timers
\ J /L ,

ring-0 required

Insecure

Lesson #1

Ring-3 enclaves cannot hide access
patterns through side-channels!

OS-controllable

OS-controllable

OS-controllable

Lesson #2

Unreliable timers for SGX

enclaves!

Our approach

Our approach

* Indistinguishable enclave program(s)

Our approach

* Indistinguishable enclave program(s)
* A code block executed N times on C-Pad, and data block accessed from D-Pad

Our approach

* Indistinguishable enclave program(s)
* A code block executed N times on C-Pad, and data block accessed from D-Pad
e C-Pad and D-Pad are one cache-line (64B) in size!

Our approach

* Indistinguishable enclave program(s)
* A code block executed N times on C-Pad, and data block accessed from D-Pad
e C-Pad and D-Pad are one cache-line (64B) in size!

of executions: 0 C-Pad

64B

D-Pad

64B

Our approach

* Indistinguishable enclave program(s)
* A code block executed N times on C-Pad, and data block accessed from D-Pad
e C-Pad and D-Pad are one cache-line (64B) in size!

of executions: 0 C-Pad
. Single data
access
D-Pad
p—
648

Our approach

* Indistinguishable enclave program(s)
* A code block executed N times on C-Pad, and data block accessed from D-Pad
e C-Pad and D-Pad are one cache-line (64B) in size!

of executions: 1 [~ p_4

Branch to the
start of C-Pad| _ 2 Single data
access

D-Pad

64B

Our approach

* Indistinguishable enclave program(s)
* A code block executed N times on C-Pad, and data block accessed from D-Pad
e C-Pad and D-Pad are one cache-line (64B) in size!

of executions: 1 [~ p_4

Branch to the
start of C-Pad| _ 2 Single data
access

D-Pad

64B

Our approach

* Indistinguishable enclave program(s)
* A code block executed N times on C-Pad, and data block accessed from D-Pad
e C-Pad and D-Pad are one cache-line (64B) in size!

of executions: N, [~_pod

Branch to the
start of C-Pad| _ 2 Single data
access

D-Pad

64B

Our approach

* Indistinguishable enclave program(s)
* A code block executed N times on C-Pad, and data block accessed from D-Pad
e C-Pad and D-Pad are one cache-line (64B) in size!

of executions: N

-+ |C-Pad 'What do the attacks reveal?

Branch to the
start of C-Pad| _ 2 Single data
access

D-Pad

64B

Our approach

* Indistinguishable enclave program(s)
* A code block executed N times on C-Pad, and data block accessed from D-Pad
e C-Pad and D-Pad are one cache-line (64B) in size!

of executions: N, [~_pod 'What do the attacks reveal?
Branch to the Paging Attack: Same page
start of C-Pad| _ 2 Single data

access
D-Pad
e
64B

Our approach

* Indistinguishable enclave program(s)
* A code block executed N times on C-Pad, and data block accessed from D-Pad
e C-Pad and D-Pad are one cache-line (64B) in size!

of executions: N —+|C-Pad What do the attacks reveal?
Branch to the Paging Attack: Same page
start of C-Pad| _ 64B Single data Cache Attack: Same cache-lines
access
D-Pad
64B

Our approach

* Indistinguishable enclave program(s)
* A code block executed N times on C-Pad, and data block accessed from D-Pad
e C-Pad and D-Pad are one cache-line (64B) in size!

of executions: N —+|C-Pad What do the attacks reveal?
Branch to the Paging Attack: Same page
start of C-Pad| _ 64B Single data Cache Attack: Same cache-lines
access
Branch Attack: Same branch
D-Pad
e
64B

Our approach

* Indistinguishable enclave program(s)
* A code block executed N times on C-Pad, and data block accessed from D-Pad

e C-Pad and D-Pad are one cache-line (64B) in size!

of executions: N, [~_pod 'What do the attacks reveal?
Branch to the Paging Attack: Same page
start of C-Pad| | o Single data Cache Attack: Same cache-lines
access

Branch Attack: Same branch

D-Pad

Timing Attack: Same time to
— execute N code blocks

64B

Our approach

Instead of trying to hide traces,
all enclaves should leak the same traces!

Let Hermione explain!

Let Hermione explain!

gl EEI =EIE NS ENE =

Enclave;
[[
Operating ‘-l ----’
ystem | ~.
f)
[
Enclave,

Let Hermione explain!

______ . 1 Before
(e (Native)
Enclave, £} XX "
[[

Operating - ----

ystem ______
\

: L eln X
IEnclavez : X
a) if X

Let Hermione explain!

w N Before
@ c (Native)
® & . Enclavey &} XX
. X
Operating
ystem
ﬂ‘x %
Enclave, | 5|® ¥
| X

Let Hermione explain!

w . After
g

(Obfuscuro)

® & . Enclave, — OXXOXOX

Operating
ystem

(

(

Enclave, —>

KRKRK

Cool, what'’s the challenge?

