%&@ M&cfstn Samsung Research’

NNNNNNNNNNNNNNNNNNNNNNN

Gwangmu Lee
SEOUL NATIONAL UNIVERSITY

gwangmu@snu.ac.Kkr
£ https://gwangmu.github.io

Authors
Gwangmu Lee’ Woochul Shim* Byoungyoung Lee’

GFEYbUX Fuzzing [AFL], [libFuzzer]

—_— D Explore control flow w/ random inputs.

i e e el T

GfEYbOX FJzzing [AFL], [libFuzzer]

Explore control flow w/ random inputs.

GFEYbOX FJzzing [AFL], [libFuzzer]

Tuput @ Explore control flow w/ random inputs.
Cen A Coverage
T S ; Fuzzer

! T
i (Z>) |
K ;'
TN ;
[) (20

i e e el T

GFEYbOX Fuzzing [AFL], [libFuzzer]

i e e el T

Explore control flow w/ random inputs.

Coverage

Fuzzer

s TBD |

GFEYbOX Fuzzing [AFL], [libFuzzer]

Explore control flow w/ random inputs.

4
C ------------------------------- Coverage
— :.
) |
=z 5 | |
./\7{% Input Corpus U u U
€. .1 A0

i e e el T

GfEYbOX Fuzzing [AFL], [libFuzzer]

Explore control flow w/ random inputs.

Coverage

Fuzzer

Input Corpus U
! —

e
Proof-of-concept "
(PoC) Inputs ~—"

GFEYbOX Fuzzing [AFL], [libFuzzer]

—_— D Explore control flow w/ random inputs.

Coverage

Fuzzer

o BB

Q: What if there’s a site of interest?

i e e el T

GFEYbOX Fuzzing [AFL], [libFuzzer]

—_— D Explore control flow w/ random inputs.

Coverage

Fuzzer

o BB

Q: What if there’s a site of interest?

i e e el T

Applications of Targeted Fuzzing

Applications of Targeted Fuzzing

e e e e ==

Crash reproduction
for Debugging

Target: Crash site

Applications of Targeted Fuzzing

—— - - ————

e e e e ==

- _/ \ _J
Crash reproduction Static Analysis Verification
for Debugging for False-positive Verification

Target: Crash site Target: Reported site

Applications of Targeted Fuzzing

- -

—— - - ————

T y, . y, N J
Crash reproduction Static Analysis Verification 1-day PoC Generation
for Debugging for False-positive Verification for Exploitation

Target: Crash site Target: Reported site Target: Patched site

Requirement 1: Prioritizing ordered target sites

Case: Reproducing use-after-free

Input

free(p)

use(p)

Requirement 1. Prioritizing ordered target sites

—_— D Case: Reproducing use-after-free

i e e el T

Requirement 1. Prioritizing ordered target sites

Case: Reproducing use-after-free

- O B

free(p) X /
use(p) v v

Requirement 1. Prioritizing ordered target sites

Case: Reproducing use-after-free

use(p) / i /

Should be
prioritize more

Requirement 2: Prioritizing data conditions

Tuput Case: Reproducing heap-buffer-overflow

I S \ ,
CFar ! } Input U U
! @ alloc(10) X /

use([1)

alloc(10)

Requirement 2: Prioritizing data conditions

Tuput Case: Reproducing heap-buffer-overflow

I S \ ,
CFar ! } Input U U
@ alloc(10) X /

use([1)

ﬂ'i >= 1@))

alloc(10)

Requirement 2: Prioritizing data conditions

Tuput Case: Reproducing heap-buffer-overflow

. | S

CFa 1 \'; Input U

. @l | -
@ alloc(10) X /

use([1)

ﬂ'i >= 1@))

alloc(10)

Requirement 2: Prioritizing data conditions

Tuput Case: Reproducing heap-buffer-overflow

. | S

CFa 1 \'; Input U

. @l | -
@ alloc(10) X /

use([1)
“i >= 10” - X

alloc(10)

Requirement 2: Prioritizing data conditions

Tuput Case: Reproducing heap-buffer-overflow

I/'"'""""'"'{} """"""""" . l |
" cra : a Input U (i) (i-10)
| alloc<l@>@ alloc(10) X v
uise((i)
‘_@ “i >= 10” i, X
i >= 10°?

