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Abstract
A hypervisor is system software, managing and running vir-
tual machines. Since the hypervisor is placed at the lowest-
level in the typical systems software stack, it has critical se-
curity implications. Once compromised, the entire software
components running on top of the hypervisor (including all
guest virtual machines and applications running within each
guest virtual machine) are compromised as well, as the hyper-
visor has all the privileges to access those.

This paper proposes MUNDOFUZZ, a hypervisor fuzzer
to enable both coverage-guided and grammar-aware fuzzing.
We find that the coverage measurement in hypervisors suf-
fers from noises due to the hypervisor’s asynchronous
system event handling. In order to filter out such noises,
MUNDOFUZZ develops a statistical differential coverage mea-
surement methods, allowing MUNDOFUZZ to capture the
clean coverage information for hypervisor inputs. Moreover,
we observe that hypervisor inputs have complex input gram-
mars because it supports many different devices and each
device has its own input format. Thus, MUNDOFUZZ learns
the input grammar through inspecting the coverage charac-
teristics of the given hypervisor input, which is based on the
idea that the hypervisor behaves in a different way if the
grammatically correct (or incorrect) input is given. We eval-
uated MUNDOFUZZ with popular hypervisors, QEMU and
Bhyve, and MUNDOFUZZ outperformed other state-of-the-art
hypervisor fuzzers ranging from 4.91% to 6.60% in terms of
coverage. More importantly, MUNDOFUZZ identified 40 pre-
viously unknown bugs (including 9 CVEs), demonstrating its
strong practical effectiveness in finding real-world hypervisor
vulnerabilities.

1 Introduction

A hypervisor is system software, managing and running vir-
tual machines (VMs). The key technical advantage of us-
ing the hypervisor is in its resource virtualization capability,
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which enables a single host machine to run multiple guest
VMs. This advantage becomes particularly important as the
computing trends are rapidly shifting towards cloud comput-
ing. Using the hypervisor, cloud computing platforms can
facilitate flexible resource managements on virtualized plat-
forms, which can efficiently service for billions of users [18].
From the security point of view, hypervisors introduce crucial
attack surface to be protected. Importantly, a hypervisor is
running at the lowest layer in the typical systems software
stack, so it is given the highest security privilege of the host
machine. Consequently, any successful compromise exploit-
ing hypervisor vulnerabilities would allow attackers to gain
privilege of the entire host machine, including the hypervisor
itself as well as all guest VMs running on top of them.

Meanwhile, fuzzing techniques have been shown its ef-
fectiveness in identifying unknown vulnerabilities in various
software systems. The fuzz testing keeps running the target
software with a randomly generated or mutated input. While
running, it identifies the vulnerability by checking if the run
leads to any unexpected behavior (e.g., a crash, a hang, or rais-
ing the assert violation). In general, the effectiveness of the
fuzz testing heavily relies on the quality of its randomly gener-
ated or mutated input, as it determines the overall testing cov-
erage with respect to the target software. In order to improve
the quality of test inputs, many traditional fuzzers leverage
two key features, coverage-guided fuzzing [29,39,40,52] and
grammar-aware fuzzing [27,35,36,38,45]. First, the coverage-
guided fuzzing improves the quality of input by leveraging
code coverage measurement. Based on the coverage measure-
ment, it keeps evaluating the quality of tested inputs. Then it
only retains the good quality of inputs for the future test while
discarding the bad quality of inputs, which gradually helps
the fuzzer keep testing the good quality of inputs. Second,
the grammar-aware fuzzing directly encodes the grammar of
input semantics into the input generation and mutation logic,
such that the fuzzer tests grammatically correct inputs if pos-
sible. This allows the grammar-aware fuzzing technique to
explore in-depth logic of the target program, which helps to
augment the testing coverage.



When it comes to hypervisor fuzzing, we find that it is chal-
lenging to employ aforementioned two key fuzzing features,
coverage-guided and grammar-aware fuzzing. This is due to
the following unique systems characteristics of hypervisors.
First, it is challenging to employ coverage-guided fuzzing
in hypervisors because the precise coverage measurement of
hypervisor execution is difficult. Specifically, hypervisors are
responsible of handling various events, ranging from asyn-
chronous ones from interrupts and a timer to deterministic
ones from non-target devices, which are not relevant to a spe-
cific feature targeted by the provided inputs. Since all these
noise events will be attributed to the coverage measurement,
the measured coverage for each input would be imprecise. It
is worth noting that the previous work VDF [37] attempted
to handle this noise issue through manual hypervisor code
partitioning, but it require non-trivial manual efforts.

Second, grammar-aware fuzzing for hypervisors is chal-
lenging because of complex inputs grammars that the hy-
pervisor accepts. Hypervisors support many different virtual
devices, where each device has its own unique input seman-
tics. Moreover, these devices accept the input through various
IO interfaces (i.e., port IO, memory-mapped IO, and DMA),
which further complicates the input grammar. In order to han-
dle this issue, the previous work NYX [46] manually wrote
the grammar rule based on the documentation, but this re-
quires heavy manual efforts considering the complexity of IO
interfaces as well as a large number of virtual devices.

This paper proposes MUNDOFUZZ, a hypervisor1 fuzzer
that is carefully designed to enable both coverage-guided and
grammar-aware fuzzing. First, in order to enable coverage-
guided fuzzing, MUNDOFUZZ proposes a new statistical dif-
ferential testing approach to precisely measure the coverage.
This is based on the observation that while the true cover-
age information would be measured in the same way, the
noisy-coverage information would appear in a different way
if the coverage is measured multiple times. Leveraging this
observation, MUNDOFUZZ takes statistical complement and
intersection from multiple coverage measurement to obtain
the clean coverage information from the hypervisor input.
Second, to enable the grammar-aware fuzzing, MUNDOFUZZ
automatically infers grammar rules regarding the device reg-
ister types (e.g., control, data and DMA address registers)
and dependencies in hypervisor inputs. The key idea behind
this grammar learning is that the hypervisor behaves differ-
ently if the grammatically correct (or incorrect) hypervisor
input is given. Based on this idea, MUNDOFUZZ is capable
of inferring the grammar through inspecting the coverage
characteristics of the given hypervisor input.

We implemented the prototype of MUNDOFUZZ and eval-
uated it with popular hypervisors, QEMU and Bhyve. Accord-
ing to our evaluation, MUNDOFUZZ outperforms the state-of-
the-art hypervisor fuzzer HYPER-CUBE by 4.91% and NYX

1Specifically, Type-2 hypervisor in the paper.

by 6.60% in terms of coverage. Looking into the details,
MUNDOFUZZ’s precisely measured coverage significantly
improved the accuracy of grammar inferences, increasing
the accuracy of register types 87.2% on average. Moreover,
MUNDOFUZZ’s automated grammar inference showed a com-
parable performance to NYX, which manually specified the
grammar rules. MUNDOFUZZ also identified 40 new bugs
including 9 CVEs (i.e., 23 bugs in QEMU and 17 bugs in
Bhyve), which demonstrate its strong practical effectiveness
in finding real-world hypervisor vulnerabilities.

2 Background

2.1 Hypervisor

A hypervisor is a software application which runs multiple
virtual machine (VM) instances. The major role of a hyper-
visor is to virtualize a set of machine resources, such as the
number of processors or memory space, and to provide the
functionalities of peripheral devices to VM instances.

One of the core features in hypervisors is in emulating
devices, known as virtual devices. In particular, hypervisors
typically use the trap mechanism to emulate privileged instruc-
tions, which delegate the access to the underlying privileged
resources. For example, any operation that directly accesses
a device register from a VM instance is designed to raise a
trap, which hands over the control to the hypervisor. Then the
hypervisor accordingly emulates the operation by forward-
ing it to the corresponding virtual device in the hypervisor.
After the virtual device finishes the operation, the hypervisor
eventually returns the results and resumes the VM.
Input Space of Hypervisors. A virtual device in a hypervi-
sor accepts various IO operations from VM instances ranging
from port IO (PIO) and memory-mapped IO (MMIO) to direct
memory address (DMA). Primarily, a virtual device exposes
device registers through PIO and MMIO. PIO is the most
primitive input channel that presents a separate address space
that is mapped to device registers, where the address space
is only addressable through special instructions (in/out). On
the other hand, MMIO dedicates a range of memory address
to device registers, so that device registers are addressable via
memory operations (e.g., load or store).