Cool, what'’s the challenge?

* Naive solution
e Use a software-translator to copy all code and data onto C/D-Pad

Cool, what'’s the challenge?

* Naive solution
e Use a software-translator to copy all code and data onto C/D-Pad

~ N |C-Pad

Enclave Storage

Foo p—1 Translator =t

Bar \)

Main

D-Pad

64B

Cool, what'’s the challenge?

* Naive solution
e Use a software-translator to copy all code and data onto C/D-Pad

C1. I.\|at|ve code is - N [CPad
not in 64B blocks! [Enclave Storage
SGBI Foo p————— Translator =t
78BI Bar 9 y
67BI Main
D-Pad

64B

Cool, what'’s the challenge?

* Naive solution
e Use a software-translator to copy all code and data onto C/D-Pad

C1. Native code is)
C-Pad
not in 64B blocks! [Enclave Storage Fw N R
00
SGBI Foo '| Bar |- Translator =9t
78B Bar
I . - ~/ |64B
67BI Main
D-Pad

C2. Access patterns
leaked while copying!

64B

Cool, what'’s the challenge?

* Naive solution
e Use a software-translator to copy all code and data onto C/D-Pad

C1. Native code is

not in 64B blocks!
56B
78B
67B

|
|
!

C3. Code can have

Enclave Storage

Foo

Bar

Main

- different branches!
w N\ N [C-Pad
Foo Foo Bar
'| Bar Translator =»| jmp | imp
l- jmp
_ / |6gB .
D-Pad

C2. Access patterns

leaked while copying!

64B

Cool, what'’s the challenge?

* Naive solution
e Use a software-translator to copy all code and data onto C/D-Pad

C1. Native code is

not in 64B blocks!
56B
78B
67B

|
|
!

C3. Code can have

Enclave Storage

Foo

Bar

Main

- different branches!
w N\ N [C-Pad
Foo Foo Bar
'| Bar Translator =»| jmp | imp
l- jmp
_ / |6gB .
D-Pad

C2. Access patterns

leaked while copying!

C4. Timing issues
not even discussed!

64B

Obfuscuro

* Program obfuscation on Intel SGX

 All programs should exhibit same patterns irrespective of logic/input.
e Adapted from Harry Potter spell “Obscuro” (translation :> Darkness)

" code) ("ORAM Bank)
C-Pad Con?ro?ler 4 C-Tree)
h
stas
pos. map
64B __ ") C),
(" Data) Diree)
D-Pad Conta:‘::Ier D-Ifee
stash
g n
E— pos. map \C),
648 o Y, N g,

== Code execution model
=== Data access model

C1. Enforce code blocks of identical sizes

C1. Enforce code blocks of identical sizes

* Break code blocks into 64 bytes and pad using nop

C1. Enforce code blocks of identical sizes

* Break code blocks into 64 bytes and pad using nop

Fool)

308

Native

C1. Enforce code blocks of identical sizes

* Break code blocks into 64 bytes and pad using nop

Fool)

[Obfuscuro
208 Compiler

Native

C1. Enforce code blocks of identical sizes

* Break code blocks into 64 bytes and pad using nop

308

Fool)

Foo.1()

—

64 bytes |

648

_ Split

Obfuscuro
Compiler

Native

— Fool)

Foo.2()

L,

26 bytes |

648

Instrumented

C1. Enforce code blocks of identical sizes

648B (single cache-line) code blocks can be
loaded onto the C-Pad!

C2. Securely loading C/D-Pad

C2. Securely loading C/D-Pad

* Fetch code and data using Oblivious RAIM (ORAM)
* The code and data is fetched onto C-Pad and D-Pad resp.

11

C2. Securely loading C/D-Pad

* Fetch code and data using Oblivious RAIM (ORAM)
* The code and data is fetched onto C-Pad and D-Pad resp.

C-Pad

648

d Code A

Controller

stash

pos. map

g

)

(f C-Tree \\
N\

ORAM Bank

C2. Securely loading C/D-Pad

* Fetch code and data using Oblivious RAIM (ORAM)
* The code and data is fetched onto C-Pad and D-Pad resp.

®

Execute old
code block

C-Pad

648

d Code A

Controller

stash

pos. map

g

)

(f C-Tree \\
N\

ORAM Bank

C2. Securely loading C/D-Pad

* Fetch code and data using Oblivious RAIM (ORAM)
* The code and data is fetched onto C-Pad and D-Pad resp.

®

Execute old
code block

C-Pad 4 Code h

Controller
stash

64B |_>\ pos. map

Request new
@ code block

)

(f C-Tree)

N\

ORAM Bank

C2. Securely loading C/D-Pad

* Fetch code and data using Oblivious RAIM (ORAM)
* The code and data is fetched onto C-Pad and D-Pad resp.

®

Execute old
code block

Retrieve the block

using ORAM
C-Pad (" Code ® (" C-Tree \\
Controller
stash G
64B [=>{ | pos. map
) N\
CDRequest new ORAM Bank

code block

C2. Securely loading C/D-Pad

* Fetch code and data using Oblivious RAIM (ORAM)

* The code and data is fetched onto C-Pad and D-Pad resp.

®

Execute old
code block

Retrieve the block

C-Pad

648

®

using ORAM

Instrumented code

is located in C-Tree
(" Code) ® (" C-Tree \\ — -
Controller |
stash ——]
= | pos. map
] L2009
Request new ORAM Bank

code block

C2. Securely loading C/D-Pad

* Fetch code and data using Oblivious RAIM (ORAM)
* The code and data is fetched onto C-Pad and D-Pad resp.

Update C-Pad with o iove the block

Instrumented code
new code block using ORAM

C-Pad ® Code)\ B (ree=)® located in C-Tree

Foo.1 Controller -
@ stash G—

Execute old [gz8 pos. map
. & 7
code block \ / . ~

Request new
ORAM Bank
@ code block

C2. Securely loading C/D-Pad

* Fetch code and data using Oblivious RAIM (ORAM)
* The code and data is fetched onto C-Pad and D-Pad resp.

Execute new Update C-Pad with Retrieve the block

Instrumented code
code block new code block using ORAM

@ C-Pad @ Code) @ ((R \\is located in C-Tree

Foo.1 Controller -
@ stash G—

Execute old [gz8 pos. map
. & 7
code block \ / . ~

Request new
ORAM Bank
@ code block

-

C2. Securely loading C/D-Pad

Side-channel-resistant ORAM scheme ensures
no leakage as C/D-Pad are loaded!

C3. Align branches to/from C-Pad

C3. Align branches to/from C-Pad

e Each instrumented code block has two branches to fixed locations
 C-Pad = Code-Controller
* C-Pad = Data-Controller

C3. Align branches to/from C-Pad

e Each instrumented code block has two branches to fixed locations
 C-Pad = Code-Controller

* C-Pad - Data-Controller = Code execution model
=== Data access model

C-Pad ([pata)
_Controller

jmp stash

CPU-bound“ add _P>=-Map_|/

) i sub - ~
mstructlons" imul Code

jmp Controller

stash

\ pos. map)

C3. Align branches to/from C-Pad

e Each instrumented code block has two branches to fixed locations
 C-Pad = Code-Controller

* C-Pad - Data-Controller = Code execution model
Fixed Fixed === Data access model
Src. Addr. Dst. Addr.
C-Pad | Data)
_Controller
jmp stash
CPU-bound |[2dd pos-Map__1)J
) i sub ~
mstructlons" imul Code
jmp Controller
stash
pos. map

~J

C3. Align branches to/from C-Pad

e Each instrumented code block has two branches to fixed locations
 C-Pad = Code-Controller

* C-Pad - Data-Controller = Code execution model
Fixed Fixed === Data access model
~Src. Addr. Dst. Addr.
C-Pad Data
Controller
jmp stash
CPU-bound || 24 pos.map_| C/D-Controller have
. . sub ~ no conditional
mstructlons" imul Code branches!
jmp Controller
stash
pos. map

~J

C3. Align branches to/from C-Pad

All Obfuscuro programs execute the
same sequence of branches'!

C4. Ensuring execution time consistency

C4. Ensuring execution time consistency

* The program executes fixed number of code blocks

C4. Ensuring execution time consistency

* The program executes fixed number of code blocks

C-Pad C Code R (f C-Tree \\
Controller
stash
64B pos. map
L . S ~)

ORAM Bank

C4. Ensuring execution time consistency

* The program executes fixed number of code blocks

C-Pad (" code) (f C-Tree \\
Controller
stash
64B == | pos. map (),
Request next - ~ S ~/
@ ORAM Bank

code block

C4. Ensuring execution time consistency

* The program executes fixed number of code blocks

Retrieve the

a Code h

Controller

stash

C-Pad
®Request next

code block

pos. map

next block

®

)

.

_/

(

~

(" C-Tree)

~)

.

ORAM Bank

Contains dummy but
indistinguishable code
« -~ Dblocks

C4. Ensuring execution time consistency

* The program executes fixed number of code blocks

Return to C-Pad

next block

®

)

C-Pad @ ‘ Code A
Controller
stash
64B == | pos. map
®Request next - ~

code block

Retrieve the

(

~

(" C-Tree)

~)

.