Requirement 2: Prioritizing data conditions

Tuput Case: Reproducing heap-buffer-overflow

@ """""""" \ —1
Tora a Input U (G5) (o)
' @l : -

@ alloc(10) X

use([i]) v

“1 >= 10” -

Ui

alloc(10)

NN

v
v
v

Requirement 2: Prioritizing data conditions

Tuput Case: Reproducing heap-buffer-overflow

A \ i
I a nput U)} ()

@ alloc(10) X /
:" ise([il) f
“i >= 10” - X i

Should be
prioritize more

alloc(10)

Constraint-guided
Directed Greybox Fuzzing

CDGF: Directed Greybox Fuzzing (DGF) as a base. uis

—_— D Case: Reproducing heap-buffer-overflow
{; Instrumentation Priority
T 0 ©
| (IS ; :] Dist = 1 Low
S
. Calloc(l@)} j Dist = 1 Low
i f“ —
' Dist= 0 High
use([l])@ :
Q ; Dist= 0 High
: -
N S =>» DOGF: prioritize inputs by their

minimum control-flow distance to @)

CDGF: Directed Greybox Fuzzing (DGF) as a base. uis

—_— D Case: Reproducing heap-buffer-overflow
{; Instrumentation Priority
[cra . ©
| (IS : j Dist = 1 Low
S :
. Calloc(l@)} j Dist = 1 Low
i f" l:::) —
' i=5 Dist = 0 High
((use([l])@ —
i=10 Dist = 0 High
l '

=» OGF: prioritize inputs by their
minimum control-flow distance to @)

i e e el T

CDGF: Directed Greybox Fuzzing (DGF) as a base. uis

—_— D Case: Reproducing heap-buffer-overflow
{; Instrumentation Priority
{/CF& I ©
| (IS ; j Dist = 1 Low
oSS
. Calloc(l@)} 4 j Dist = 1 Low
i fi —
' i=5 Dist = 0 High
((use([l])@ —
i=10 Dist = 0 High
l '

=» OGF: prioritize inputs by their
minimum control-flow distance to @)

i e e el T

CDGF: Directed Greybox Fuzzing (DGF) as a base. uis

—_— D Case: Reproducing heap-buffer-overflow
{; Instrumentation Priority
T 0 ©
| (IS ; :] Dist = 1 Low
S
. Calloc(l@)} j Dist = 1 Low
i f“ —
' Dist= 0 High
use([l])@ :
Q ; Dist= 0 High
: -
N S =>» DOGF: prioritize inputs by their

minimum control-flow distance to @)

CDGF: Directed Greybox Fuzzing (DGF) as a base. uis

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

©)

:] Dist = 1 Low
j Dist = 1 Low

Dist = 0 High

_—

Dist = 0 High

L —

=» OGF: prioritize inputs by their
minimum control-flow distance to @).

CDGF: Directed Greybox Fuzzing (DGF) as a base. uis

—_— D Case: Reproducing heap-buffer-overflow
{; Instrumentation Priority
" cra o ©
| (IS ; j Dist = 1 Low
S |
alloc(l@))] pist= Low
Dist= 0 High
use([l])@ :
Q Dist= 0 High
L
S S =» OGF: prioritize inputs by their

minimum control-flow distance to @)

CDGF: Directed Greybox Fuzzing (DGF) as a base. uis

—_— D Case: Reproducing heap-buffer-overflow
{; Instrumentation Priority
ca ow A , ©
C) 4 :] Dist = 1 Low
27 D 5 R S

N <
L
use([l])@ — .
Q ; Dist= 0 High
i L —

=» OGF: prioritize inputs by their
minimum control-flow distance to @)

i e e el T

COGF; Let's introduce an order.

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

ONO.

Dist=1, 1 Low

:] Dist =0, 1 Low

i=5 Dist=0, O High

L _—
Dist =0, 0 High
L

COGF; Let's introduce an order.

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

ONO.

Dist=1, 1 Low

:] Dist =0, 1 Low

i=5 Dist=0, O High

L _—
Dist =0, 0 High
L

COGF; Let's introduce an order.

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

ONO,

Dist = 1, [MAX] Max-out

j = as (1) is not
B

Dist =0, 1 reached yet

Dist =0, 0 High
L _—
Dist=0, O High

COGF; Let's introduce an order.

—_— D Case: Reproducing heap-buffer-overflow
@ Instrumentation Priority
A . ON O N

alloc(1e

.5 i=5 Dist =0, 0 High
L _—
use([i])@ ——
(; | i-10 Dist = 0 High
! —
.................................. > D s relatively prioritized than D

10

COGF: ..and the distance to data condition.

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

© @
:] Dist = 1, [MAX Lowest
:] Dist = 0, 1 Low

-f J Dist = 0, 0 | High
- : I
use([i]) — : I
@ i=10 Dist=0, 0 v High |
i >= 1@? ! J

COGF: ..and the distance to data condition.

—_— D Case: Reproducing heap-buffer-overflow
@ Instrumentation Priority

L7 @ @
i j Dist = 1, IMAX L owest

@ :] Dist = 0, 1 Low
a Dist = 0, 0 High
use([i])
@ 1 1@ Dist =0, O High
i>= 10°

alloc(1e

11

COGF: ..and the distance to data condition.

Case: Reproducing heap-buffer-overflow

Instrumentation Priority
ONO.

j Dist = 1, IMAX|MAX| Lowest
:] Dist =0, 1,[MAX|] Low
Dist =0, 0,15 ;< Integer
— 1 distance
i=10 Dist=0, 0,10 to the solution.
— --

12

COGF: ..and the distance to data condition.

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

ONO.
j Dist = 1, IMAX|MAX| Lowest

:] