OBLIVIATE: A Data Oblivious File System
for Intel SGX

Adil Ahmad Kyungtae Kim
Purdue University Purdue University
ahmad37 @purdue.edu kim1798 @purdue.edu

Abstract—Intel SGX provides confidentiality and integrity
of a program running within the confines of an enclave, and
is expected to enable valuable security applications such as
private information retrieval. This paper is concerned with the
security aspects of SGX in accessing a key system resource, files.
Through concrete attack scenarios, we show that all existing SGX
filesystems are vulnerable to either system call snooping, page
fault, or cache based side-channel attacks. To address this security
limitations in current SGX filesystems, we present OBLIVIATE,
a data oblivious filesystem for Intel SGX. The key idea behind
OBLIVIATE is in adapting the ORAM protocol to read and write
data from a file within an SGX enclave. OBLIVIATE redesigns
the conceptual components of ORAM for SGX environments,
and it seamlessly supports an SGX program without requiring
any changes in the application layer. OBLIVIATE also employs
SGX-specific defenses and optimizations in order to ensure
complete security with acceptable overhead. The evaluation of the
prototype of OBLIVIATE demonstrated its practical effectiveness
in running popular server applications such as SQLite and
Lighttpd, while also achieving a throughput improvement of 2 x-
8x over a baseline ORAM-based solution, and less than 2Xx
overhead over an in-memory SGX filesystem.

I. INTRODUCTION

Hardware-assisted trusted computing solutions are gaining
popularity today. One such solution is Intel SGX, which guaran-
tees confidentiality and integrity of a user program despite the
program being executed in a remote and potentially adversarial
environment. Using SGX, the user program runs within an
enclave, a protected region provided by the Intel hardware. The
program’s execution semantics including registers and memory
footprints are isolated from the remaining system components
such as kernel, VMM, BIOS, etc. This isolation allows the user
program to run securely even when an attacker with higher
privilege i.e., kernel, tries to actively modify program execution.
SGX also supports a remote attestation mechanism so that the
user can verify that his/her application is actually being executed
within an SGX context.

An SGX enclave is designed to run user-level programs,
and therefore relies on external system components to access

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA

ISBN 1-1891562-49-5

http://dx.doi.org/10.14722/ndss.2018.23284
www.ndss-symposium.org

Muhammad Thsanulhaq Sarfaraz

msarfaraz @purdue.edu

Byoungyoung Lee
Purdue University
byoungyoung @purdue.edu

Purdue University

Metadata Side-Channel Attacks Implementation

Model

Location Syscall PF Cache for SGX
Naive (§1I1-A) Kernel X X X SCONE [7], Intel ES [3]
In-memory (§I1I-B) Enclave v X X Haven [9], Ryoan [18]
Hybrid (§I11-C) Enclave A X X Graphene [47, 48]
OBLIVIATE (§VI) Enclave v v v This paper

TABLE I: The comparison of file systems models for SGX. Columns
under side-channel attacks indicate whether each filesystem model is
secure against corresponding attacks: Syscall denotes syscall snooping
based attack, PF denotes page fault based attacks, and Cache denotes
cache based attacks.

I/0O resources. Amongst these resources, we note that accessing
files is especially important in order to realize various security
applications with SGX. This is because most of the computing
data is present in the form of files. For example, running
database systems in SGX environments, where the database is
backed up by files, can enable the concept of private information
retrieval (PIR) [13]. As another example, web servers or content
delivery networks (CDNs) in SGX environments can ensure
user’s privacy, and most of this data is presented in a file
(e.g. HTML file, JavaScript code, and images). Other potential
applications include cloud-based backup storage where the user
wants to securely store and access their data without going
through the hassle of maintaining a local copy.

Recognizing these needs, Intel recently released Protected
File System Library for SGX [3]. To perform filesystem
operations, it allows an enclave to delegate such operations to
the untrusted kernel, i.e., relaying all filesystem system calls
from an enclave to the untrusted kernel. It also provides an
encryption module in order to protect confidentiality. However,
this can still result in critical security breaches because the
untrusted kernel can observe detailed interactions between the
enclave and the kernel (i.e., parameters in the system call
including filename and file offset) while the enclave is accessing
a certain file. In-memory filesystems for SGX [9, 18] prevent
the above mentioned system call based attack. In the in-memory
filesystem, an enclave pre-loads all the required file contents
within its protective memory region and handles all filesystem
interactions from within the enclave. Thus, when the enclave
program tries to access a file, the request does not need to
be forwarded to the kernel and can be served by the enclave.
Unfortunately, in-memory filesystems are still susceptible to
side-channel attacks adapted for the SGX environments, namely
page fault based attacks [50] and cache based attacks [10, 40].
By observing memory access patterns, these attacks can gain
insight into the internal processing semantics of the enclave
application.



To demonstrate the feasibility of these attacks on the filesys-
tem, we performed concrete attacks using current filesystem
models for SGX. For our demonstration, we assume a scenario
where an insurance company runsa SQLite database storing
medical records. The company wants to use a secure cloud
infrastructure to protect its medical data as well as associated
operations. As such, the company runs SQLite inside an SGX
enclave, where the database is stored in an encrypted file
and the database communication channel is encrypted as well.
According to our results, sensitive information carried in the
database query can be leaked to potential attackers (e.g, the
untrusted kernel) using current filesystems for Intel SGX. More
specifically, through syscall snooping and page fault based
side-channel attacks, we confirm that both system call traces
and memory access patterns can be exploited to learn which
row and column a specific database query is processing. We
believe our case study on this attack advocates the strong need
for introducing a side-channel resistant filesystem model for
Intel SGX.

This paper presents OBLIVIATE', a data oblivious file
system for Intel SGX. The key idea behind OBLIVIATE is
to employ ORAM operations for SGX to hide file access
patterns. OBLIVIATE carefully materializes the conceptual
components of ORAM for SGX such that it can seamlessly
function as a filesystem while providing systematic preventions
against above mentioned side-channel attacks. At a higher
level, OBLIVIATE runs an isolated filesystem enclave in a
separate process, where the application enclave relays filesystem
related operations through encrypted communication channels.
In order to optimize communication overheads due to this
isolated and separate filesystem design, OBLIVIATE utilises
exitless communication schemes, namely message queues and
shared memory, each of which facilitates intra-process and inter-
process communication. In terms of adopting ORAM, since the
ORAM implementation itself is exposed to side-channel attacks
against the enclave (e.g., page fault based [50] or cache based
attacks [10, 40]), OBLIVIATE uses data oblivious algorithms
in accessing key data structures of ORAM.

OBLIVIATE presents two performance optimization tech-
niques in applying ORAM for SGX: (1) To efficiently maintain
ORAM server storage, OBLIVIATE develops an additional
security memory region with non-encrypted memory regions
of SGX (i.e. more precisely, non-EPC memory §II-A). This
enables OBLIVIATE to avoid costly context switches, which
arise due to limited EPC memory, if it were directly stored
within the enclave memory. (2) To reduce ORAM latency,
we exploit the internal working characteristics of ORAM and
employ asynchronous ORAM server update schemes. As such,
OBLIVIATE returns the required data as soon as it becomes
available and performs path updates asynchronously, rather
than waiting for expensive ORAM path updates.

To summarize, this paper makes following contributions:

e We demonstrate the feasibility of side-channel attacks
against current filesystems for SGX by developing concrete
attacks for them. We assumed a realistic usage scenario
where the victim runs SQLite within an enclave, and our

! The term "Obliviate" is used as an incantation in the Harry Potter series
which is used to wipe a person’s memory.

attacks confirm that the security of current SGX filesystems
can be breached through side-channel attacks.

e We design and implement OBLIVIATE, a secure file system
support for SGX. It systematically adopts ORAM protocols
to hide file access patterns. As the ORAM implementation
itself running inside an SGX enclave can be vulnerable to
side-channel attacks, OBLIVIATE employs data oblivious al-
gorithms in accessing ORAM’s data structures. OBLIVIATE
also employs systematic performance optimizations while
keeping in mind the nature of applications it services.

e We provide a security analysis of OBLIVIATE against page
fault based side-channel attacks and explain how and why
these attacks become futile under OBLIVIATE.

e We evaluate OBLIVIATE on real SGX hardware. To show
its practical aspects, we not only run IOZone filesystem
benchmarks [30] but also real-world applications including
SQLite [33] and Lighttpd [22]. We show that OBLIVIATE
achieves a throughput improvement of 2x- 8 x compared
to a baseline solution employing traditional ORAM, and
slows down within the range of 1.5x- 2x compared to the
in-memory SGX filesystem.

The rest of this paper is organized as follows. §II provides
background of paper, and §III describes existing filesystem
models for SGX. §1V provides our case studies on launching
side-channel attacks against existing filesystem models. §VI
describes the design of OBLIVIATE, and § VIII evaluates various
aspects of OBLIVIATE. §IX discusses potential applications of
OBLIVIATE. §X provides related work of this paper, and lastly
§XI concludes the paper.

II. BACKGROUND
A. Intel SGX

Intel SGX [4] is a set of hardware instructions introduced
by Intel, and recently commoditized with the Intel Skylake
CPU architecture. The primary motivation behind Intel SGX
is to provide confidentiality and integrity of a user program
while reducing the trust model up to the CPU itself. Thus,
a user program can be securely run on top of hostile,
potentially adversarial system components, including high-
privileged software such as kernel, VMM, and BIOS. The key
enabling technology of Intel SGX is in its protected execution
region, termed as an enclave, which uses hardware protections
guaranteed by Intel SGX. In particular, the user program is
run within an enclave, and any transition to the untrusted
execution context (e.g. transition to the untrusted kernel, either
by synchronous or asynchronous exit events) is preceded by
complete encryption of all enclave execution contexts, including
CPU registers and enclave memory footprints. Since this
encrypted execution context can be only decrypted under the
enclave execution context, all other system components cannot
harm its confidentiality and/or integrity. In order to validate
the initial integrity of a user program, SGX provides a remote
attestation mechanism. Moreover, SGX also provides a sealing
mechanism (i.e. generating per-enclave or per-authority unique
encryption key) to support persistent data storage for an enclave
program.

