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* Indistinguishable enclave program(s)
* A code block executed N times on C-Pad, and data block accessed from D-Pad

e C-Pad and D-Pad are one cache-line (64B) in size!
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Branch to the Paging Attack: Same page
start of C-Pad| | o Single data Cache Attack: Same cache-lines
access

Branch Attack: Same branch

D-Pad

Timing Attack: Same time to
— execute N code blocks

64B




Our approach

Instead of trying to hide traces,
all enclaves should leak the same traces!
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Obfuscuro

* Program obfuscation on Intel SGX

 All programs should exhibit same patterns irrespective of logic/input.
e Adapted from Harry Potter spell “Obscuro” (translation :> Darkness)
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== Code execution model
=== Data access model
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C1. Enforce code blocks of identical sizes

* Break code blocks into 64 bytes and pad using nop
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C1. Enforce code blocks of identical sizes

648B (single cache-line) code blocks can be
loaded onto the C-Pad!
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C2. Securely loading C/D-Pad

* Fetch code and data using Oblivious RAIM (ORAM)
* The code and data is fetched onto C-Pad and D-Pad resp.
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C2. Securely loading C/D-Pad

Side-channel-resistant ORAM scheme ensures
no leakage as C/D-Pad are loaded!
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C3. Align branches to/from C-Pad

e Each instrumented code block has two branches to fixed locations
 C-Pad = Code-Controller

* C-Pad - Data-Controller = Code execution model
Fixed Fixed === Data access model
~Src. Addr. Dst. Addr.
C-Pad Data
Controller
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C3. Align branches to/from C-Pad

All Obfuscuro programs execute the
same sequence of branches'!
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C4. Ensuring execution time consistency

Execute N code blocks to ensure all
programs terminate consistently!
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Faster memory store for enclaves

e Use AVX registers as store instead of "Oblivious” store
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Faster memory store for enclaves

AVX registers can be used as a faster,
oblivious storage for SGX enclaves!
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Implementation

* LLVM compiler suite (3117 LoC)

* Breaks all code into similar blocks
* Instrument and align all control and data-flow instructions

* Runtime library (2179 LoC)

* Initializes ORAM trees and performs secure ORAM operations
e Terminate program and fetch output

* Intel SGX SDK (25 LoC)

* Assign memory regions for C/D-Pad

(C1)
(C3)

(C2)
(C4)

(support)
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Performance Evaluation

Average overhead
300 observed is 81 times over
200 native programs! 231

| (times)

A NN

The overhead is highly
dependent on input size
and program type!

We ported ~10 simple
applications to
Obfuscuro!

Programs
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Ending Remarks!

Program obfuscation is a remarkable dream to achieve

2. Various software/hardware limitations hinder the realization of
program obfuscation on Intel SGX

3. Existing solutions have a limited approach towards side-channel
mitigation in Intel SGX

4. QObfuscuro is compiler-based scheme which addresses this issue by
ensuring all programs leak same access patterns




/ (Translation ~ Thanks!) ;)



Execution Time Evaluation

20.5K 4 880M
» 19.5K - 840M
Q
O
>
o
18.5K - 800M
17.5K¢E , ' ' ' 1 260M
NOP ADD SUB IMUL IDIV anagram sum ﬁbonacc1
Code block with instructions General programs
of each type

ORAM access time dominates the time of code block execution!