A virtual device can also accept IO operations through
DMA as well. In DMA, the OS kernel (i.e., the guest kernel
that resides in a VM instance) first allocates a shared memory
buffer and informs the address to the virtual device. The
virtual device then directly accesses the buffer to receive IO
operations or place return data.
Completion Signal. When a virtual device completes a spec-
ified task by the IO operations and falls back to the idle state,
it notifies the VM instance by sending a completion signal.
The completion signal can be through hardware interrupt or
a dedicated device register, where a certain bit signifies the
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NYX [48] ✓ ✓ ✓ ✓ ✗ △

MUNDOFUZZ ✓ ✓ ✓ ✓ ✓ ✓

△: Manual work required.

Table 1: Comparison of major hypervisor fuzzers.

device state. However, for most virtual devices, the method is
configurable by the VM instance.
Determinism. Most virtual devices solely depend on the IO
operations provided by VM instances. However, some virtual
devices are asynchronous and depend on non-deterministic
sources, such as physical time. For example, since timers and
interrupt controllers depend on physical time, their operations
are generally irrelevant to the IO operations.

2.2 Fuzzing Hypervisors

Overall, previous works on hypervisor fuzzing have adopted
the general lessons from traditional fuzzing techniques, but
the direction of development has been changed due to the
characteristics of hypervisors.
Coverage-guided Fuzzing. At the early stage, hypervisor
fuzzing followed the convention of general coverage-guided
fuzzing techniques [15, 52]. VDF [37] is one of the early
coverage-guided hypervisor fuzzer, which fuzzes the virtual
devices in QEMU using AFL [52]. To suppress coverage
noises from irrelevant hypervisor parts such as non-target
virtual devices and asynchronous interrupts, VDF manually
partitions the hypervisor into stand-alone virtual device parts
and fuzzed them separately. However, this process requires
heavy manual efforts to extract virtual devices, and is also
error-prone while manually partitioning the hypervisor code.

Recently, NYX [46] also employs the coverage-guided
fuzzing by instrumenting the entire hypervisor. However,
since NYX does not manually partition the hypervisor code,
it suffers from the noises in the coverage measurement.
Throughput-oriented Fuzzing. As incorporating coverage
guide is tricky, another approach preferred fuzzing perfor-
mance to coverage guide. For example, HYPER-CUBE [47]
drops the coverage guide support and rather randomly gen-
erates hypervisor inputs on-the-fly. However, since this ap-
proach does not recognize meaningful hypervisor inputs, it
cannot develop hypervisor inputs for complex device states.
Grammar-based Fuzzing. NYX [46] employs a grammar-
based fuzzing technique to explore complex device states.
To enable grammar awareness, NYX utilized grammar spec-
ification in device documentations and manually wrote the
grammar rules for each device. However, manually embed-
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writel(0x00, bar+0);
writel(0x01, bar+4);

outl(0xa0, iobar+8);
writel(0x02, bar+4);

writel(0x10, bar+0);
writel(0x04, bar+4);

*(0xa0) = 0xbeef;
*(0xa2) = 0x1ee7;
writel(0x08, bar+4);
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bar+0: Data

bar+4: Control

iobar+8: DMA
Address

Figure 1: Example of a hypervisor input and its two key semantic
constraints; types of registers and dependencies between IO requests.

ding grammar specification for all virtual devices requires an
unacceptable manual efforts. Furthermore, the device docu-
mentation is non-trivial to interpret due to the complex details,
manually organized grammars may end up with incorrect
grammar rules.

3 Challenges in Hypervisor Fuzzing

In this section, we articulate two key challenges in performing
hypervisor fuzzing, namely i) noises in coverage measure-
ment, which deters the coverage-guided fuzzing (§3.1) and
ii) complex input semantics, which makes difficult to enable
the grammar-aware fuzzing (§3.2).

3.1 Noises in Coverage Measurement
Since hypervisors are just an application from the perspective
of a host machine, measuring the coverage of hypervisors
may seem straightforward, similar to measuring the coverage
of typical user applications.

However, we find that coverage measurement for hypervi-
sors is challenging largely due to its inherent system charac-
teristics. As noted in §2, a hypervisor is designed to virtualize
the entire machine resources, so it is responsible for handling
various asynchronous events, notably interrupts and timer
events. Because such asynchronous events are irrelevant to
a certain input to the hypervisor, simply employing tradi-
tional coverage measurement techniques would suffer from
severe non-deterministic noises. For instance, if any asyn-
chronous interrupt is triggered while measuring the coverage
of a certain IO operation, the resulting coverage ends up being
a mixture of target device coverage and interrupt coverage.
These non-deterministic noises in coverage measurements
would critically harm the coverage-guided fuzzing, because
the coverage-guided fuzzing assumes the deterministic cov-
erage measurement—i.e., the same input should lead to the
same coverage.

3.2 Complex Input Grammar
We find that hypervisor inputs have complex input grammar
semantics, challenging the fuzzing performance for efficient
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Figure 2: Overall workflow of MUNDOFUZZ.

input generation and mutation. This is largely due to the
fact that most of hypervisor inputs are presented in low level
memory or IO operations, and each memory operation can
have its own unique semantic meanings depending on i) a
memory or IO address; ii) a value it is writing; iii) a context
that the memory or IO operation is performed.

In order to clearly understand this challenge, we take an
example with a simplified hypervisor input for a generic disk
device (illustrated in Figure 1). The input consists of a se-
quence of low-level IO operations that feed values through
PIO/MMIO registers (i.e., using outl()/writel()) and writes
data to a DMA buffer (i.e., *(0xa0)=...). To initialize the
device, it first aligns the current sector to 0 before enabling
the device ("Enable Device") and configures the DMA buffer
for data transfer ("DMA Config"). After initialization, it finds
the target sector 0x10 ("Find Sector") and writes data through
the DMA buffer ("Write Data").

As shown in this example, hypervisor inputs are a short
sequence of low-level IO operations, which is difficult to un-
derstand its semantic meaning by looking at an individual IO
operation. In order to reconstruct the semantic meaning, one
needs to understand the operational characteristics of hypervi-
sor inputs: i) a collective set of IO operations forms a certain
high-level task in a device; ii) a target memory address of an
IO operation (i.e., device registers) has a dedicated seman-
tic meaning; and iii) IO operations have order dependencies
between them, which should be kept to correctly function.
Based on these operational characteristics, we elaborate each
characteristic in the followings.

IO Request: A High-level Semantic Unit. To clearly de-
note the high-level semantic unit, we define the term, an IO
Request, which is a collective set of IO operations constituting
a high-level semantic task. Such a high-level task is completed
with a notification signal, delivered through either an inter-
rupt or a status register. For example, IO requests in Figure 1
are "Enable Device", "DMA Config", "Find Sector" and "Write Data".
We note that an IO request qualifies as a semantic unit of
hypervisor inputs, because it has the property of requesting a
specific functionality to its downstream (i.e., the hypervisor).

Semantics in Device Register. Device registers in hypervi-
sor can be considered as a memory address, which is a main
communication channel between a hypervisor and a device.

Depending on the usage, device registers can be categorized
into following three types: i) a control register, which trans-
fers the control values that indicate the desired function or
operation mode; ii) a data register, which transfers a data pa-
rameter that is necessary for device functions; and iii) a DMA
address register, which transfers the base address of a DMA
buffer to the device.

From the perspective of grammar-aware fuzzing, recogniz-
ing these register types is important grammar information as
these critically impact the hypervisor operations. For example
in Figure 1, the register bar+4 is a control register that invokes
the desired functionality inside the disk device, the register
bar+0 is a data register that specifies a desired sector number
to the device, and the register iobar+8 is a DMA register that
informs the DMA buffer address. If the fuzzer is not aware of
these register types when generating or mutating hypervisor
inputs, its fuzzing performance would be severely limited. To
be specific, while mutating control registers is likely extend
the code coverage (because it would try different functional-
ity), mutating data registers is not (because it would simply
provide different value). More critically, if the fuzzer does not
recognize the DMA register, it would not be able to synthesize
(or mutate) any semantically correct hypervisor inputs per-
forming DMA operations. This is because all the following
DMA operations would be depending on the DMA buffer
address which is delivered through the DMA register.
Dependency in IO Requests. We further observe that the
IO requests also have dependencies to each other, mean-
ing that there are necessary orders between IO requests to
correctly function. For example in Figure 1, the IO request
"Enable Device" needs to precede all IO requests since any IO
requests are invalid before it enables the device. Similarly,
"Find Sector" needs to precede "Write Data" as data can only be
written properly after the disk device finds the sector. Main-
taining such dependency relations is essential for synthesizing
hypervisor inputs, as they are functional only when a sequence
of IO requests observes the dependencies.