Limitation: Memory Resource Use. The strong security
guarantees of SGX are achieved with a few constraints on



hardware resource usage. One key limitation is that the enclave
has a limited memory allowance for its execution. More
precisely, Enclave Page Cache (EPC), the physical memory
space for enclave programs, is allowed to utilize only up to
128 MB. It is worth noting that an enclave program can have
more than 128 MB of virtual address space. This is supported
by the untrusted kernel (i.e., Intel SGX SDK drivers), which
performs swap in/out of memory pages between EPC and
non-EPC physical memory regions.

Limitation: Side-Channel Attacks. Intel SGX does not
provide systematic protection mechanisms against side-channel
attacks and relies on the application developer. While there can
be many possible attack vectors (e.g. power monitoring attacks,
electromagnetic attacks, and access pattern analysis based on
bus snooping attacks [15]), we mainly focus on following three
feasible attacks, which do not require physical accesses to the
machine: (a) syscall snooping, (b) page fault based and (c)
cache-based side-channel attacks.

The root cause of syscall snooping attacks is that an enclave
program has to rely on other system components (e.g. kernel)
for accessing computing resources including files or network
functionality. This is because an enclave is designed to be run
with user-level privileges (i.e. ring-3) while accessing system
resources require higher privileges (i.e. ring-0). As a result,
Intel SGX SDK [19], a programming toolkit for SGX platform
released by Intel, provides ocall, which can be used to forward
system calls from an enclave to the kernel. However, since the
untrusted kernel can now observe the syscall operation, this
may harm the confidentiality guarantee provided by an SGX
enclave. For example, consider filesystem operations where
the untrusted kernel observes which file has been accessed
and/or what exact offset has been read from or written to.
Haven [9] and Ryoan [18] attempt to address this issue by
introducing an in-memory file system for SGX. However, in-
memory filesystem is also insecure which we discuss further
in §III.

Page fault based side-channel attacks [50] are memory
access pattern based attacks for the SGX context. The untrusted
kernel can mark all of these pages to be non-accessible by
either manipulating page table permissions or directly evicting
them. This allows the kernel to learn which memory page has
been accessed by an enclave program through page faults. It is
worth noting that the SGX clears the offset of the page before
switching context to the kernel and therefore the granularity of
this attack is a paging unit (i.e., 4KB). Several works [34, 42]
have presented solutions to mitigate this attack, but each of
these has its own limitations, especially when we consider the
filesystem §X.

Recent reports [10, 40] have shown that SGX is vulnerable
against cache-channel attacks, specifically the Prime+Probe at-
tack. Although these reports show how cache based attacks can
be used to obtain cryptographic keys in an SGX setting, similar
attacks can be mounted against the filesystem (specifically
the in-memory filesystem) to find out what offset within the
filesystem was accessed. This attack is conceptually similar to
its variant in the non-SGX setting but previous solutions [21, 51]
considered a trusted OS to perform various mitigations. Those
solutions are not applicable within the SGX setting since the
OS is now untrusted.

B. ORAM

ORAM [16] provides obfuscated access to encrypted
memory which prevents an attacker from learning information
about the user/program even though the attacker can observe
the data access patterns. The key idea behind ORAM is to
obfuscate access to the same memory region each time (by
re-shuffling and re-encrypting with a new nonce) so that the
attacker is unsure which memory region is being accessed
despite observing multiple runs of the same program. ORAM
was originally introduced for the remote setting where a client
stores his/her encrypted data in an untrusted memory region
(i.e., remote machine) and does not want an attacker to learn
what data is being accessed as he/she tries to retrieve the data.
To achieve this, ORAM assumes the availability of a trusted
memory region which stores some metadata corresponding to
the untrusted memory. This metadata is essential to keeping
track of the actual location of stored data in the untrusted
memory. In the traditional sense, the trusted memory region
could be located within the client’s personal machine or some
other trusted machine. We explain some of the popular ORAM
designs [28, 46], below.

Path ORAM [46] is an optimization of ORAM which uses
a complete binary-tree structure to store encrypted blocks of
memory in an untrusted machine. The tree is made up of
multiple nodes where each node holds multiple blocks. A path
ORAM tree contains both real blocks (i.e., blocks that hold
client’s data) and dummy blocks (i.e., useless blocks). Since
all blocks are encrypted, the untrusted entity cannot distinguish
between them. The number of real blocks in a path ORAM
tree is always equal to the number of leaf nodes within the tree.
The remaining blocks are filled up with the dummy blocks. All
these blocks are randomly distributed within the tree, and the
client maintains a Position Map which points to the leaf node
on whose path, the block is located. Moreover, the client needs
maintain a Stash region to retrieve and store blocks after an
access. Figure 1 illustrates an example on how Path ORAM
accesses a block.

In Path ORAM, read and write operations are almost the
same and the data access is at the granularity of a block. To
read or write a specific real block, the client first consults
the Position Map and obtains the leaf L corresponding to the
block in the untrusted memory region. To maintain access
confidentiality, the client retrieves all blocks on the path from
the root to the corresponding leaf L. On receiving the blocks,
the client discards all dummy blocks and only saves the real
block(s) (there can be more than 1 block in the path) into the
stash region. In case of a write operation, the targeted real
block is updated and in the case of a read, it is simply copied
onto a separate buffer. In order to obfuscate access to this
real block for the next time, a new leaf node L’ is chosen,
uniformly at random. Then the client writes back all retrieved
real blocks to the old path L with the constraint that the targeted
real block should be placed on the newly chosen path (i.e.,
from the root to L”). It is important to note here that all real
blocks (along path L) are re-encrypted with a random nonce.
Also, all nodes (along path L) are filled with their regular quota
of nodes by adding newly generated dummy blocks in case
they are not filled by real blocks. Path-ORAM’s obliviousness
is achieved by the fact that each access to the same block
will yield a new path. Another popular tree-based ORAM is



Position map
a | 00
b |01
c | 10
d | 11

Position map

a |10
b | 01
c | 10
d | 11

Fig. 1: A Path ORAM example in reading a block ‘a’ (assuming one block per node for simplicity). Filled blocks (from ‘a’ to ‘d’) are real
blocks and unfilled blocks are dummy blocks (from ‘e’ to ‘i’). @: It attempts to read the block ‘a’, so all blocks on path ‘00’ are first loaded to
the stash. @: It randomly picks a new leaf path (assume ‘10’), and writes back the real block ‘a’ to the block on the new leaf path. All other
blocks on the path ‘00’ are filled with newly generated dummy blocks (i.e., ‘h’ and ‘i’).

<« Open() =1 Adatablock (filled) L} A file descriptor

<---%  Read(), write() [ A datablock (empty)

e N\ N\ A
App | | App | | App |
Enclave YV
(Trusted) H H H
Trusted = \ 4 v
FSLib = O
=
: A
(Ul;::z:::d) | Untrusted FS Lib s | | Untrusted FS Lib | | Untrusted FS Lib |
— U ) L — )
4 ( N )
v v v
Kernel
(Untrusted) O E o E 0 E
A y'y 'y

g /U J O\
File storage
(Untrusted)

(a) Naive FS (b) In-memory FS (c) Hybrid FS

Fig. 2: Available file system designs for Intel SGX. All threes are
vulnerable to either syscall snooping attacks (@), page fault based
side-channel attacks (@) and cache based attacks (€).

the recursive ORAM [28]. The author’s claim to reduce the

communication overhead by 30% over traditional Path-ORAM.

These two ORAM algorithms have inspired the ORAM-tree
structure of OBLIVIATE which we explain in §VL

III. CURRENT SGX FILESYSTEM MODELS

In this section, we describe current filesystem schemes
for Intel SGX as well as pointing out potential attacks to
them. Depending on how filesystem related system calls are
processed and where filesystem metadata is maintained, existing
filesystems can be categorized into three different models:
(a) Naive SGX filesystem, which simply forwards all system
calls and the OS maintains the metadata; (b) In-memory SGX
filesystem, which handles the metadata, filebuffers and syscalls
within the enclave; (c) Hybrid SGX filesystem, which uses a
combination of the above two models.

A. Naive SGX Filesystem

This model is a natural extension of the traditional filesystem
access mechanism for SGX (shown in Figure 2-a), which is used
by Intel’s Protected File System Library Using SGX [3] and
SCONE [7]. In this model, all filesystem operations (including
metadata handling) are performed by the kernel. In particular,
since SGX does not allow direct syscall invocation, this model
simply forwards all filesystem related system calls to its
untrusted library, which is running outside an enclave, through

ocall. Then the untrusted library invokes a corresponding system
call which is then processed by the kernel. Therefore, the kernel
maintains all filesystem related key metadata, including the
file descriptor as well as its associated file buffer cache. The
return procedure of the system call is also similar — the kernel
first returns the results to the untrusted library, which in turn
relays it back to the enclave. In order to provide integrity and
confidentiality, an encryption scheme with integrity checks can
be used together, where the encryption key (i.e., a sealing key
in the SGX context) can be bound with either the enclave’s
identity itself or the authority that owns the enclave program [4].

Limitation: Syscall Snooping Attacks. Since the kernel
performs all syscall operations, it has complete knowledge
about (a) which file is being processed during open and (b)
at which file offset the processing is currently taking place
during read and write. It is worth to note that, even though
encryption schemes using an SGX sealing mechanism has been
employed, it is still possible that the untrusted kernel may
learn much information out of the encrypted file. To be more
specific, the order of blocks will stay the same as before being
encrypted, because a block-wise encryption scheme (which
allows an encrypted memory block to be decrypted as it is
without decrypting the whole file) is used. As a result, the
offset information in read would reveal such an order thereby
allowing attackers to guess which part of the file has been
accessed.

B. In-memory SGX Filesystem

The in-memory filesystem (shown in Figure 2-b) performs
the majority of filesystem interactions within the enclave i.e.
EPC memory. Haven [9] and Ryoan [18] use an in-memory
filesystem design to overcome syscall snooping attacks. The
key difference from §III-A is that the application buffers the
complete file data, along with associated metadata, within
its enclave. Thus, all following filesystem operations can be
performed on the buffered data without involving adversarial
system components. For example, in response to open, the
trusted FS library (that is linked together with an enclave
application) opens the file and reads in all file data with the
help of the untrusted kernel similar to §III-A. This file data is
stored in buffer pages, located within the enclave, which is pre-
allocated beforehand. All corresponding filesystem operations,
i.e., read, write, etc. are handled within the enclave.

Limitation: Page Fault and Cache Based Attacks. This
model is vulnerable to both page fault based [50] and cache
based [10, 17, 40] side-channel attacks launched by the
untrusted kernel. In the case of page fault attack, the untrusted



SGX driver is capable of marking all EPC memory pages non-
accessible by manipulating page table permissions or directly
evicting mapped pages from the EPC regions. This leads an
enclave execution context to raise a page fault onto the page it is
accessing which is first delivered to the kernel. Then the kernel
re-enables access onto the page so that the enclave program
can resume its execution. As a result, this attack allows the
adversarial kernel to learn the file buffer access information up
to the granularity of a paging unit (i.e., 4 KB).

Similarly, the cache based attack is also feasible. The
kernel can monitor one of the caches (L1 to LLC) to find
out which cache-set and corresponding file offset was accessed.
Assuming the adversarial kernel has prior-knowledge on the
rough semantic information of enclave’s memory layout (e.g.,
where file buffers are located), the attacker will learn which
part of the file has been accessed.

C. Hybrid Filesystem

The hybrid filesystem model blends previously mentioned
designs, naive FS model and in-memory FS model. In this
model, unlike the in-memory filesystem model, the trusted
library does not load the complete file data into the enclave but
instead does so on-demand. To gain a clearer understanding, the
file is buffered within the non-enclave memory (but within the
DRAM) and copied into the enclave as required. Graphene [47],
particularly the version ported for SGX environments [48],
employs this filesystem model.

Limitation. Since the hybrid model mixes up two filesystem
models without special security mechanisms, its attack surface
also inherits from both models. Thus, although there can be
subtle differences in the attacker’s capability, the hybrid model
is basically vulnerable to all aforementioned attacks, from
system call based attacks to page fault and cache based attacks.

IV. CASE STUDY: LAUNCHING ATTACKS

To clearly demonstrate the feasibility of attacks, we per-
formed concrete attacks against current filesystems for SGX.
In this attack, we assume that an enclave application runs a
popular database application, SQLite [33], where the database
file is encrypted and the database communication channel is
encrypted as well. SQLite stores user-data persistently through
files which are created using the regular Linux Filesystem
API, i.e., open. Afterwards, all database operations including
insert, select, etc. are completed by indexing into the
database file using read, write, pread, pwrite, etc. For
simplicity of the attack, we also assume that the attacker has
knowledge about database schema (e.g., the count of the tables
stored in the database file, and the size of a single row within
the table). The attacker can also infer these details by closely
monitoring the access patterns onto the database file since
SQLite uses data-dependent access to optimize performance.

In this setting, we assume a usage scenario that an insurance
company maintains a database storing medical records in order
to set insurance premiums. The company wants to use a cloud
infrastructure while ensuring that the data is completely isolated
and secure. For this purpose, the company runs SQLite inside
an SGX enclave. All data (outside the enclave) is encrypted
and therefore even a privileged attacker cannot directly read
the data. However, the attacker knows that one of the database

// Table -> (id (4bytes), history (4KB), no-history (4KB))
open("heart.db", O_RDWR, 0666);

// Query 1: For patient with heart disease.
pread64(3, 0x2783933, 4096, 0);

pread64(3, 0x2637298, 4096, 4096);
pread64(3, 0x2732123, 4096, 32768);

% 9w AW =

9 // Query 2: For patient without heart disease.

10 pread64(3, 0x2637221, 4096, 0);

11 pread64(3, 0x2738212, 4096, 4096);

12 pread64(3, 0x2632119, 4096, 40960);

13 pread64(3, 0x2637223, 4096, 45056);

Fig. 3: Syscall traces observed by an attacker, i.e., an untrusted kernel.
The first 8KB correspond to the metadata of the SQLite database.

files contains privacy sensitive information, indicating whether
a person has a history of heart disease within his/her family
or not. The goal of the attacker is to leverage this schema
information to find out whether a given query returns a row
with heart disease or not.

Elaborating more details on this medical database schema,
each row corresponds to a 8194 memory chunk which is divided
into one column of 4 bytes and two columns of 4 KB each. The
first column contains identification information about the person
to which this specific row belongs. The second column contains
information if the person has a history of heart diseases, and
the third column contains information if the person does not
have a history of heart diseases. Also, the company runs a
single query on the database. The query checks if the provided
person ID is associated with a history of heart disease or not,
and returns information from one of the intended columns.

Syscall Snooping Attack. In this attack, we run a victim
SQLite server within an enclave, where SQLite is built with
Intel’s Protected File System Library (i.e., naive FS model).
Figure 3 shows the syscall traces that can be collected by a
privileged attacker. The victim first opens a database file using
the open syscall (line 1) and the host OS now knows which
file is being used (i.e., “heart.db”). Next, the database always
reads the first two pages (8KB) in order to maintain metadata
information from the database file. The victim runs two queries
shown by lines 5-7 and lines 10-13. Furthermore, the attacker
observes that the first query (lines 5-7) accesses the fourth row
within the database by calculating it against the size of a row
(8kB). Also, since the database only reads the first 4KB from
then on (line 7), the attacker can infer that only the first column
was accessed, which means that the query was meant for a
person with history of heart disease. In the second query (lines
10-13), the attacker observes that the offset corresponds to the
fifth row, and since it reads two 4KB offsets (lines 12-13), the
attacker can infer that this query hits the second column, i.e.,
a patient without heart disease.

Page Fault based Attack. As far as the in-memory filesystem
is concerned, enclave memory space is pre-allocated to store
data from various files that need to be accessed. Depending
on the underlying development environment, it is possible that
the location of this memory region might be randomized (i.e.,
using ASLR [41]) Even in scenarios where it is randomized,
the host OS still can deduce the location of the memory buffer
because the location is always fixed after initializing an enclave
and the attacker would be able to leverage the repeated memory
access patterns at runtime.



queryl query2 ]§ queryl query2
9) o
g y % o 25 g2 35
4 o 8 g X o 2 o X o
o X X
g g 5 & X X ° 5 % 8 X
5 5 g ° 5
LS L) 2 x, e 2 =4 3 Q 2 ﬂy ¥ Qo ¥
@l o 1
S rnz T T
Time Time Time Time

(a) In-memory FS

(b) OBLIVIATE

Fig. 4: Page fault traces observed through the Linux SGX driver for both an in-memory FS and OBLIVIATE. As expected, the in-memory FS
exhibits the same page faults across runs whereas OBLIVIATE shows a data independent access pattern accross runs which is indistinguishable.
OBLIVIATE offers protection on two fronts here: (1) it protects the confidentiality by normalizing the query to a pre-set parameter agreed on by
the application by adding dummy ORAM accesses and (2) it protects the offset that is accessed by the application.

Figure 4-(a) shows the access pattern observed in case of
an in-memory filesystem. The first two page fault(s) for each
query (labeled as (a,b) and (d,e)) are observed since the
database first reads the metadata from the database file. Thus,
the attacker knows that (a) and (d) indicate the starting of the
in-memory file buffer. Using this starting point as a reference,
the next page faults (labeled as (b), (c), (e), (£) and (g))
show the offset within the file that was accessed. Based on
the size of each row and position of metadata in the database,
the attacker can find out which row was accessed. Also, the
attacker can tell which column (i.e., the column with heart
disease or without heart disease) was accessed. In the first
query, shown by (a,b,c), the victim attempted to reference the
fourth row and first column, i.e., heart disease. In the next run,
in the next run, shown by (d,e, f,g), the victim attempted to
access the fifth row and second column, i.e., no heart disease.

Therefore, using page faults, the attacker can tell (a) whether
the same query was run or another query was run, (b) which
row in the table was accessed and (c) which column within the
row was accessed. It is also worth mentioning that the attacker
can find out about the size of a column and row (provided they
are greater than 4KB) using page fault based attack.

Cache Based Attacks. In the case of the in-memory filesystem,
the enclave application is also susceptible to cache based side-
channel attacks. For example, consider the Last-Level Cache
(LLC), which is a unified cache that holds both code and data
from the running applications. The data from the in-memory
file will also be cached in the LLC and will be accessed from
within the LLC. Once the application tries to access the same
rows, an attacker monitoring the cache can trace the cache-
sets that were disturbed using the Prime+Probe attack. Since
subsequent accesses will affect the same cache-sets, he/she can
build similar inferences as for the page fault based attack and
compromise the security of the application.

V. THREAT MODEL

This paper assumes that a target application is running
within an SGX enclave. We further assume that high-privileged
system components, including the kernel, hypervisor, and
BIOS, have been compromised or are adversarial. During the
execution, the target enclave application accesses file resources
located in the storage medium (i.e., Hard Disk Drive, Solid
State Drive, USB, etc.) with the help of privileged system

[] oataBlock (filled) E= ORAM Block (filled)
|:] Data Block (dummy) c File Descriptor
B s < open()
//7] Pposition Map <&--p read(), write()
(. )
T Trusted Service
FS
escats 4 |, | e (7272
(§VI-C) & : -
| ORAMClient A4
Trusted Enclave (§VII-B) :
Proxy Asynchronous
Enclave Y :
* ORAM Update :
. (§V11-B) :
Message ' V y
Queue | T
§VI-A) .
! Untrusted y
v r =™ service
Untrusted @ - -
P
roxy Encrypted Encrypted
Non-Enclave C&r{?ﬁc_%)n Non-Enclave ORAM Server (§V11-B)
\ J ‘ . J
Application Obliviate

Fig. 5: A design overview of OBLIVIATE.

components, as the enclave itself does not have privilege to
access such resources. In this setting, an adversarial component
attempts to infer which data in a file has been accessed by
the enclave application through launching side-channel attacks,
namely syscall snooping attack, page fault based attacks, and/or
cache attacks. This paper does not consider other types of
sophisticated side-channel attacks, such as power monitoring
attacks, electromagnetic attacks, and hardware bus snooping
based side-channels, as most of these require direct physical
accesses to the underlying SGX machine and/or are costly to
launch.

VI. DESIGN

Now we present the design of OBLIVIATE, a data oblivious
filesystem for Intel SGX. The key idea behind OBLIVIATE is to
employ ORAM-based access protocols in order to ensure that



filesystem-related operations performed by an SGX application
remain confidential.