ORAM Bank

Contains dummy but
indistinguishable code
« -~ Dblocks

C4. Ensuring execution time consistency

* The program executes fixed number of code blocks

Tern

After N blocks

Return to C-Pad

next block

®

)

C-Pad @ ‘ Code A
Controller
stash
64B == | pos. map
®Request next - ~

code block

Retrieve the

(

~

(" C-Tree)

~)

.

ORAM Bank

Contains dummy but
indistinguishable code
« -~ Dblocks

C4. Ensuring execution time consistency

* The program executes fixed number of code blocks

Tern

After N blocks

Return to C-Pad

next block

®

)

C-Pad @ ‘ Code A
Controller
stash
64B == | pos. map
®Request next - ~

code block

Retrieve the

@ Fetches output
and exits enclave!

(

~

(" C-Tree)

~)

.

ORAM Bank

Contains dummy but
indistinguishable code
« -~ Dblocks

C4. Ensuring execution time consistency

Execute N code blocks to ensure all
programs terminate consistently!

Faster memory store for enclaves

Faster memory store for enclaves

e Use AVX registers as store instead of "Oblivious” store

Faster memory store for enclaves

e Use AVX registers as store instead of "Oblivious” store

C-PadB

4 Code A

Controller

h

stash

64B

pos. map

\§

~

==
[Avx registeri CPUJ

Faster memory store for enclaves

e Use AVX registers as store instead of "Oblivious” store

C-PadB

64B

Have to sequentially
access all memory indices

DRAM-based

-

Code

Controller

SprAv

h

stash

pos. map

o

AVX i
[[reglstericpu]

14

Faster memory store for enclaves

e Use AVX registers as store instead of "Oblivious” store

C-Pad>

h

64B

a Code

Controller

stash

pos. map

o

Have to sequentially

DRAM-based access all memory indices

SprAv

Can access individual
registers obliviously!

Register-base

AVX registers
S JCPUJ
store

14

Faster memory store for enclaves

AVX registers can be used as a faster,
oblivious storage for SGX enclaves!

Implementation

15

Implementation

* LLVM compiler suite (3117 LoC)

* Breaks all code into similar blocks
* Instrument and align all control and data-flow instructions

(C1)
(C3)

15

Implementation

* LLVM compiler suite (3117 LoC)

* Breaks all code into similar blocks
* Instrument and align all control and data-flow instructions

* Runtime library (2179 LoC)

* Initializes ORAM trees and performs secure ORAM operations
e Terminate program and fetch output

(C1)
(C3)

(C2)
(C4)

15

Implementation

* LLVM compiler suite (3117 LoC)

* Breaks all code into similar blocks
* Instrument and align all control and data-flow instructions

* Runtime library (2179 LoC)

* Initializes ORAM trees and performs secure ORAM operations
e Terminate program and fetch output

* Intel SGX SDK (25 LoC)

* Assign memory regions for C/D-Pad

(C1)
(C3)

(C2)
(C4)

(support)

15

Overhead (times)

Performance Evaluation

Programs

16

Performance Evaluation

300

200

(times)

n

We ported ~10 simple
applications to
Obfuscuro!

Programs

16

Performance Evaluation

300

200

| (times)

A NN

Average overhead
observed is 81 times over
native programs!

We ported ~10 simple
applications to
Obfuscuro!

Programs

231

16

Performance Evaluation

Average overhead
300 observed is 81 times over
200 native programs! 231

| (times)

A NN

The overhead is highly
dependent on input size
and program type!

We ported ~10 simple
applications to
Obfuscuro!

Programs

16

Ending Remarks!

Ending Remarks!

1. Program obfuscation is a remarkable dream to achieve

Ending Remarks!

1. Program obfuscation is a remarkable dream to achieve

2. Various software/hardware limitations hinder the realization of
program obfuscation on Intel SGX

Ending Remarks!

Program obfuscation is a remarkable dream to achieve

. Various software/hardware limitations hinder the realization of

program obfuscation on Intel SGX

Existing solutions have a limited approach towards side-channel
mitigation in Intel SGX

Ending Remarks!

Program obfuscation is a remarkable dream to achieve

2. Various software/hardware limitations hinder the realization of
program obfuscation on Intel SGX

3. Existing solutions have a limited approach towards side-channel
mitigation in Intel SGX

4. QObfuscuro is compiler-based scheme which addresses this issue by
ensuring all programs leak same access patterns

/ (Translation ~ Thanks!) ;)

Execution Time Evaluation

20.5K 4 880M
» 19.5K - 840M
Q
O
>
o
18.5K - 800M
17.5K¢E , ' ' ' 1 260M
NOP ADD SUB IMUL IDIV anagram sum ﬁbonacc1
Code block with instructions General programs
of each type

ORAM access time dominates the time of code block execution!