4 Design of MUNDOFUZZ

MUNDOFUZZ is a coverage-guided hypervisor fuzzer, which
synthesizes hypervisor inputs with grammar awareness.



writel(0x00, bar+0);
writel(0x01, bar+4);
  /* Interrupt */

/* 0xa0 = dma_alloc(4); */

outl(0xa0, iobar+8);
writel(0x02, bar+4);
  /* Interrupt */

writel(0x10, bar+0);
writel(0x04, bar+4);
  /* Interrupt */

*(0xa0) = 0xbeef;
*(0xa2) = 0x1ee7;
writel(0x04, bar+4);
  /* Interrupt */
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Figure 3: Overview of hypervisor input collection (§4.1).

MUNDOFUZZ is designed to address the two challenges de-
scribed in §3. First, to remove coverage noise, MUNDOFUZZ
employs statistical and differential testing techniques to pre-
cisely measure the clean coverage information (§4.2.1). Sec-
ond, to synthesize grammatically correct hypervisor inputs,
MUNDOFUZZ automatically learns grammar rules regarding
the device register types and dependencies between IO re-
quests (§4.2).

The overall workflow of MUNDOFUZZ is illustrated in Fig-
ure 2. MUNDOFUZZ first collects hypervisor input traces is-
sued by various real-world applications and partition them
into IO requests as the units of semantics (§4.1). Next,
MUNDOFUZZ infers grammar rules through leveraging the
coverage characteristics of hypervisor operations, particularly
focusing on two things: i) the device register types and ii)
the dependencies between IO requests (§4.2). Finally, during
a fuzzing run, MUNDOFUZZ synthesizes hypervisor inputs
using the inferred grammar constraints (§4.3).

4.1 Collecting Hypervisor Input
The goal of hypervisor input collection is to collect a variety
of inputs for virtual devices. To do this, MUNDOFUZZ col-
lects real-world input traces by monitoring the IO interactions
between the OS kernel and the device at the kernel level.
Workflow. Figure 3 shows the overview of the IO operation
collection. While user applications (e.g., dd and fsck) invoke
a device driver ( 1 ), the MUNDOFUZZ logger intercepts the
PIO/MMIO and DMA operations issued by the kernel and
records them to a hypervisor input trace ( 2 ). Upon receiv-
ing an interrupt that notifies the completion of a request, the
logger slices the trace to create an IO request ( 3 ).
Recording PIO/MMIO Operations. To collect PIO and
MMIO operations, MUNDOFUZZ leverages the common
practice that the kernel provides PIO/MMIO APIs to com-
municate with peripheral devices. Notice that these primitive
APIs are well-documented in most popular OSes, as these
are heavily used by the third-party drivers. For example in
the Linux kernel, readl()/writel() are the dedicated primi-
tive APIs for the MMIO accesses, and inl()/outl() are the
primitive APIs for the PIO accesses.

As such, MUNDOFUZZ attaches a logger to these ker-
nel primitive APIs for PIO/MMIO. Logging these APIs,
MUNDOFUZZ is able to record all the PIO/MMIO operations
with their access type (e.g., read or write), access address, and
the write value if applicable. It is worth noting that device
drivers may directly utilize host instructions to communi-
cate with PIO/MMIO. In this case, MUNDOFUZZ may utilize
page fault traps as employed for DMA below, but we have
not encountered such cases during our evaluation with Linux.
Recording DMA Operations. Unlike PIO/MMIO, DMA
operations are not performed through dedicated kernel APIs,
because its operations can be seen as ordinary memory read-
/write instructions. Thus, MUNDOFUZZ leverages the fact
that most OSes provide a primitive API to allocate a DMA
memory buffer (e.g., dma_map_single() in the Linux ker-
nel). More specifically, the MUNDOFUZZ logger monitors
all DMA buffer allocation events, then it installs a page fault
trap for all the memory pages allocated for new DMA buffers.
Later when a DMA operation attempts to access the DMA
buffer, the MUNDOFUZZ logger intercepts the page fault han-
dler and records the DMA operation with its access address
and the write value. To transparently resume the execution,
MUNDOFUZZ temporarily allows the DMA operation to ac-
cess the buffer again and reinstalls a page fault trap right after
the access using the single-step debugging feature [3].
Recording DMA Buffer Allocations. Along with record-
ing DMA operations, MUNDOFUZZ additionally records the
DMA buffer allocation events for the future inference task
that we describe later in §4.2.2 and §4.2.3. Specifically,
MUNDOFUZZ intercepts the DMA buffer allocation API and
records the allocation events with their addresses and sizes.

4.2 Inferring Input Semantics
Using the collected input trace, MUNDOFUZZ infers the se-
mantic constraints (i.e., the types of registers and the depen-
dencies between IO requests) by observing the coverage char-
acteristics of the target device while algorithmically manip-
ulating the trace. To this end, MUNDOFUZZ first constructs
a primitive algorithm to remove coverage noise from an in-
strumented hypervisor (§4.2.1). Using this, MUNDOFUZZ
then infers the register types and IO request dependencies by
inspecting coverage characteristics (§4.2.2 and §4.2.3).

4.2.1 Removing Noises in Coverage

To remove coverage noise, MUNDOFUZZ takes a statistical
differential testing approach as follows. First, MUNDOFUZZ
first obtains the coverage of an individual IO opera-
tion, which still contains non-deterministic noises. Second,
MUNDOFUZZ removes the non-deterministic noise by itera-
tively intersecting the coverage. Finally, MUNDOFUZZ recon-
structs the target device coverage (i.e., an IO request coverage)
by merging the coverages from individual IO operations.
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Capturing Noisy IO Operation Coverage. Notice that as
the hypervisor executes more IO operations, it is more likely
that the coverage feedback suffers from more noises. To mini-
mize this side-effect as much as possible, this stage first nar-
rows down the scope of coverage measurement to the smallest
level, namely a single target IO operation.

It is worth noting that simply executing a single IO opera-
tion alone would not show the original coverage, because it
depends on the device state established by the preceding IO
operations. Thus, we take the differential testing approach:
we measure the coverage of two hypervisor inputs, one input
includes the target IO operation and the other does not. Then
we take the complement of these so as to obtain the coverage
of the target IO operation.

For instance, Figure 4 describes the procedure step by step.
First, MUNDOFUZZ measures the raw coverage by executing
the hypervisor input up to the target IO operation, which cap-
tures non-deterministic noises (■) as well as the true target IO
operation coverage (■) ( 1 ). Next, MUNDOFUZZ measures
the background coverage by re-executing the same hypervisor
input but excluding the target IO operation, which does not
contain the true target IO operation coverage ( 2 ). Finally,
MUNDOFUZZ takes the complement coverage Cov⊖ by sub-
tracting two coverages ( 3 ). This results in the coverage of
the target IO operation as well as non-deterministic noises.
As a next step, we describe how to filter out non-deterministic
noises to obtain the clean target IO operation.

void dev_writel(value, addr) {
    switch (addr) {
        case bar+0:   // Data reg.

            sector = value;  break;
        case bar+4:   // Control reg.

            if (value & 0x1)   {    /* Enable dev. */    }
            else if (value & 0x2)   {       /* DMA config */       }
            break;
}}

(a) Example MMIO handler in the virtual device. The shade colors (■, ■,
■ and ■) represent the coverage activated when the corresponding code is
touched.

Cov(ℍ, □) Cov(ℍ←□, □)a b

o1 0xa0

o2

o3

✓ 0xa0

✗
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(b) Inferring the type of registers in Figure 3. The colored boxes (■, ■, ■
and ■) represent the coverage activated by touching the corresponding code
in Figure 6a. □ represents the placeholder for the IO operations (o1, o2 and
o3) on the corresponding row. □̃ denotes the IO operation with the bitwise
inverted value.

Figure 6: Workflow of device register type inference (§4.2.2).

Removing Noises from IO Operation Coverage. Since
non-deterministic noises result in different coverages in every
execution, simply taking the complement (as we have done
before) does not remove non-deterministic noises. To handle
this issue, we take the statistical approach based on the follow-
ing idea: even if non-deterministic noises keep changing, the
true target IO operation coverage would always be measured.
In order to leverage this idea, we take a sufficiently large
number of complement coverages and effectively remove any
changing coverage by intersecting them all.

More formally, let Cov⊖(H,o) be the complement cov-
erage of the target IO operation o in the hypervisor
input H. If we have n-many complement coverages,
we can define the intersection coverage Cov∩ (H,o) as
Cov∩ (H,o) = ∩i∈[1,...,n] Covi

⊖(H,o).

For example, Figure 5 illustrates this procedure. While
each complement coverage includes its own non-deterministic
noises (■), taking the intersection of those cancels out those
noises. As a result, the intersection coverage only includes
the target device coverage (■).