Design Overview. OBLIVIATE is a library filesystem, which
runs within a separate SGX enclave, alongside the application
enclave. More specifically, a filesystem enclave runs in the
other process, while the application enclave relays all filesystem
related operations to the isolated filesystem enclave through
encrypted inter-process communication channels. While we
made this design decision to minimize TCB, OBLIVIATE can
be easily extended to support in-enclave filesystem (i.e., running
the filesystem service and the target application in the same
enclave) if needed.

Following this design principle, the overall design sketch of
OBLIVIATE is depicted in Figure 5. OBLIVIATE is consisted
of four components: the trusted and untrusted service, and the
trusted and untrusted proxy Trusted service is running within
an enclave, which performs key oblivious filesystem operations
of OBLIVIATE; Untrusted service is running outside an enclave,
which delegates syscall invoking operations for trusted service.
These two services run in the same process, sharing the virtual
address space for non-EPC memory regions. Moreover, Trusted
proxy is a library linked together to an enclave application,
which forwards all filesystem related system calls to the trusted
service. Untrusted proxy is similar to untrusted service—it runs
outside an enclave and delegates system calls for trusted proxy.

Looking at the design of OBLIVIATE from the perspective
of its key component, the trusted service, it serves three
major operational roles and each role is described in following
subsections: (1) Connecting an enclave application with the
library to receive filesystem operation requests (i.e., open, read,
write, etc.) (§VI-A); (2) Orchestrating ORAM client and server
to hide access patterns onto files (§VI-B); and (3) Managing a
file descriptor and other metadata to keep the compatibility of
filesystem operations (§VI-C).

A. Communication Channel for Filesystem Service

OBLIVIATE establishes a secure communication channel
between an enclave application and OBLIVIATE’s trusted
service in order to transmit data for filesystem services. The
dataflow of this communication starts from the trusted proxy,
flowing through the untrusted proxy and untrusted service
and finally reaching frusted service (or vice-versa). Since this
communication involves untrusted components, OBLIVIATE
performs end-to-end encryption to assure confidentiality of
interactions. Before starting an enclave application, trusted
proxy contacts trusted service to perform the initial handshaking,

allowing them to share a secret key for the communication.

Then all the following communication is encrypted using this
secret key. OBLIVIATE uses a Diffie-Hellman [36] secret key
exchange scheme, which is also used in Intel’s Linux SGX
SDK [5]. To prevent potential side-channel attacks on the
communication layer, OBLIVIATE normalizes features related
to data messages [18], i.e., all messages have a fixed size
with fixed time gaps between the transmission. In addition, the
application developer can predefine some parameters to ensure
that each query to the trusted service accesses the ORAM
server storage a fixed number of time or can oblige the trusted
service to perform dummy ORAM accesses in order to mislead
the attacker.

In this communication channel, there are two main types
of communication: (1) communication between trusted and un-
trusted components (i.e., intra-process communication between
enclave and non-enclave); and (2) communication between un-
trusted proxy and untrusted service (i.e., inter-process commu-
nication). First, to facilitate an efficient communication between
trusted and untrusted components, OBLIVIATE employs exitless
message queues similar to [7, 32]. A naive solution, that is also
practiced by Intel SGX SDK, would be to rely on ocalls, but it
would result in a context switch, incurring costly latency due to
TLB flushes and LLC pollution [32]. To this end, OBLIVIATE
implements exitless message queues that are established
using non-EPC memory region shared between the trusted
and untrusted components of both the application enclave and
the filesystem enclave. Both components run its own separate
thread, which keeps polling the status of the message queue.
In §VIII-B, we quantify the performance improvement achieved
through an exitless design over a naive design.

In addition, OBLIVIATE creates a communication channel
between untrusted proxy and untrusted service. The untrusted
service initializes a shared memory region which is acquired
by the application enclave, i.e., untrusted proxy upon initial-
ization. This shared memory is essentially a combination of
two lock-free single-producer, single-consumer queues. After
initialization, the untrusted service simply polls the request
queue and waits for a request. As the untrusted proxy obtains
a message from the trusted proxy, it simply enqueues the
message into the request queue. The untrusted service receives
the message from the request queue and passes it along to
the trusted service. When a response is made available by
the trusted service, the same path is followed in the reverse
direction but now using the response queue.

B. Orchestrating ORAM Client and Server

1) ORAM Client: The client storage in ORAM comprises
of two data structures, a position map and stash. ORAM
assumes that these data structures are always stored within a
trusted memory region, because the security critical mapping
information is stored in the position map and the decrypted
blocks are stored in the stash. Toward this end, OBLIVIATE
stores the position map and stash within an enclave, leveraging
its confidentiality guarantee (shown in Figure 5).

Position Map. The position map in ORAM helps to locate real
blocks in an ORAM tree. It contains mapping information from
each real block to the corresponding tree path as determined by
the leaf node. Since the position map only holds the mapping
information, it requires a fairly small amount of space. To
be more precise, if N is the height of the tree, we require
2(N=1) x log(N) bytes of memory to hold the position map.

Stash. The stash is another security critical data structure
stored in the ORAM client. Recall that the stash stores all
the blocks that OBLIVIATE reads from a specific tree path
in the ORAM. Unlike the position map, which is simply a
mapping array, the stash is a large memory region which holds
multiple blocks filled with both real and dummy data extracted
from the oram tree. To be more precise, after each access, the
stash is filled with at least B X log(N) x D bytes of memory
where B corresponds to blocks-per-node, N denotes the height
of the tree, and D denotes the data size of a single block in



bytes. OBLIVIATE employs a fixed size stash configured during
initialization.

Securely Accessing Position Map and Stash. While the
security guarantee of an SGX enclave ensures that a potential
adversary cannot directly access the position map and stash, the
adversary can still launch side-channel attacks. Therefore, the
adversary can observe access patterns onto these data structures,
thereby inferring the hidden ORAM structures and breaking
the ORAM’s security model. For example, using the page
fault side-channel attack, the adversarial kernel can learn page
granularity (i.e., 4 KB) access patterns onto position map or
stash regions. On the other hand, the cache attack can allow
the attacker to gain cache-line (i.e., 64B) granularity onto these
regions. This is especially harmful for the position map, as the
attacker can know which index (upto 64B granularity) in the
position map was accessed and consequently leak information
about the corresponding block which was accessed.

To mitigate these risks, OBLIVIATE employs data oblivious
algorithms [34] to access the position map and stash. In a
data-oblivious algorithm, instead of accessing a specific data
entity, an algorithmic operation accesses all relevant data
entities (i.e., all corresponding memory pages and cache lines
from OBLIVIATE’s perspective). As a result, the adversary
learns nothing about the operational semantics onto these data
structures, since it cannot pinpoint which data entity is linked
to a certain algorithmic operation. OBLIVIATE leverages the
conditional move instruction (i.e., cmov) in the x86 architecture
as a security primitive of data obliviousness. cmov uses a flag to
distinguish between actual and dummy writes while ensuring
the attacker observes the same access patterns as a regular mov
instruction. Hence, both the position map and the stash are
completely accessed irrespective of the position of the required
index in the position map or the required block within the
stash.

In the case of the position map, OBLIVIATE ensures
that each cache-line (and consequently memory page) that
corresponds to memory regions within the position maps
are accessed ensuring complete privacy of access (illustrated
in Figure 6). Also, OBLIVIATE has to maintain multiple position
maps (in the case of multiple files) and uses the same technique
to ensure that these accesses are secure. Similar to the position

map, OBLIVIATE reads all candidate data blocks in the stash.

If the stash is unprotected, the attacker can find out which
block is real from within the path that was extracted, and
consequently break the security of ORAM. For example, as
illustrated in Figure 7 for the stash, the condition flag is set true
only if OBLIVIATE copies the corresponding real block, and
the flag is set false otherwise. From the attacker’s perspective,
each block or index was accessed and therefore, he/she cannot
correlate the current access to a specific block. As a result, the
ORAM protocol operates as if it was running in a completely
isolated environment without any sort of memory leakages.

2) ORAM Server: The ORAM server stores the ORAM
tree, which is updated by the ORAM client. In the following,
we first describe the data structure of the ORAM server. Then
we describe where the ORAM server is located and how it
is accessed by the ORAM client. Lastly, we introduce an
optimization technique, asynchronous ORAM server updates,
which leverages a semantic gap between ORAM protocols and
filesystem operations.

Position Position
Map Map
a
7 S~ a 7 "
b 6 L~ b 6 N
S~ A [ 5
C 9 —ﬁ output c 9 4—1’ Input
- -
o7 |4 -
d § .7 Getting the d 8 ~7 Updating the
€ 8 positionofa e 8 < position of a
block . block

(a) Reading Position Map (b) Updating Position Map

Fig. 6: Data oblivious algorithms in accessing position map. A solid
line denotes using cmov() instruction with a true flag (i.e., actually
copy the data). A dashed line denotes using it with a false flag (i.e.,
only impose access patterns but no copy).

Stash Stash
I al
red o rea I N
~
dummy |~ _ dummy | \\\~
al output i} Input
% — iput | Z :7J |
dumy I 7 An output block oy ~ An input block
dummy [ returned to read() dummy < from write()

(a) Output block (b) Input block

Fig. 7: Data oblivious algorithms in accessing stash.

ORAM Server Structure. As a filesystem, OBLIVIATE has to
provide access to multiple files for an enclave application and
it is therefore important that OBLIVIATE not only prevents the
attacker from obtaining knowledge about the accessed offset
within an individual file but also restricts the attacker from
knowing which file was accessed. This is a common scenario,
e.g., consider simple webservers such as Apache [1], Nginx [35]
etc. which cater to multiple security-sensitive files. A webserver
running within an SGX enclave should not leak information
about what file was just accessed by the client. To provide this
security, OBLIVIATE uses a simple hierarchical oram structure
to load various files into its protective sphere during enclave
initialization.

The hierarchical ORAM structure is a two-tiered ORAM
tree. OBLIVIATE lays out all files to be used for an application
into the first tier of the hierarchical tree structure. For instance,
T1 in Figure 5 depicts the first tier of OBLIVIATE’S tree
structure, where T1 contains four different files from f1 to
f4. Each filled node in T1 corresponds to a file, and an
empty node represents dummy blocks in ORAM. Moreover,
OBLIVIATE maintains a filename table, which maps a filename
to a file-block in T1. As we will describe more on open
syscall handling in §VI-C, OBLIVIATE employs data oblivious
searching algorithms onto this table, which always streams the
whole table and avoids a data-dependent access. In summary,
using ORAM-based access, OBLIVIATE will access multiple
blocks belonging to different files and the adversary monitoring
side-channels will remain unaware about the file that was
actually accessed.