Reconstructing IO Request Coverage. Based on the clean
coverage of each IO operation, we can now reconstruct the
coverage of an IO request by summing up the coverage of IO
operations. Formally, we denote Cov(H, R⃗) as the coverage
of R⃗ (i.e., an IO request) in H (i.e., a hypervisor input), which
can be computed as Cov(H, R⃗) = ∪o∈R⃗ Cov∩ (H,o).



4.2.2 Device Register Type Inference

We identify three types of registers through which a hyper-
visor accepts as input. As noted in §2.1, these include data,
control, and DMA address registers. In order to identify three
register types, MUNDOFUZZ goes through the procedure as
follows. First, MUNDOFUZZ identifies DMA address regis-
ters by checking whether their values are rooted from the
DMA buffer allocation API. Next, MUNDOFUZZ identifies
control registers by inspecting whether the coverage exhibits
differently when they are provided with alternative values.
Finally, MUNDOFUZZ classifies the rest as data registers.
Identifying DMA Address Registers. To identify DMA
address registers, MUNDOFUZZ leverages the fact that their
role is providing valid DMA buffer addresses to the device,
This means that they always accept the address of valid DMA
buffers. Since we record the DMA allocation events in §4.1,
we can recognize DMA address registers by checking whether
they are provided with legitimate DMA buffer addresses.

For example, Figure 6b illustrates how MUNDOFUZZ iden-
tifies the DMA address register. When the DMA buffer allo-
cation API is invoked dma_alloc(0xa0, 4), MUNDOFUZZ
marks [0xa0, 0xa4) as an address range of the DMA buffer.
When the first IO operation o1 writes the value 0xa0 to the
register iobar+8, MUNDOFUZZ recognizes that the value is
within the valid DMA buffer address range, and accordingly
marks the register iobar+8 as a DMA address register.

In addition to registers, we observe that some bytes in DMA
buffers also occationally accept the address of another DMA
buffer, mainly to chain them together and make a linked list.
In this case, we also mark the offset of such bytes in the DMA
buffer as a DMA address type and treat them as such.
Identifying Control Registers. The key idea behind iden-
tifying control registers is that a control register exhibits a
different control flow depending on its value. Figure 6a illus-
trates an example when MMIO handler receives the kernel-
side MMIO register writes (writel). Unlike the data register
bar+0 that simply updates the local variable to the given value,
the control register bar+4 uses the value to decide the control
logic (i.e., if and else if).

As such, MUNDOFUZZ infers control registers by inspect-
ing if they exhibit different coverages when it is provided
with alternative values. Currently, MUNDOFUZZ uses a bit-
inverted value as an alternative value based on the observation
that a control register often contains a set of control flags. As
this observation may not always be true, MUNDOFUZZ also
assigns a random value with a low probability (i.e., 25% in
the current configuration) to handle the case that the control
register takes unique constant values.

More formally, let õ be the IO operation o with a mod-
ified value, and H ← õ be the hypervisor input H where
the IO operation o is replaced to õ. MUNDOFUZZ con-
siders the type of the destination register as control if
Cov(H,o) ̸= Cov(H← õ, õ).
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Figure 7: Workflow of IO request dependency inference (§4.2.3).
IO requests are from Figure 1. H is the hypervisor input that con-
catenates the IO requests R⃗1, R⃗2, R⃗3, and R⃗4 in order. □ represents
the placeholder for the IO requests (R⃗1, R⃗2, R⃗3 and R⃗4) on the corre-
sponding row. The hatched boxes represent the different coverage
from the base coverage. The red lines represent the new dependency
edges created by the DMA activity or the absence coverages above.

Figure 6 demonstrates how MUNDOFUZZ infers control
and data registers with an example IO sequence in Figure 3.
MUNDOFUZZ first changes the value of the second IO opera-
tion o2 to the bit-inverted value 0xfd and inspects if it changes
the coverage of o2. Notice that while the original value 0x02
leads to the second condition (■) in the device-side MMIO
handler in Figure 6a, the bit-inverted value 0xfd leads to the
first condition (■) as 0xfd&0x01= 1. So MUNDOFUZZ de-
tects the resulting coverage difference and marks the register
bar+4 as a control register. Meanwhile, the coverage of the
third IO operation o3 does not change regardless of the value,
since the register bar+0 always executes the same code (■).
Accordingly, MUNDOFUZZ marks bar+0 as a data register.

4.2.3 IO Request Dependency Inference

To facilitate inferring the dependencies between IO requests,
we first identify two kinds of dependencies between them,
namely operational and logical. The operational dependen-
cies are the dependencies established by the IO operations
that constitute the IO requests. For example, the IO request
"Write Data" in Figure 1 is operationally dependent to the
IO request "DMA Config", because the DMA operations in
"Write Data" are only legitimate after the buffer is registered by
"DMA Config". On the other hand, the logical dependencies are
the dependencies established by the internal device logic. For
example, the IO request "Write Data" is logically dependent
to the IO request "Find Sector", because the internal device
logic requires "Find Sector" to find the target sectors before
"Write Data" writes.
Workflow. To address each dependency kind, MUNDOFUZZ
takes separate approaches as follows. While collecting IO
requests, MUNDOFUZZ first initializes the dependency graph
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using the operational dependencies revealed by the DMA op-
erations. After initialization, MUNDOFUZZ infers the logical
dependencies by inspecting the coverage variation of each
IO request when other IO requests are alternately absent. If
the absence of a certain IO request severely distorts the cov-
erage of others, MUNDOFUZZ creates the dependency edges
between the absent IO request and the influenced ones.
Initialization with Operational Dependencies. As noted,
the operational dependencies are established by the constitut-
ing IO operations, whose dependency relations are dictated
by the life cycle of DMA buffers. To review the life cycle, a
kernel first allocates a DMA buffer and registers its address
through a DMA address register. After the device recognizes
the address of the DMA buffer through the DMA address
register, the kernel references the DMA buffer with DMA op-
erations to transfer data to the device. This life cycle suggests
that the IO request registering the address of the DMA buffer
must precede any IO requests referencing the buffer.

Figure 7 illustrates an example that leverages this prin-
ciple to initialize the dependency graph between the IO re-
quests in Figure 3. Since the IO request "DMA Config" reg-
isters the DMA buffer that is referenced by the IO request
"Write Data", "DMA Config" must be located before "Write Data".
MUNDOFUZZ accordingly creates the dependency edge be-
tween them to provision the minimum dependency graph,
which must be maintained in the final result.
Construction with Inferred Logical Dependencies. Un-
like the operational dependencies that can be reconstructed
from the collected IO operations, the logical dependencies
arise from the internal device logic, which makes the de-
pendencies hard to figure out. In order to infer the logical
dependency, we observe that an IO request works differently
if the logically-dependent IO request is absent, resulting in
significant coverage differences.

Thus, MUNDOFUZZ detects the logical dependencies by
inspecting whether the absence of an IO request changes the
coverage of another IO request. Formally, let Cov(H, R⃗) be
the base coverage of the IO request R⃗, and Cov(H− R⃗′, R⃗)
be the absence coverage of R⃗ when the IO request R⃗′ is
skipped. The IO request R⃗ is then logically dependent to
R⃗′ if Cov(H, R⃗) ̸= Cov(H− R⃗′, R⃗).

Figure 7 illustrates how MUNDOFUZZ constructs the de-
pendency graph using the hypervisor input in Figure 1 as
an example. First, MUNDOFUZZ detects the dependencies
between R⃗1 and all other IO requests, as the absence of R⃗1
changes all the following coverages ( a ). MUNDOFUZZ does
not create the dependency edge between R⃗1 and R⃗4, as it is
already dependent to R⃗1 by the transitive nature of the de-
pendency graph. Next, MUNDOFUZZ retains the dependency
graph the same, as the absence of R⃗2 does not change any
following coverages ( b ). It is worth noting that R⃗2 and R⃗4
may not be logically dependent even if they are operationally
dependent. Finally, MUNDOFUZZ detects the dependency
edge between R⃗3 and R⃗4, since the absence of R⃗3 changes the
coverage of R⃗4 ( c ). Notice that the final dependency graph
coincides with the complete dependency graph illustrated
in Figure 1.

4.3 Fuzzing Hypervisor with Input Synthesis
Using the inferred semantic constraints, MUNDOFUZZ syn-
thesizes hypervisor inputs at fuzzing time. Since the synthesis
process also requires the clear coverage from the target device,
MUNDOFUZZ first provisions a mechanism to reduce the
noise coverage on-the-fly (§4.3.1). Using the noise-removed
coverage, MUNDOFUZZ further synthesizes hypervisor in-
puts and updates the dependency graph between IO requests
with newly identified IO requests (§4.3.2).

4.3.1 Noise Coverage Reduction

The overall concept of noise coverage reduction is similar to
§4.2.1 (i.e., removing the deterministic and non-deterministic
noises separately). However, it needs to be computationally
light because input synthesis is performed at fuzzing time.

To address this, MUNDOFUZZ optimizes the algorithm in
§4.2.1 with two ways. First, rather than recording the coverage
of each individual IO operation, MUNDOFUZZ records the
coverage of an IO request (i.e., a set of IO operations) as a
whole to reduce the number of coverage measurements. This
indeed widens the window of deterministic noise, but a typical
IO request is still much smaller than an entire hypervisor input
(63 vs. 68,574 IO operations on average).



Second, rather than intersecting coverages multiple times,
MUNDOFUZZ pre-records all candidate non-deterministic
noises and subtracts them from the raw coverage at once.
Currently, MUNDOFUZZ finds candidate non-deterministic
noises using a dummy hypervisor input that does not reference
any device registers. This may miss some non-deterministic
noises, but is able to reveal the coverage from some asyn-
chronous hypervisor components (e.g., a timer).

4.3.2 Fuzzing and Input Synthesis

While maintaining input semantics is important, supplying
registers with correct values also has crucial importance. To
address this, we adopt two input corpora that are specialized
for capturing general dependency relations and specific reg-
ister values, respectively. In particular, the hypervisor input
corpus reserves entire hypervisor inputs with specific reg-
ister values as a whole, and the IO request corpus reserves
individual IO requests with the dependency graph of them.
Workflow. Figure 8 shows a workflow of hypervisor input
synthesis that consists of three stages; generation, mutation
and update. First, the generation stage provisions a base hy-
pervisor input by either i) creating a new hypervisor input
from the IO request corpus or ii) choosing a hypervisor input
in the hypervisor input corpus ( 1 ). Next, the mutation stage
mutates the base hypervisor input by modifying the regis-
ter values with reference to their inferred types ( 2 ). Finally,
the update stage analyzes the coverage feedback from the
mutated input and, if it discovers new coverage, updates the
dependency graph in the IO request corpus accordingly and
reserves the mutated input in the hypervisor input corpus ( 3 ).
Input Generation. MUNDOFUZZ first generates a base hy-
pervisor input by either randomly selecting a hypervisor input
in the hypervisor input corpus, or creating a new hypervisor
input using the dependency graph and the reserved IO re-
quests in the IO request corpus. In the current configuration,
we set the equal chances for both selecting a pre-reserved in-
put and creating a new one from the scratch. When creating
a new one, MUNDOFUZZ starts from the root IO request and
picks a random child IO request while going downward in
the dependency graph. The detailed algorithm is described in
Appendix A.
Input Mutation. Given a base hypervisor input from the
generation stage, MUNDOFUZZ mutates the value of registers
according to their types. The mutation method is universal for
all register types (i.e., AFL-style mutation including bit-flips
and random value assignments), but it depends on the register
types about how frequently it is applied or how the mutated
IO requests are regarded.

For control registers, we note that the value of control
registers largely determines the control flow inside the de-
vice. This suggests that mutating their values is likely to
alter the functionality of the original IO request. Noticing
this, MUNDOFUZZ first regulates the mutation probability
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Figure 9: Overview of the MUNDOFUZZ system.

to a small value (18% in the current configuration) to main-
tain the original functionality, and if the value is mutated,
MUNDOFUZZ regards the containing IO request as a new IO
request. For example in Figure 8, MUNDOFUZZ regards the
magenta-shaded IO request R⃗∗ as a new IO request, since it
mutates the control register bar+4 in R⃗4 from 0x08 to 0x16.

For data registers, we note that they generally accept a wide
range of value while they still do not commonly affect the con-
trol flow. Therefore, MUNDOFUZZ mutates their value with
a higher probability than control registers (30% in the current
configuration). For DMA address registers, MUNDOFUZZ
does not mutate the value but rather supplies a valid DMA
buffer address. Specifically, MUNDOFUZZ replays the buffer
allocation events at the beginning of the corresponding IO
requests and feeds the allocated addresses to such registers.

In addition, MUNDOFUZZ also mutates the value of
DMA buffers in a similar way to register values. In particu-
lar, MUNDOFUZZ handles DMA-address-typed buffer bytes
(marked in §4.2.2) in the same way as DMA address registers.
For the rest of DMA buffer bytes, MUNDOFUZZ currently
mutates them similar to data registers.
Corpus Update. After executing the mutated hypervisor in-
put, MUNDOFUZZ updates two corpora according to the cov-
erage feedback. Specifically, if the mutated input discovered
new coverage, MUNDOFUZZ adds the input to the hypervi-
sor input corpus for future fuzzing runs. Furthermore, if the
new coverage belongs to the new IO request, MUNDOFUZZ
adds the new IO request to the IO request corpus and update
the dependency graph accordingly. MUNDOFUZZ currently
constructs the new dependencies by copying the parent de-
pendency edges of the base IO request to the new IO request,
as the new IO request has replaced the base IO request in the
mutated input. For example in Figure 8, the new IO request
R⃗∗ copies the parent dependencies of the base IO request R⃗4.

5 Implementation

Figure 9 shows the overview of the MUNDOFUZZ system.
The system is largely divided into two components, namely
offline and fuzzing components. The offline component col-
lects hypervisor input traces and analyzes semantic infor-
mation (i.e., register types and IO request dependencies) be-



Devices # of Accuracy
Regs. Raw Noise-reduced

QEMU

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

AC97 31 16.1% (-) 87.9% (+71.8%)
ES1370 13 38.5% (-) 92.3% (+53.8%)
Intel-HDA 33 15.2% (-) 87.9% (+72.7%)
Floppy 4 75.0% (-) 50.0% (-25.0%)
NVMe 9 44.4% (-) 100.0% (+55.6%)
E1000 299 2.3% (-) 98.0% (+95.7%)
E1000E 380 5.0% (-) 96.1% (+91.1%)
RTL8139 24 37.5% (-) 75.0% (+37.5%)
PCNET 3 0.0% (-) 100.0% (+100%)
AM53C974 16 23.1% (-) 84.6% (+61.5%)
MEGASAS 3 100.0% (-) 100.0% (0.0%)
OHCI 18 38.9% (-) 55.6% (+16.7%)
EHCI 7 57.1% (-) 85.7% (+28.6%)
XHCI 24 50.0% (-) 91.7% (+41.7%)

Bhyve
∣∣∣∣ Intel-HDA 34 14.7% (-) 91.2% (+76.5%)
E1000 305 3.0% (-) 98.7% (+95.7%)

Average 32.6% (-) 87.2% (+54.6%)

Table 2: Accuracy of inferred device register types using raw and
noise-reduced coverage. Highlighted numbers are +50% greater
than the result using raw coverage. All devices are from QEMU and
Bhyve.

fore fuzzing. The fuzzing component fuzzes the coverage-
instrumented hypervisor using the semantic information.
Logging Operating System. To collect hypervisor input
traces, we modified the Linux kernel 5.8.0 [16] to inter-
cept PIO (in/out{b,w,l}) and MMIO (write/read{b,w,l})
API functions. For DMA operations, we modified the DMA
buffer allocation function (dma_map_page_attrs()) to install
page fault traps on DMA buffers at runtime, and modified
the kernel-level page fault handler (handle_page_fault())
to record trapped DMA operations. Moreover, we imple-
mented x86-based instruction decoder based on [42] to in-
terpret DMA operations. To subdivide a hypervisor input
trace into IO requests, we modified the interrupt handler
(handle_irq_event()) to monitor completion signals.
Semantic Information Analyzer. We developed a semantic
information analyzer that implements the analysis algorithm
shown in §4.2.2 and §4.2.3. To obtain the coverage feedback
from the target hypervisor, we incorporated the instrumented
version of the target hypervisor with AFL’s instrumentation
compiler (afl-clang-fast).
MUNDOFUZZ-Fuzzer. We implemented MUNDOFUZZ-
Fuzzer based on AFL 2.57b [52] by making it compatible
with hypervisors. In particular, we enabled AFL to feed mul-
tiple inputs to the target hypervisor without shutting down
the running hypervisor. Again, we instrumented the target
hypervisor with AFL’s instrumentation compiler.
MUNDOFUZZ-OS. We implemented an agent OS called
MUNDOFUZZ-OS based on xv6 [32] to relay hypervisor in-
puts from MUNDOFUZZ-Fuzzer to the target hypervisor. To
supply MUNDOFUZZ-OS with hypervisor inputs, we bridged
MUNDOFUZZ-OS to MUNDOFUZZ-Fuzzer with a shared
disk image, where MUNDOFUZZ-OS polls new hypervisor
inputs that MUNDOFUZZ-Fuzzer presents. Since xv6 does not
provide a basic PCI device enumeration function, we added a

GRUB 2.0 support [10] with the Multiboot2 specification [33].
To support Bhyve, we added a basic UEFI support [23], which
can only boot UEFI-compatible OSes.