OBLIVIATE allows the ORAM tree structure to be config-
urable by the application developer. The application developer
can specify the number of leaf K which determines the number
of files in T1, i.e., tier-1 tree in OBLIVIATE’Ss ORAM. As each
file is read into T1, OBLIVIATE sets the default data block size D
to be used as 4KB. The value of D is also configurable by the
program developer through separately defined API. As noted,
the value of D is important in minimizing performance overheads
since we would like to access just a single path per read or
write request. The number of Position Maps for the ORAM



server storage is always K+1 since we have a Position Map
for each of the K ORAMs and one position map serves as the
filemap mentioned previously.

ORAM Server Placement. A naive solution is to place the
ORAM server within the enclave memory (i.e., EPC), because

this may easily leverage the security guarantee of Intel SGX.

More specifically, since all data stored in EPC is automatically
encrypted by SGX’s memory encryption engine, this design
does not need to employ an additional encryption scheme
as required in the traditional ORAM protocol. However, we
observe this would not a good design choice due to the hardware
resource constraints imposed by SGX. SGX only allows 128 MB
physical memory space for EPC. If an enclave requires more
than 128 MB, the Intel SGX kernel driver [2] can swap-in and

-out memory pages to extend the memory space for the enclave.

The problem is, however, this swap-in and -out forces two
expensive context switches (i.e., from the enclave to the kernel,
and then vice-versa), degrading the performance of an enclave
application as noted by [7, 32].

In order to avoid this issue, OBLIVIATE places the ORAM

server in non-EPC memory with a general encryption scheme.

Because non-EPC memory can be directly accessed from the
enclave execution context (i.e., the ORAM client execution
context), OBLIVIATE encrypts the data blocks through hardware

accelerated AES scheme [37] supported in the x86 architecture.

The above mentioned implementation of AES is constant-time
and therefore side-channel resistant. OBLIVIATE also maintains
a Merkle Hash Tree [27] in order to verify the integrity and
freshness of encrypted data outside the EPC.

To maintain the server storage in a memory friendly format,
OBLIVIATE constructs an array-like structure according to the

pre-configured parameters for the ORAM server structure.

Within this array, each node in tier-1 is placed next to
each other. The nodes further contain smaller ORAM trees
(tier-2 file oram trees). Because the ORAM tree structure
in OBLIVIATE is a complete binary tree, this not only offers
compact representations of the tree but also efficient indexing
of the tree node (i.e., O(1)).

Asynchronous ORAM Server Update. As OBLIVIATE
moves to deploy a filesystem based on ORAM operations, we
observe there is an opportunity to make systematic performance
optimizations. To be more specific, from ORAM’s operational
perspective, both read and write can be divided into three
phases: (a) reading the required ORAM path, (b) processing
the stash, and (c) writing back the ORAM path. Once the
ORAM client completes (a) and (b), the required block has
already been fetched and securely processed.

Therefore, OBLIVIATE does not need to wait until the
completion of phase (c) in order to complete the filesystem
operation and consequently resume the application. Instead,
OBLIVIATE immediately performs the read/write operation
based on the block present in the stash, and employs a separate
worker thread to complete (c) in the background. This offers
an opportunity for OBLIVIATE to leverage the CPU cyles in

an application, which are not related to filesystem operations.

During this period of time, OBLIVIATE can parallelize the
write back to the ORAM path. In §VIII, we provide more
evaluation results of how this optimization technique can
improve performance of real-world applications.

As a result of the design decisions mentioned in this
subsection, OBLIVIATE achieves a performance within 1.5x-
2x of the in-memory filesystem while providing complete
security. §VIII-B provides a more complete breakdown of the
performance benefits achieved through these decisions.

C. Supporting Filesystem Syscall Compatibility

OBLIVIATE supports most of the native filesystem syscalls,
i.e., read, write, close, etc., without requiring any changes
in the enclave application layer. The rest of this section
describes how we provide such compatibility by orchestrating
OBLIVIATE’s client and server storage. It is worth noting
that one restriction of OBLIVIATE is that it does not provide
concurrent access to files over the lifetime of an enclave
application. While this does not introduce security issues, this
can be still considered as OBLIVIATE’s limitation in terms of
functionality, one that we intend to achieve as part of future
work.

Initializing File System. OBLIVIATE initializes all required
data structures, including the client and server storage, before
an enclave application starts execution (i.e., during the loading
time of filesystem library). The configurable parameters such
as number of files K and data-block size D are established using
a manifest file agreed to by the application enclave. Since
these parameters are not security-sensitive for OBLIVIATE,
the manifest file can exist in plaintext. During initialization,
OBLIVIATE creates the client storage (i.e., position maps and
stashes) and server storage (i.e., OBLIVARRAY) according to
the list of provided files. As noted in §VI-B1, this information
is necessary to prevent the untrusted kernel from finding out
which file is currently being accessed by the enclave application.

OBLIVIATE populates the server storage using data from
non-empty files it reads in. Here, it is worth mentioning that we
assume the data is integrity-protected using custom encryption
which can only be decrypted by the secret key within the SGX
enclave. More specifically, OBLIVIATE reads the data in each
regular file per data size, and writes them to the server storage.
This data population is also achieved obliviously. To do so,
we again use cmov to stream through the server storage and
write data blocks at random locations. We present evaluation
in §VIII-B regarding the latency that data population incurs.

open(). The operational semantics of open is to return the file
descriptor based on the provided file path, associated flags and
mode. This file descriptor facilitates all following file system
operations such as read and write. In order to create the file
descriptor, OBLIVIATE first obliviously locates the data block
in the first-tier of the ORAM tree structure (i.e., T1) using the
given filename (i.e., using the filename table in §VI-B2). If the
filename does not exist and O_CREAT is specified, OBLIVIATE
assigns new (empty) block in T1 and adds it to the filename
table with the corresponding filename. It should be noted here
that we over-provision T1 with more leaf than required to
provide support for extra files on-the-fly. Lastly, OBLIVIATE
creates a file descriptor structure, and returns the reference (i.e.,
the file descriptor number) to the enclave application.

read() and write(). For read and write, OBLIVIATE utilizes
read and write operations defined in the ORAM protocol. Using
the parameters of these syscalls including the file descriptor,



OBLIVIATE first obtains the block-id in the first-tier of the
ORAM tree structure, T1. Then, OBLIVIATE performs ORAM-
based access (i.e., read from the path to leaf) recursively along
T1-T2 to get to the required block. This process essentially
involves updating both client and server storage multiple times,
but it is secure against page based side channel attacks since
we recursively apply ORAM protocols on each tier.

fsync(). OBLIVIATE also supports fsync requested by the
enclave application. In order to preserve which parts of the
applications have been written to, we simply write-back the
whole file. OBLIVIATE always writes back into the regular
linux file type to support compatibility with other systems or
applications.

close(). close closes a file descriptor, which may or may
not flush the data buffers. This deferred flush does not cause
a consistency issue in the traditional OS, because the OS
implements a global buffer and all file accesses are always
performed using this un-flushed buffer. In the current version of
OBLIVIATE, a final write-back is performed when the library
enclave is terminated. OBLIVIATE can support an encryption
such that written-back files retain their data confidentiality.
OBLIVIATE simply uses the hardware sealing key provide by
SGX as a key for the encryption.

Other syscalls. Based on above four syscall implementations,
we have added most of basic file system related syscalls,
including read, readv, pread, preadv, write, writev, purite,
pwritev, lseek, access, stat, etc. We believe the above
syscalls are elemental functions, especially with respect to
securing the file access information, and we were able to run
realistic real-world applications including SQLite. We leave
the implementation of the rest as our future work.

VII. IMPLEMENTATION

In this section, we describe implementation details of
OBLIVIATE. On the whole, OBLIVIATE’s filesystem library
is implemented on Intel SGX SDK [5], an open-source devel-
opment environment provided by Intel to develop SGX appli-
cations. In terms of implementation complexity, OBLIVIATE’S
trusted service library consists of around 1987 lines of code
whereas the untrusted service consists of 454 lines of code.
At the application enclave side, we modify Graphene’s LibOS
in order to establish the communication channel and exitless
message queues. In total, this required around 685 lines of code
addition to Graphene’s LibOS. It should be mentioned here
that Graphene’s LibOS is just one of the example LibOS that
can be used with OBLIVIATE. Depending on the application,
the developer can choose more TCB-friendly solutions such as
Panoply [44] or even Intel SGX SDK [5].

As dictated by OBLIVIATE’S ORAM tree structure (§VI-B2),
the client storage (position maps and stashes) are stored in an
enclave memory. OBLIVIATE implements and maintains these
data structures in its OBLIVSHIM, which is as an interface
within the trusted service. OBLIVIATE’s trusted service main-
tains the server storage outside the EPC but within the confines
of its application boundary. The test applications, running with
Graphene’s LibOS, direct all syscalls to the trusted service of
OBLIVIATE. At the time of open, the trusted service creates
and maintains the complete file handling information including

10

Attack Attacking Vectors Defense Mechanism of OBLIVIATE
Syscall File and File-offset FS metadata in enclave (§VI-C)
PF/Cache File-offset ORAM operations (§VI-B2)
PF/Cache File Two-tiered ORAM tree (§VI-B2)
PF/Cache  Block-id from position map Data oblivious schemes (§VI-B1)
PF/Cache Real/dummy block from stash Data oblivious schemes (§VI-B1)

TABLE 1II: A list of attack vectors and their corresponding defense
mechanisms of OBLIVIATE.

file descriptors, file offsets, etc. The trusted service provides
seamless transition from the application’s perspective onto the
server storage.

VIII. EVALUATION

In this section, we begin with a security analysis of
OBLIVIATE. Next, we provide a detailed performance bench-
marking using both benchmarking tools and real-world appli-
cations.

Experimental Setup. All our evaluations were performed on
Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz (Skylake with
4 MB cache) with 16 GB RAM (128 MB for EPC). We ran Ubuntu
16.04 with Linux 4.4.0.59 64-bit. The applications running on
OBLIVIATE employ Graphene LibOS to run but as mentioned
before, OBLIVIATE only uses the Intel SGX SDK [5].

Reference Filesystems. Since porting applications on SGX
without a LibOS is challenging, we do not port applications
into a naive SGX FS (refer §III-A) but present results based
on our experimentation with native (non-SGX) FS (labeled as
Native FS). To gauge the performance of in-memory SGX-
based FS (refer §III-B), we developed a reference in-memory
file system based on Graphene’s LibOS [48] (labeled as In-
memory FS). The hybrid SGX-based file system (refer §III-C)
is the defacto file system used by Graphene LibOS [47, 48]
(labeled as Hybrid FS).

A. Security Evaluation

In order to ascertain the protection of OBLIVIATE against
the side-channel attacks (mentioned in §1V), we provide an
in-depth security analysis followed by experimental evaluation.

Security Analysis. Table II provides a brief overview of
possible attack vectors against OBLIVIATE and the defense
that OBLIVIATE provides to mitigate these attacks. Since all
metadata and file buffer handling is performed by OBLIVIATE
within the enclave, syscall snooping attacks do not leak any
information. The key challenge is how to mitigate the risk of
page fault based and cache-based attacks on OBLIVIATE. As
far as these attacks on the file are concerned, OBLIVIATE’S
security guarantees stem from the security guarantees of ORAM.
ORAM ensures that, regardless of access semantics, each access
exhibits a different memory access traces to an attacker. Because
this is the underlying assumption for both page fault and cache
based attacks, OBLIVIATE is provably secure against these. For
example, consider a victim enclave attempting to access a file
at an offset X twice. An in-memory filesystem would exhibit
the same memory access patterns both times whereas ORAM



8 gl=

[ (0] -

2 s

ke) ie}

kel ©

; SO aettUP Gagtt gttt qagtt et ; - - -
.

o o (L]

€ €

[ [}

= Slem = te ]
T T el i e

Time Time
(a) In-memory FS (b) Obliviate

Fig. 8: Runtime memory access patterns (page faults) captured by the
SGX driver. As expected, the in-memory FS exhibits the exact same
memory footprint since the same offset is being accessed. OBLIVIATE
conversely shows different memory footprints on each access.

would exhibit a different pattern. An attacker observing the
different pattern on the second run cannot tell whether this was
the same offset or another offset within the file. Furthermore,
with OBLIVIATE, the attacker cannot even tell whether this
was the same file or a different file as OBLIVIATE employs
two-tiered ORAM tree. Therefore, an attacker cannot obtain a
meaningful context by observing the access pattern onto the
ORAM server storage.

As mentioned in §VI-B1, naively deploying ORAM within
an SGX enclave leaves an attack surface to side-channel attacks.
This is true for both the position map and the stash which are
key metadata structures for ORAM. Elaborating further, the
attacker can pinpoint the block being accessed by observing
which index within the position map is accessed. The attacker
can also know which block is real and which is dummy by
observing which block was actually copied onto the provided
buffer. The data oblivious schemes used by OBLIVIATE ensure
that both of the aforementioned transactions always exhibit the
same trace on each run, preventing potential inferences by an
attacker §VI-B1. Since each access will follow the same path,
i.e., from the start to the end of the data structure, an attacker
is again provided with no information that could help him/her.

Experimental Security Evaluation. In order to show how
OBLIVIATE leaves memory access patterns with its ORAM
implementation, we show observed page faults for OBLIVIATE.
Recall that, when demonstrating our attack case study using
SQLite in §IV, we have also provided OBLIVIATE’S memory
trace for comparison (shown in Figure 4-(b)). In this figure,
while the in-memory FS showed the same access pattern for the
query with the same semantics, OBLIVIATE showed different
access patterns for those due to ORAM based operations. From
attacker’s perspective, this implies that she/he would not be
able to infer query semantics based on the access patterns.

In addition, we also performed another experiment which
attempts to access the same file offset multiple times. Then
we captured the corresponding memory access patterns made
in an enclave, using the SGX driver (which is part of the
untrusted kernel). Figure 8 shows the results on the in-memory
filesystem as well as on OBLIVIATE. We can observe the
following: (a) OBLIVIATE exhibits more page faults than the in-
memory FS and (b) OBLIVIATE’s execution pattern is different
on each access whereas the in-memory filesystem leaves the
same memory footprint. ORAM-based access dictates that

11

16M 128M 512M 1G
Open 3,145 7,200 14,765 21,624
Populate 1,990 5,100 7,878 12,323
Write-back 2,967 4,900 10,907 16,635

TABLE III: Performance of open and write-back operations in
OBLIVIATE (in milli-seconds): Open captures the complete time that
it takes to open the file, populate data from original file and allocate
space for Position Map and Stash; Populate is the taken time to
write real blocks to the server storage; Write-back corresponds to
the time taken to write-back to a regular file format.

16M 128M  512M 1G

IPC overhead 368 1322 2298 4235

TABLE IV: Time taken to pass various messages from untrusted
proxy to untrusted service through shared memory channel in chunks
of 4KkB for OBLIVIATE (in milli-seconds).

multiple blocks have to be read to access a block, which
naturally results in a higher number of overall page faults
(considering the attacker invalidates all pages). Also, since
the experiment attempts to access the same index, we observe
that each access using OBLIVIATE leaves a different memory
footprint to be observed by the attacker. This is in accordance
with the principles of ORAM which ensure that access patterns
are completely indistinguishable from each other. As a result,
the attacker is blinded as to whether the same file offset was
accessed or a different one.

B. Micro-Benchmarks

We attempt to answer the following questions through this
subsection: (1) How does OBLIVIATE compare in performance
to the other available filesystems?; (2) What is the degree of
improvement observed when using an exitless scheme over
a naive scheme?; (3) What is the performance improvement
achieved by using the non-EPC memory for ORAM server
placement instead of the EPC memory?; (4) What is the
latency added by the communication channel on the overall
performance?; and (5) What is the memory overhead imposed
by OBLIVIATE over other available filesystems?

To this end, we show the results of sequential and random
read/write operations and also discuss OBLIVIATE’s overhead
on open and close operations. We use lozone [30], which
is an open-source tool, widely used to benchmark filesystem
performance. Iozone provides throughput numbers which are
amortized over different runs. Since it is designed specifically
in order to gauge the performance of a filesystem, we evaluate
OBLIVIATE using lozone. In order to facilitate the reader, we
present a component-wise breakdown of the numbers.

Open/Close. Table III depicts the performance overhead
(in terms of seconds) imposed in opening and closing the
file by OBLIVIATE. Firstly, OBLIVIATE has to transform the
regular file into an ORAM tree layout, OBLIVARRAY. This
step involves: (a) creating the tree and (b) populating the tree
with data from the original file. OBLIVIATE incurs overheads
ranging from 2-20s to complete these tasks depending on the
file size. This overhead is unavoidable since a regular file cannot
be processed with ORAM-based access protocols. At the time
of finishing the file uses (i.e., exiting an enclave), OBLIVIATE



writes back the contents to the regular file, which takes from 3
to 16s. The whole file is written back instead of the modified
parts in order to preserve privacy.

Read/Writes. Figure 9 shows the read/write throughput
achieved in running iozone. As expected, the native (non-SGX)
FS is the most efficient one. The hybrid FS is slower than the
native FS but is not as slow as the complete in-memory FS or
OBLIVIATE. The reason for this is that the hybrid FS stores the
file buffers in the non-EPC memory region (but within DRAM)
and only copies in-use pages inside the EPC memory. The
in-memory FS is slow since it buffers all file contents within
the EPC memory and therefore competes with the LibOS and
user application for limited EPC pages. This contention of
limited EPC memory result in abundant swap-ins/outs which
incur considerable overhead [32].

OBLIVIATE performs 1.5-2.0x worse than the in-memory
FS for our workloads. The overhead of OBLIVIATE is un-
avoidable since it uses expensive ORAM operations and data
oblivious algorithms to provide complete security. However,
since OBLIVIATE uses the non-EPC memory (with custom
encryption) to store the server storage along with other
optimizations, it is able to compete with the in-memory FS.
It can also be observed that the throughput of both native FS
and hybrid FS increases with the increase in file size whereas
the throughput of in-memory FS ans OBLIVIATE decreases.
For in-memory FS, that is because there is more contention in
the EPC memory region whereas for OBLIVIATE, it is simply
because we have to perform operations on a larger ORAM tree.

As far as the overhead imposed by OBLIVIATE is concerned,
we believe that this is the overhead that any ORAM-based
solution is likely to incur. This is justified since ORAM has
to access multiple (say N where 27V is the height of the tree)
blocks per memory access and has to write-back the same
number of blocks. Therefore, OBLIVIATE has to access a total
of 2N blocks compared to a single block that has to be accessed
by an insecure filesystem.

Optimization Effectiveness: Message Queues and Non-
EPC Server Placement. In order to show effectiveness
of OBLIVIATE’s optimization techniques, namely message
queues (§VI-A) and non-EPC ORAM server placement
schemes (§VI-B2), we quantize the performance improvements
over the native scheme of each optimization technique. First,
for OBLIVIATE’s message queues, we modified OBLIVIATE
to use ocall mechanism in order to perform message passing
instead of using message queues. Figure 10a shows the results
we obtained while running a simple random read over a range
of data using iozone. As shown, the message queues provide a
performance improvement of 20 — 40% over the naive ocall
scheme. It has been reported previously [7, 32] that enclave exits
are expensive because of context switches and TLB flushes.

To show the effectiveness of using the non-EPC storage
as a medium to store the ORAM server storage, we perform
an experiment where OBLIVIATE uses either EPC or non-EPC
memory region (with our own encryption scheme) in order
to store the ORAM server storage. Figure 10b provides a
comparison of achieved throughput in both scenarios using
Iozone. Since the EPC memory region is small and thus incur-
ring costly swap-in and swap-out, OBLIVIATE’s optimization
schemes show much better throughput. For a 16MB file, the

12

throughput difference is around 1.25x which reaches to more
than 9x as the file size increases to 1GB.

IPC Overhead. In Table IV, we compare the overheads of
inter-process communication as we send messages of different
sizes in chunks of 4KB. OBLIVIATE uses shared memory queues
in order to create an IPC channel between the untrusted proxy
and untrusted service (refer §VI-A). As can be observed, the
overhead of shared memory communication increases linearly
to the size of the message. However, there are two things
to consider here. Firstly, this cost (per individual message)
is negligible as compared to the cost of a single ORAM
access. Secondly, OBLIVIATE can be easily adapted to act as a
filesystem which is bundled with the same application, which
will remove the extra latency added by this communication
channel. However, this design choice would have to abandon
the security principle, the principle of separation.

Memory Overhead. OBLIVIATE requires more memory than
a complete in-memory filesystem since it has to create a
multi-tier ORAM tree in-memory. Our evaluations show that
OBLIVIATE’s ORAM-based tree consumes around 6-8x more
memory than the actual file size it tries to map into its tree.

C. Macro-Benchmarks

This subsection evaluates OBLIVIATE and other filesys-
tems in running real-world applications, SQLite [33] and
Lighttpd [22]. We chose these applications since both are
inherently more I/O-intensive than CPU-intensive. To create
a comparison against all SGX-based filesystems, we show
the results from in-memory filesystem, hybrid filesystem, and
OBLIVIATE.

SQLite [33] is a popular open-source database application.
It frequently used to access database files to process SQL
queries which rely on open, read, write, etc. to fetch/update
data. Figure 1la depicts the results in running SQLite. In
this experiment, we run speedtest, a stressed performance
testing script included in SQLite. This inserts 50,000 entries
into the database and attempt to select the 50,000 entries
that we inserted. The results of our experiments show that
OBLIVIATE incurs an overhead of approximately 4x over the
hybrid filesystem and approximately 1.5x over the in-memory
filesystem.

Lighttpd [22] is a popular light-weight web server. It fits
OBLIVIATE’s criteria since it performs heavy I/O intensive jobs
(i.e., reads many files from its memory and transmits them to
the client). Our tests use simple workloads that are observed
as part of web search operations in datacenters [6]. These
workloads show that most of the flows are within a range of
1 KB and 1 MB, and therefore our testing is uniformly within
this range. As shown in Figure 11b, OBLIVIATE is not as fast
as in-memory and hybrid file systems, but its overhead is low.
To be more specific, OBLIVIATE exhibits less than 1.2x the
overhead of the in-memory filesystem and around 2 x overhead
over the hybrid filesystem.

In all our evaluations, we see that a baseline ORAM solution
would add a fair amount of overhead to existing filesystem
solutions for SGX. Since OBLIVIATE employs an ORAM based
access mechanism which guarantees security but is expensive
in nature, it is well expected that OBLIVIATE would perform



1G

2M  128M  512M

1G

2M 128M 512M

(a) Sequential reads (b) Sequential writes

Native FS
Hybrid FS
In-memory FS
Obliviate W

1G

2M  128M  512M

1G

2M 128M 512M

(¢) Random reads (d) Random writes

Fig. 9: Iozone benchmark results while varying the file size. X-axis represents a file size, and Y-axis represents the throughput achieved in
KB/s. For each experiments, we read 4KB chunks. The parameters for OBLIVIATE are K = 1, B = 3, and D = 4096. The value of leaf nodes is

calculated based on the value of D and filesize.

Msg Queue W=
ocall B33l

Non-EPC (enc) s

103

512M

16M 128M 512M

(a) Exitless Vs OCALL

128M

(b) EPC Vs Non-EPC

Fig. 10: Effectiveness of OBLIVIATE’s optimization techniques. The
figure (a) depicts the the latency (y-axis) while varying the the data
size to be transmitted (x-axis) for exitless scheme [32] and a naive
ocall scheme. The figure (b) shows the throughput (y-axis) to store
the ORAM server storage using either EPC or encrypted non-EPC.

Hybrid FS
In-memory FS
Obliviate =

1K 16K 128K 1M

(b) Lighttpd (Reg/secs)

INS
(a) SQLite (secs)
Fig. 11: Runtime performance of SQLite and Lighttpd. For SQLite,
the value of K = 1, B = 3, and D = 4096. For Lighttpd, K = 8§, B = 3,
and D = filesize. Since, lighttpd will read the whole file in anycase, it
makes sense to simply store it as a single block. OBLIVIATE prevents
the attacker from knowing which file was accessed.

worse than non-secure solutions. However, due to careful design
decisions, we ensure that OBLIVIATE’s overhead is less than
twice that of the in-memory filesystem, a degree of improvement
over a baseline ORAM scheme, while it provides complete
security. We also believe that OBLIVIATE can be practically
used with applications which are more security-critical than
performance-critical such as the ones mentioned in §IX-A.

IX. DISCUSSION
A. Potential Applications of OBLIVIATE

In this section, we attempt to illustrate the applications that
could serve as potential use cases for OBLIVIATE.

Cloud-based Storage. Previous work [8] has proposed using
write-only ORAM from a remote user side, in order to achieve
secure write-back into a cloud backup storage such as Dropbox,
Google Drive etc. However, their work assumes that all storage

13

is kept local and simply updated to keep the latest copy on
Dropbox. By using OBLIVIATE, the user can securely store and
retrieved his/her data solely on the server since OBLIVIATE
employs ORAM at the server side.

Databases. Cloud-based database services especially storing
personal information merit the use of SGX. As can clearly be
inferred from §IV, database systems running within SGX are
insecure. This security issue can be mitigated using OBLIVIATE.
As we evaluate in §VIII-C, employing OBLIVIATE with a
database system such as SQLite [33] can ensure security with
acceptable overhead (around 2Xx that of an in-memory FS).

Web Servers. Naive application of webservers (e.g., Ng-
inx [35], Apache [1] etc.) would leak which webpage was
accessed by which user (through correlating with the IP address).
OBLIVIATE protects both file offsets and which file was actually
accessed from being leaked and is therefore a good fit for
security-critical web servers.

B. Other Side-Channel Attacks.

It is difficult to completely prevent side-channel attacks,
especially if the attacking method is not known beforehand.
Although OBLIVIATE’s security guarantees can be also broken
due to new side-channel attack methods in the future, we
still believe the security primitives that OBLIVIATE provides
are general (i.e., exhibiting non-deterministic memory access
patterns in accessing files) and thus OBLIVIATE would be able
to raise the protection bar of against those attacks. For example,
a new side-channel attack against SGX, branch shadowing [23]
attack, was reported recently. The branch shadowing attack
exploits the fact that when an SGX enclave context switches
from the EPC to the non-EPC memory, it leaves its branch
information uncleared. Using such information, the attacker can
gain fine-grained information into the internal workings of the
SGX enclave. However, OBLIVIATE’s ORAM based access is
still secure against such attacks since the underlying assumption
with ORAM is that the attacker can see all the memory accesses
being performed and yet gain no information. Moreover, the
data oblivious access schemes used by OBLIVIATE ensure that,
despite fine-grained observation into the ORAM metadata, the
attacker is able to learn nothing.

X. RELATED WORK

Attacks against Intel SGX. There are three main side-channel
attacks that plague Intel SGX — syscall based, page fault based,
and cache based. Unlike syscall snooping, which is a passive



attack on system call interaction, IAGO attacks [12] explores
the security implications of trusted systems (like SGX) relying
on untrusted syscalls. OBLIVIATE counters IAGO attacks by
loading initially encrypted files and mantaining their freshness
and integrity through Merkle Hash Trees (refer §VI-B2). Page
fault attacks [50] show how data and code based page faults can
be used to learn about the execution pattern of an application
within an enclave. Cache attacks [10, 40] have shown that
both L1 and LLC can be used to mount a successful cache
attack on Intel SGX. Recently, branch shadowing attack [23],
has been reported to leak fine-grained information from SGX
enclaves by exploiting uncleared branch history when there is
a context switch from enclave to non-enclave mode. In §IX-B,
we discuss how OBLIVIATE is also secure against this attack.

Side-Channel Defenses for SGX. Previous works attempted
to prevent (or their design stops) IAGO attacks, which includes
syscall based side-channel attacks as well [9, 18, 47, 48].
Focusing on protecting file resources, these works implement
an in-memory filesystem inside the SGX enclave in order to
hide file-related syscall parameters from the untrusted kernel.

There are several works which can be leveraged to stop page
fault based attacks. First, address space layout randomization
(ASLR) can be adopted for the SGX environment [41]. ASLR
will make it difficult to understand memory layout and therefore
file access patterns in case of in-memory FS. However, the
memory address will always be the same once an application
is launched, repeated page fault information will eventually
allow an attacker to decipher the underlying memory layout.
T-SGX [42] attempted to solve page fault based side-channels
by utilizing Transactional Synchronization Extensions (TSX).
Using T-SGX, an enclave application can directly receive all
page fault events ahead of the kernel handler. The key limitation
of T-SGX is that, as demonstrated in [11], it is vulnerable to
attackers who keeps track by keeping track of the access/dirty
bit in a page table, which effectively learns about memory
page access information. Another work [43] was proposed
to mask page fault patterns from revealing information by
making deterministic modifications of the programs memory
access pattern. However, their evaluation deals with smaller
applications (cryptographic in nature), involving a small number
of memory pages. In contrast, the filesystem handles far more
pages which would result in a very large overhead for an in-
memory filesystem employing their scheme. We also note that
their scheme cannot protect against cache attacks. Another
work [31] proposed a way to process Machine Learning
(ML) algorithms in a data oblivious manner. In contrast to
OBLIVIATE, their work focuses on redesigning specific ML
algorithms.

Cache attacks have been abused to exploit cryptographic
keys such as AES and RSA. There are various solutions [14,
21, 51] that have been proposed in order to secure programs
against non-SGX cache attacks. However, these will not work
with SGX since most of them require a trusted OS and/or
are prohibitively expensive. There are also various proposed
hardware solutions [25, 49].

Hardware-based Defenses against Side-Channels. Various
hardware solutions [24, 26, 29] have been proposed to mitigate
the risk of access pattern based attacks. In contrast to these,
OBLIVIATE is more practical since it does not impose hardware

14

changes. In the future, the performance issues of OBLIVIATE
can be also reduced if hardware changes can be permitted
(especially for hardware-based ORAM operations). Previous
solutions [26, 29], have shown that hardware-based ORAM
schemes offer less overhead than software-based schemes.