6 Evaluation

In this section, we compare MUNDOFUZZ to the state-of-the-
art hypervisor fuzzers, HYPER-CUBE and NYX, and demon-
strate the effectiveness of the key techniques in MUNDOFUZZ.
Specifically, we present the answers to the following research
questions through evaluation.

• RQ1. Does noise-reduced coverage help inferring se-
mantic constraints accurately? (§6.2)

• RQ2. How much does MUNDOFUZZ outperform state-
of-the-art hypervisor fuzzers in coverage wise? (§6.3)

• RQ3. Can MUNDOFUZZ discover unknown vulnerabili-
ties in hypervisors? (§6.4)

6.1 Evaluation Setup
We evaluated hypervisor fuzzers on a server-class machine
with Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz and
512GB RAM running Ubuntu 18.04 LTS. We also used the
latest version of each hypervisor, i.e., QEMU 5.2.0 and Bhyve
13.0-release. An input trace obtained from individual user
applications (i.e., dd and fsck) was 68,574 IO operations on
average, 104,386 at maximum for USB-EHCI.

6.2 Register Type Inference Accuracy
To verify how much noise-reduced coverage improves the
accuracy of inferred semantic constraints, we compared the
accuracy of inferred register types when using raw coverage
feedback and noise-reduced coverage (RQ1). We referred
to the device specifications [1, 2, 4–7, 11, 17, 19–22, 24] for
ground-truth register types and only measured the accuracy
of control and data types. We only included the registers that
the corresponding virtual device implements, excluding the
registers that only exist in the documentation but are never
implemented in virtual devices.

Table 2 shows the accuracy of register types when they are
inferred with raw and noise-reduced coverage. Overall, noise-
reduced coverage significantly improves inference accuracy,
more than 50% in 10 of 16 virtual devices. On average, noise-
reduced coverage achieved 87.2% of register type inference
accuracy, while raw coverage stands at 32.6%. In particular,
noise-reduced coverage enables almost perfect inference in
E1000 and E1000E, while it merely works with raw coverage.

Exceptionally for Floppy, noise-reduced coverage ad-
versely affects the inference accuracy. Our investigation found
that Floppy uses some device registers for both data transfer
and command specification, which is incompatible to the cur-
rent inference mechanism that assumes a single type for each
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Figure 11: Coverage change over fuzzing time on XHCI. NYX+
represents NYX with grammar specification (NYX-SPEC in [48]).

register. This case can be easily handled by incorporating a
data/control mixed type to inference, but we did not observe
such a mixed-typed register in other devices.

For OHCI, noise-reduced coverage does not improve much
accuracy. This is because some data registers in OHCI slightly
alter the control flow as a side-effect. In particular, they affects
the control flow of the internal queue update logic, which is
triggered every time data registers are updated. To address
this, the inference mechanism can adopt a threshold level to
ignore minor coverage disturbance.

6.3 Coverage Comparison
To demonstrate the performance benefit of MUNDOFUZZ, we
compared the code coverage of MUNDOFUZZ to the state-of-
the-art hypervisor fuzzers, HYPER-CUBE and NYX (RQ2).
We used the open-source version of NYX and reconstructed
HYPER-CUBE by referring to the base implementation of
NYX. In the following, we call NYX to indicate the version

Devices Branch Coverage Improvement
HYPER-CUBE NYX MUNDOFUZZ vs.HC vs.NYX

QEMU

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

AC97 100.00% 99.00% 100.00% 0.00% +1.00%
ES1370 87.50% 91.07% 91.07% +3.57% 0.00%
Intel-HDA 79.83% 79.00% 79.83% 0.00% +0.83%
Floppy 85.15% 85.15% 82.29% -2.24% -2.24%
RTL8139 75.62% 76.99% 76.92% +1.63% -0.07%
PCNET 78.13% 81.78% 75.52% -2.61% -6.26%
E1000E 71.51% 35.04% 70.23% -1.28% +35.19%
E1000 65.13% 51.97% 76.32% +11.19% +24.35%
NVMe 53.89% 54.15% 69.98% +16.09% +15.83%
AM53C974 63.45% 64.29% 65.13% +1.68% +0.84%
MEGASAS 63.97% 68.12% 72.27% +8.30% +4.15%
OHCI 68.49% 59.97% 76.79% +8.51% +16.82%
EHCI 67.06% 66.02% 69.26% +2.20% +9.29%
XHCI 66.48% 72.03% 81.77% +15.29% +9.74%

Bhyve
∣∣∣∣ Intel-HDA 50.00% 55.17% 56.89% +6.89% +1.72%
E1000 38.13% 47.93% 50.18% +12.05% +2.25%

Geomean +4.91% +6.60%

Table 3: Branch coverage on various virtual devices after 24 hours
of fuzzing. Each presented number is the median of 8 trials. Bold
percentages are the largest coverage on each device. vs.HC and
vs.NYX denote the relative improvement of MUNDOFUZZ over
HYPER-CUBE and NYX, respectively.

without a grammar specification (i.e., NYX-Legacy in [48]) on
which most of the evaluation were performed in the original
NYX paper. In addition, since NYX provides one manual
grammar specification only for XHCI (NYX-Spec in [48]),
we also compared MUNDOFUZZ to their grammar-specified
version on XHCI.

To compare coverage, we ran each hypervisor for 24 hours
and repeated 8 times, following the evaluation guideline sug-
gested by [41]. We measured coverage with Gcov [9] by
executing the entire corpus from each hypervisor with Gcov-
instrumented hypervisors every 10 minutes. We also restarted
hypervisors with the same interval to minimize the influence
of previous fuzzing campaign affecting the latter one.

Table 3 shows the median of final branch coverage and the
relative improvement of MUNDOFUZZ over HYPER-CUBE
and NYX. Overall, MUNDOFUZZ shows better performance
compared to HYPER-CUBE and NYX, outperforming on 12
out of all 16 virtual devices by an average margin of 4.91%
and 6.60%, respectively. Figure 10 shows the coverage plots
of the selected virtual devices that have exhibited significant
differences compared to HYPER-CUBE and NYX. The full
set of coverage plots can be found in Appendix D. We found
most of the under-performing virtual devices, such as E1000E
and PCNET, were related to networking. On such devices,
MUNDOFUZZ could not easily reach the branches inside
packet receive functions. This was mainly because Mund-
oFuzz was not able to collect hypervisor inputs for packet
receiving, possibly due to the fact that the collecting hyper-
visor setup did not receive network packets destined to those
devices.
NYX with Manual Grammar Specification. Since [48] in-
corporated manual grammar specification for XHCI to NYX,
we also compared NYX with the XHCI grammar specifica-



Hypervisor Bug Types Numbers

QEMU

Use-after-free 3
Heap Overflow 2
Segmentation Fault 3
Infinite Loop 3
Stack Overflow 1
Assertion 11

Bhyve
Segmentation Fault 4
Floating Point Exception 1
Assertion 12

Table 4: New bugs found by MUNDOFUZZ.

tion [26] to MUNDOFUZZ. Figure 11 shows the time-course
change of XHCI coverage, where MUNDOFUZZ approaches
NYX with grammar specification (NYX+) in a slower pace.
We note that this is due to the incomplete dependency graph
from the inference stage, which MUNDOFUZZ requires time
to tune at fuzzing time. Nevertheless, MUNDOFUZZ eventu-
ally outpaces NYX+ in 20 hours and discovers more coverage
in the end at 48 hours, even without any manual information.

6.4 New Vulnerabilities
To verify if MUNDOFUZZ is able to discover unknown vul-
nerabilities, we fuzzed the latest version of hypervisors with
ASan [49] and MSan [51] (RQ3). Table 4 summarizes all
40 bugs that we newly discovered with MUNDOFUZZ, in-
cluding 9 CVEs from QEMU. For Bhyve, we have requested
CVEs and are waiting for response. The details of the bugs
are shown in Appendix C. In the following, we examine a
couple of new bugs and explain how MUNDOFUZZ was able
to discover them.
Case Study: Heap buffer overflow in QEMU AM53C974.
MUNDOFUZZ found a heap buffer overflow in the
AM53C974 virtual SCSI controller. In Figure 12, AM53C974
first allocates cache with a large buffer cache->buf (Line 6)
and initializes the limiting capacity cache->cap with a user-
provided value (Line 8). Then, it performs PIO writes to copy
data from PIO_buf to cache->buf (Line 13) and decrements
the copied amount from cache->cap (Line 14). This decre-
ment, however, can actually go over the initial capacity and
eventually makes cache->cap underflow. While this under-
flow does not lead to a buffer overflow immediately, it later
allows a DMA write with a huge write length (DMA_len) to
pass the safety check (Line 20) and trigger the out-of-bound
write (Line 21).

Reproducing this bug essentially requires two steps. First,
it has to keep underflowing cache->cap by performing PIO
writes enough times. Second, it must trigger the out-of-bound
access to cache->buf by performing a DMA write with a huge
write length (DMA_len). Thus, reproducing imposes multiple
PIO requests followed by a specific DMA write operation.
In this case, MUNDOFUZZ’s design significantly helps to
generate such an input—(i) MUNDOFUZZ is aware of the in-
dividual request format, the PIO request and DMA write oper-

1 struct C {char buf[MAX]; char* top; uint cap;};
2 struct C *cache; char PIO_buf[16];
3
4 // Step 0: init cache capacity.
5 void init_cache(uint capacity) {
6 cache = malloc(sizeof(struct C));
7 cache->top = &cache->buf[0];
8 cache->cap = capacity;
9 }

10
11 // Step 1: make cache capacity underflow.
12 void write_from_pio(uint PIO_len) {
13 memcpy(cache->top, PIO_buf, PIO_len);
14 cache->cap -= PIO_len; // underflow
15 cache->top += PIO_len;
16 }
17
18 // Step 2: access cache buffer out of bound.
19 void write_from_dma(char *DMA_addr, uint DMA_len) {
20 if (DMA_len <= cache->cap) // huge DMA_len - OK
21 memcpy(cache->top, DMA_addr , DMA_len); // crash
22 }

Figure 12: The heap buffer overflow crash in AM53C974.

ation (as presented in MUNDOFUZZ’s input collection §4.1);
(ii) MUNDOFUZZ knows how the individual request can be
connected—i.e., a PIO request can be followed by either a
PIO request or a DMA write (as presented in MUNDOFUZZ’s
dependency graph §4.2.3).

However, it would be challenging for grammar-unaware
fuzzers to generate such inputs, as it is aware of neither the in-
dividual request format nor how the request can be connected.

Case Study: Infinite Loop in QEMU E1000E.
MUNDOFUZZ discovered an infinite loop issue in the
E1000E virtual network device. When dequeueing a packet
from the receive ring buffer, E1000E checks whether it is a
null packet whose fields are all 0’s and accordingly discards
the packet to dequeue again. This causes E1000E to dequeue
an infinite number of null packets if the receive ring buffer is
filled with null packets, since a ring buffer never depletes the
element.

To reproduce the bug, E1000E first needs to be in the loop-
back mode, so that it can receive anything by transmitting to it-
self. However, exploring the loop-back mode is difficult as it is
controlled by a single bit in a control register, making it easily
overlooked while fuzzing. MUNDOFUZZ, on the other hand,
recognizes the IO request that enables the loop-back mode
as it modifies a control register. Furthermore, MUNDOFUZZ
incorporates it into the dependency graph to synthesize more
hypervisor inputs that run in the loop-back mode. As a re-
sult, MUNDOFUZZ succeeds to transmit a packet to itself no
matter how difficult it is.

Moreover, an input needs to transmit a packet as soon as
it configures the receive buffer, so that any other operations
do not clutter the zero-initialized queue with any non-zero
value. In this regard, the dependency graph readily guides
MUNDOFUZZ the way how to generate a minimum hypervi-
sor input that configures the receive buffer, sets the loop-back
mode, and transmits a packet.



7 Discussion

Control Bytes in DMA Buffers. While MUNDOFUZZ han-
dles major characteristics of DMA, including IO request de-
pendencies established by DMA operations and DMA address
bytes inside DMA buffers, MUNDOFUZZ currently cannot
distinguish the control bytes in DMA buffers from plain data
bytes. In particular, the semantic roles of control bytes are sim-
ilar to the control registers. However, mutating control bytes
values do not necessarily change the following coverage im-
mediately, unlike the case of mutating control register values
which immediately change the coverage. This makes making
the current inferring algorithm of MUNDOFUZZ inaccurate
for the control bytes in DMA buffers. Correctly identifying
such control bytes is our future task.
Benefits of Statistical Coverage Measurement. When it
comes to the coverage measurement, MundoFuzz takes a
generic approach so that it does not need manual code mod-
ification. Furthermore, MundoFuzz leverages a statistical
method to remove coverage noise from such a generic ap-
proach. Manual approaches such as Kcov [13] may not suffer
from the coverage noise by manually skipping the coverage
measurement from interrupt handler threads, but this manual
modification should be individually done for each hypervisor.
Fuzzing Type-1 Hypervisors. The current implementation
and evaluation of MUNDOFUZZ mainly focus on Type-2 hy-
pervisors. In the future, MUNDOFUZZ can be extended to
support Type-1 hypervisors by nesting a Type-1 hypervisor
in an Intel PT-instrumented [12] Type-2 hypervisor, similar
to [48]. We note that this does not invalidate any design points
of MUNDOFUZZ, as all challenges remain the same in such
an environment. In particular, the coverage information from
an Intel PT-instrumented hypervisor is also tampered with an
asynchronous noise, and the virtual devices of Type-1 hyper-
visors still have complex input grammars.

8 Related work

Hypervisor Fuzzing. Early hypervisor fuzzing works fo-
cused on relatively simple IO interfaces, such as PIO, MMIO,
or hypercall interface [28, 30, 31, 37, 40, 43, 44]. For instance,
IOFuzz [44] creates random sequences of PIO operations.
Viridian [30] and Xen Test Framework [28, 31] invoke ma-
licious hypercalls within Hyper-V and Xen. To fuzz PI-
O/MMIO interfaces more efficiently, VDF [37] and Tang et
al. [40] utilize the collected IO traces to generate hypervisor
inputs. However, they do not aim to keep the input semantics
correct. Moreover, they modify the hypervisor itself to collect
IO traces and suppress coverage noise. On the other hand,
MUNDOFUZZ does not modify hypervisors at all.

The recent state-of-the-art hypervisor fuzzers are designed
to handle a complete set of IO interfaces, including DMA.
HYPER-CUBE [47] handles the DMA interface by writing

data to a scratch buffer. However, it does not generate seman-
tically correct inputs to explore complex device states.

NYX [48] addresses this limitation of HYPER-CUBE by
utilizing the grammar specification of each virtual device.
However, it requires a huge amount of manual efforts to em-
bed grammar specification for a number of devices. Moreover,
as mentioned in §6.3, MUNDOFUZZ demonstrates a higher
coverage only after 20 hours, while MUNDOFUZZ does not
require any kind of manual efforts.
Grammar Inference. In order to generate semantically valid
inputs, recent fuzzing techniques have been developed by
inferring grammars with given inputs [27,35,36,38,45]. In the
user level, various fuzzers [27, 35, 38] generated syntactically
valid inputs to fuzz programs accepting highly structured
input languages such as interpreters, compilers. Moreover,
kernel fuzzers [36, 45] also generate a sequence of correct
system calls by referring to system call dependencies.
IO Trace Monitor. From a utility software to kernel module,
the IO trace monitor is designed to debug or analyze the IO
event in the kernel. For the utility, iostat in sysstat [34] is user
application that monitors and report how many IO operations
happen. However, since the utility software have no privilege
to monitor IO trace directly, it simply provides statistic of IO
operation by reading a status file in sysfs.

For the kernel module, kprobe [14] enable the user to break
into any kernel routine and monitor IO events dynamically.
And, ftrace [8] provides several options to monitor dynamic
IO events. For example, ftrace gives by mmiotrace [25] op-
tions to trace MMIO operation utilizing the page fault mech-
anism. These modules have capabilities to monitor IO trace,
however, it cannot fully utilized to monitor the complete in-
terfaces because kprobe is inadequate to monitor the IO trace,
and ftrace is only possible to collect for MMIO interface.

To monitor extended IO trace in DMA interface, Periscope
[50] introduced IO trace monitor based on mmiotrace and
enable the monitor to observe DMA operations. However, it
is designed for Android kernel (AArch64), we implemented
to monitor x86-based DMA operation.

9 Conclusion

Despite the advancement of hypervisor fuzzing techniques,
exploring complex device states still remains challenging due
to the coverage noise and the low-level inputs that complicate
input generation. In this paper, we present MUNDOFUZZ,
the hypervisor fuzzer that enables complex device states
exploration, which removes coverage noise in raw cover-
age feedback and synthesizes semantically correct inputs
using inferred semantic constraints. The evaluation shows
that MUNDOFUZZ outperforms the state-of-the-art hypervi-
sor fuzzer HYPER-CUBE and NYX by 4.91% and 6.60%, re-
spectively. MUNDOFUZZ also found 40 new bugs in QEMU
and Bhyve, 9 of which are acknowledged as CVEs.
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Algorithm 1: CreateNewInput
Input G: Dependency graph between the IO requests in the corpus.
Output List of IO requests.
R = RootOf(G) // R: IO request
S = {R} // S: set of chosen IO requests
while HasChild(R) do

R = PickOneChildRandomly(R)
S← R
// Backtracking to resolve missing dependencies
Q = [R] // Q: IO request queue
while not Empty(Q) do

R’ = Dequeue(Q)
if not ParentsOf(R’) in S then

if BreakDependencyRandomly() then break
S← ParentsOf(R’)
Enqueue(Q, ParentsOf(R’))

return ToList(S)

A Input Generation Algorithm

Algorithm 1 describes how MUNDOFUZZ creates a new hy-
pervisor input given a dependency graph between IO requests.
Starting from the root IO request, the algorithm picks a ran-
dom child IO request and recursively repeats the process
until it reaches the leaf IO request. If there are multiple
root IO requests that are mutually independent to each other,
MUNDOFUZZ creates an empty IO request that joins all such
IO requests to make a unified root. If it encounters any unre-
solved dependency in this course, the algorithm probabilis-
tically resolves the dependency by backtracking the depen-

dency graph, or deliberately leaves it unresolved to break the
dependency and examine the corresponding behavior.

B Case Study: Null Dereference in QEMU
MEGASAS

MUNDOFUZZ found a null dereference issue in the
MEGASAS virtual RAID disk device. MEGASAS uses a
DMA buffer to perform several commands. The DMA buffer
contains parameters, such as control ID that determines which
command should be performed. When receiving a disk write
command, MEGASAS copies the DMA buffer to its inter-
nal queue. However, this copied buffer is set to 0 when
MEGASAS receives a device initialization command after-
wards, while leaving the disk write command still in the queue.
This causes MEGASAS to dereference a null pointer when it
is triggered to flush all pending commands.

In order to find this bug, following two challenges should
be addressed. First, it requires the DMA buffer should include
a specific control ID to perform MEGASAS commands. Sec-
ond, the bug requires following three commands in a right
order; i) write data to the disk, ii) initialize MEGASAS, iii)
flush all pending commands.

In this case, MUNDOFUZZ can easily generate the
needed DMA buffer from hypervisor inputs. Moreover, since
MUNDOFUZZ maintains the dependencies between IO re-
quests, it can try all three commands in order and quickly
discover the bug. However, it would be difficult to grammar-
unaware fuzzers, as they do not recognize the DMA buffer
and are hard to keep the orders.

https://www.cspensky.info/pdfs/ndss2019_04A-1_Song_paper.pdf
https://www.cspensky.info/pdfs/ndss2019_04A-1_Song_paper.pdf
https://lcamtuf.coredump.cx/afl/


C List of Discovered Bugs

Hypervisor Description Device Status ID

QEMU

Infinite loop issue in e1000e_write_packet_to_guest E1000E Assigned CVE-2020-28916
Infinite loop issue in e1000e_ring_advance E1000E Assigned CVE-2020-25707
Infinite loop issue in process_tx_desc E1000 Assigned CVE-2021-20257
NULL pointer dereference issue in megasas_command_cancelled MEGASAS Assigned CVE-2020-35503
NULL pointer dereference issue in scsi_req_continue AM53C974 Assigned CVE-2020-35504
NULL pointer dereference issue in do_busid_cmd AM53C974 Assigned CVE-2020-35505
Use-after-free issue in flatview_write_continue AM53C974 Assigned CVE-2020-35506
Use-after-free issue in mptsas_process_scsi_io_Request MPTSAS1068 Assigned CVE-2021-3392
Use-after-free issue in esp_do_nodma AM53C974 Confirmed -
Stack overflow issue in flatview_read_continue AM53C974 Confirmed -
Heap buffer overflow issue in scsi_req_parse_cdb AM53C974 Confirmed -
Heap buffer overflow issue in esp_fifo_pop_buf() AM53C974 Requested -
Assertion in usb_packet_unmap at hcd-ehci.c EHCI Assigned CVE-2020-25723
Assertion in usb_msd_handle_data at dev-storage.c XHCI Fixed -
Assertion in fifo8_pop_buf at fifo8.c AM53C974 Fixed -
Assertion in fifo8_push_all at fifo8.c AM53C974 Fixed -
Assertion in mptsas_interrupt_status_write MPTSAS1068 Confirmed -
Assertion in address_space_stw_le_cached VirtIO-blk Requested -
Assertion in lsi_do_dma at lsi53c895a.c LSI53C810 Requested -
Assertion in esp_transfer_data() AM53C974 Requested -
Assertion in scsi_read_data() AM53C974 Requested -
Assertion in esp_do_dma at esp.c AM53C974 Fixed -
Assertion in esp_do_dma at esp.c AM53C974 Fixed -

Bhyve

Floating point exception issue in pci_nvme_handle_io_cmd at pci_nvme.c NVMe Requested -
Segfault issue in pci_nvme_pci_nvme_handle_admin_cmd at pci_nvme.c NVMe Requested -
Segfault issue in pci_nvme_append_iov_req at pci_nvme.c NVMe Requested -
Segfault issue in pci_nvme_handle_io_cmd at pci_nvme.c NVMe Requested -
Assertion in pci_nvme_cq_update at pci_nvme.c NVMe Requested -
Assertion in e82545_write_ra at pci_e82545.c E1000 Requested -
Assertion in e82545_transmit at pci_e82545.c E1000 Requested -
Assertion in e82545_write_register at pci_e82545.c E1000 Requested -
Segfault issue in e82545_transmit at pci_e82545.c E1000 Requested -
Assertion in hda_stream_start at pci_hda.c Intel-HDA Requested -
Assertion in hda_corb_run at pci_hda.c Intel-HDA Requested -
Assertion in hda_set_rirbctl at pci_hda.c Intel-HDA Requested -
Assertion in hda_set_corbctl at pci_hda.c Intel-HDA Requested -
Assertion in hda_stream_start at pci_hda.c Intel-HDA Requested -
Assertion in hda_set_sdctl at pci_hda.c Intel-HDA Requested -
Assertion in hda_set_dpiblbase at pci_hda.c Intel-HDA Requested -
Assertion in hda_stream_start at pci_hda.c Intel-HDA Requested -

Table 5: List of new bugs.
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Figure 13: The branch coverage over fuzzing time for 24 hours in QEMU and Bhyve (each 8 runs). Each plot shows maximum, minimum and
median result. * represents the virtual devices of Bhyve.
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Figure 14: Coverage change over time with various combinations of key techniques. RC and NC indicate pure coverage-guided fuzzing with
raw and noise-reduced coverage, respectively. NC+Reg and NC+Reg+Dep use inferred register types and dependency graphs in addition.

E Effectiveness Analysis

To elicit the performance benefit of each technique, we pre-
pared four combinations that cumulatively incorporate tech-
niques as follows; RC performs coverage-guided fuzzing with
raw coverage. NC reduces coverage noise with noise cov-
erage reduction. NC+Reg enables semantic input synthesis
with inferred register types. NC+Reg+Dep additionally utilizes
inferred dependency graphs for input synthesis.

Figure 14 shows the average coverage over fuzzing time
with the four combinations. For XHCI in Figure 14a, each
technique evenly contributes to the coverage expansion. In
particular, NC improves the coverage as the noise reduction
prevents MUNDOFUZZ being misled by coverage noise and
falsely reserving redundant inputs. Furthermore, NC+Reg mu-
tates register values in reference to their types, resulting in less
destructive mutation to input semantics. Finally, NC+Reg+Dep
proactively synthesizes semantically correct inputs and ex-
plores more complex control flows.

For ES1370 in Figure 14b, all coverages reach the satu-
ration point in a few minutes. This is because such simple
devices do not have complex control flow. For NVMe in
Figure 14c, although NC+Reg+Dep did not show better perfor-
mances to others, it eventually showed better performances
after 10 hours of run. Another thing to note is that NC+Reg
converges to NC in the end. This is because NVMe only has 9
registers, which is small enough to explore most value combi-
nations in 24 hours through random mutation.
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