SGX-based Systems. Haven [9] provides a Windows-based
LibOS for the SGX to run unmodified binaries in an enclave.
Graphene [47, 48] similarly provides a Linux-based LibOS.
Panoply [44] applies the principle of separation for LibOS.
Ryoan [18] provides a sandbox for running applications that
are shared amongst mutually untrusted parties. VC3 [39] aims to
provide trusted analytics using Intel SGX in an untrusted cloud.
Scone [7] devises a mechanism to support asynchronous system
calls [45] for SGX and improves enclave performance using
user-level threading. Eleos [32] provides user-level paging in
order to prevent costly enclave exits. OpenSGX][20] provides an
open architecture for SGX research. As we design OBLIVIATE
for SGX environments, some of its design are inspired by
above mentioned work — for example, principle of separation
design from Panoply [44], message queues from Scone [7],
and extended secure memory region using non-EPC from
Eleos [32].

ORAM-based Systems. TaoStore [38] proposes a design to
share a single ORAM-tree structure. Raccoon [34] is another
work that aims to prevent executing programs from side-
channel attacks by obfuscating the execution patterns in non-
SGX environments. OBLIVIATE has adopted Raccoon’s data
oblivious memory copy using cmov. Oblivisync [8] uses write-
only ORAM to secure synchronization of local data with
Dropbox service.

XI. CONCLUSION

This paper presented OBLIVIATE, a data oblivious file
system for Intel SGX. In response to system call or page
fault based side-channel attacks, OBLIVIATE adopts an ORAM
protocol in accessing files for an SGX environment. The
evaluation using the prototype of OBLIVIATE demonstrated
its effectiveness in securely running large-scale applications
such as SQLite and Lighttpd.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
of the program committee of NDSS 2018 for their insightful
comments on this work.

REFERENCES

[1]
[2]

“The apache http server project,” 2017. [Online]. Available: https://httpd.apache.org/
“Intel(r) sgx linux driver,” 2017. [Online]. Available: https://github.com/01org/linux-
sgx-driver

[3] “Overview of Intel Protected File System Library Using Software Guard
Extensions,” 2017. [Online]. Available: https://software.intel.com/en-us/articles/
overview-of-intel-protected- file- system-library-using-software- guard-extensions

4

[5

Intel Software Guard Extensions Programming Reference (rev2), Oct. 2014.

Olorg, “Intel(r) software guard extensions for linux* os (source code),” 2016.
[Online]. Available: https://github.com/01org/linux-sgx

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in ACM SIGCOMM
computer communication review. ACM, 2010.

S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O Keeffe, M. L. Stillwell et al., “Scone: Secure linux

[6]

[7]


https://httpd.apache.org/
https://github.com/01org/linux-sgx-driver
https://github.com/01org/linux-sgx-driver
https://software.intel.com/en-us/articles/overview-of-intel-protected-file-system-library-using-software-guard-extensions
https://software.intel.com/en-us/articles/overview-of-intel-protected-file-system-library-using-software-guard-extensions
https://github.com/01org/linux-sgx

[8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]
[28]

[29]

containers with intel sgx,” in Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Savannah, GA, Nov. 2016.

A. J. Aviv, S. G. Choi, T. Mayberry, and D. S. Roche, “Oblivisync: Practical
oblivious file backup and synchronization,” in Proceedings of the 2017 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2017.

A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted
cloud with haven,” in Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Broomfield, Colorado, Oct. 2014.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi,
“Software grand exposure: SGX cache attacks are practical,” in /7/th USENIX
Workshop on Offensive Technologies (WOOT 17), Vancouver, BC, 2017.

J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx, “Telling your
secrets without page faults: Stealthy page table-based attacks on enclaved execution,”
in Proceedings of the 26th USENIX Security Symposium (Security), Vancouver, BC,
Aug. 2017.

S. Checkoway and H. Shacham, “Tago attacks: Why the system call api is a bad
untrusted rpc interface,” in Proceedings of the 18th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Houston, TX, Mar. 2013.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,”
Journal of the ACM (JACM), vol. 45, no. 6, pp. 965-981, 1998.

B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter, “Practical
mitigations for timing-based side-channel attacks on modern x86 processors,” in
Proceedings of the 30th IEEE Symposium on Security and Privacy (Oakland),
Oakland, CA, May 2009.

V. Costan and S. Devadas, “Intel sgx explained.” JACR Cryptology ePrint Archive,
vol. 2016, p. 86, 2016.

O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious
rams,” Journal of the ACM (JACM), 1996.

J. Gotzfried, M. Eckert, S. Schinzel, and T. Miiller, “Cache attacks on intel sgx.”
in EUROSEC, 2017, pp. 2-1.

T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed sandbox
for untrusted computation on secret data,” in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), Savannah,
GA, Nov. 2016.

Intel, Intel(R) Software Guard Extensions SDK for Linux* OS, 2016,
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_
for_linux_os_pdf.pdf.

P. Jain, S. Desai, S. Kim, M.-W. Shih, J. Lee, C. Choi, Y. Shin, T. Kim, B. B.
Kang, and D. Han, “Opensgx: An open platform for sgx research,” in Proceedings
of the 2016 Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, Feb. 2016.

T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem: System-level protection
against cache-based side channel attacks in the cloud,” in Proceedings of the 21st
USENIX Security Symposium (Security), Bellevue, WA, Aug. 2012.

J. Kneschke, “Lighttpd,” 2003.

S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring fine-grained
control flow inside SGX enclaves with branch shadowing,” in Proceedings of the
26th USENIX Security Symposium (Security), Vancouver, BC, Aug. 2017.

C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi, “Ghostrider: A
hardware-software system for memory trace oblivious computation,” in Proceedings
of the 20th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), Istanbul, Turkey, Mar. 2015.
F. Liu and R. B. Lee, “Random fill cache architecture,” in Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Cambridge, UK, Dec. 2014.

M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz,
and D. Song, “Phantom: Practical oblivious computation in a secure processor,” in
Proceedings of the Sth ACM Symposium on Information, Computer and Communi-
cations Security (ASIACCS), Hangzhou, China, May 2013.

R. C. Merkle, “Method of providing digital signatures,” 1982.

T. Moataz, E.-O. Blass, and G. Noubir, “Recursive trees for practical oram,”
Proceedings on Privacy Enhancing Technologies, 2015.

K. Nayak, C. Fletcher, L. Ren, N. Chandran, S. Lokam, E. Shi, and V. Goyal,
“Hop: Hardware makes obfuscation practical,” in Proceedings of the 2017 Annual

15

[30]
(31]

[32

[33]

[34]

[35]

[36]
(371

[38]

[39

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2017.

W. D. Norcott and D. Capps, “lozone filesystem benchmark,” 2003.

O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani, and
M. Costa, “Oblivious multi-party machine learning on trusted processors,” in
Proceedings of the 25th USENIX Security Symposium (Security), Austin, TX, Aug.
2016.

M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: Exitless os services

for sgx enclaves,” in Proceedings of the 12th European Conference on Computer
Systems (EuroSys), Belgrade, Serbia, Apr. 2017.

M. Owens and G. Allen, SQLite.
A. Rane, C. Lin, and M. Tiwari, “Raccoon: closing digital side-channels through
obfuscated execution,” in Proceedings of the 24th USENIX Security Symposium
(Security), Washington, DC, Aug. 2015.
W. Reese, “Nginx: the high-performance web server and reverse proxy,” Linux
Journal, vol. 2008, no. 173, p. 2, 2008.

E. Rescorla, “Diffie-hellman key agreement method,” 1999.

Springer, 2010.

J. Rott, “Intel advanced encryption standard instructions (aes-ni),” Technical Report,
Technical Report, Intel, 2010.

C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro, “Taostore: Overcom-
ing asynchronicity in oblivious data storage,” in Proceedings of the 37th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May 2016.

F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz,
and M. Russinovich, “Vc3: Trustworthy data analytics in the cloud using sgx,” in
Proceedings of the 36th IEEE Symposium on Security and Privacy (Oakland), San
Jose, CA, May 2015.

M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Malware guard
extension: Using sgx to conceal cache attacks,” in Detection of Intrusions and
Malware, and Vulnerability Assessment: 14th International Conference, DIMVA
2017, Bonn, Germany, July 6-7, 2017, Proceedings.

J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim, “Sgx-shield:
Enabling address space layout randomization for sgx programs,” in Proceedings of
the 2017 Annual Network and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2017.

M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating controlled-channel
attacks against enclave programs,” in Proceedings of the 2017 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2017.

S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing your faults from
telling your secrets: Defenses against pigeonhole attacks,” in Proceedings of the
11th ACM Symposium on Information, Computer and Communications Security
(ASIACCS), Xi’an, China, May—Jun. 2016.

S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “Panoply: Low-tcb linux applications
with sgx enclaves,” in Proceedings of the 2017 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2017.

L. Soares and M. Stumm, “Flexsc: flexible system call scheduling with exception-
less system calls,” in Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Vancouver, Canada, Oct. 2010.

E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas,
“Path oram: an extremely simple oblivious ram protocol,” in Proceedings of the
20th ACM Conference on Computer and Communications Security (CCS), Berlin,
Germany, Oct. 2013.

C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A. Kalodner,
V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation and security isolation of
library oses for multi-process applications,” in Proceedings of the 9th European
Conference on Computer Systems (EuroSys), Amsterdam, The Netherlands, Apr.
2014.

C.-C. Tsai and D. E. Porter, “Graphene library os with intel sgx support,” 2017.
[Online]. Available: https://github.com/oscarlab/graphene

Z. Wang and R. B. Lee, “A novel cache architecture with enhanced performance and
security,” in Proceedings of the 41th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Lake Como, Italy, Nov. 2008.

Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deterministic side
channels for untrusted operating systems,” in Proceedings of the 36th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May 2015.

Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating side
channels in last-level caches,” in Proceedings of the 23rd ACM Conference on
Computer and Communications Security (CCS), Vienna, Austria, Oct. 2016.


https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://github.com/oscarlab/graphene

	Introduction
	Background
	Intel SGX
	ORAM

	Current SGX Filesystem Models
	Naive SGX Filesystem
	In-memory SGX Filesystem
	Hybrid Filesystem

	Case Study: Launching Attacks
	Threat Model
	Design
	Communication Channel for Filesystem Service
	Orchestrating ORAM Client and Server
	ORAM Client
	ORAM Server

	Supporting Filesystem Syscall Compatibility

	Implementation
	Evaluation
	Security Evaluation
	Micro-Benchmarks
	Macro-Benchmarks

	Discussion
	Potential Applications of Obliviate
	Other Side-Channel Attacks.

	Related work
	Conclusion

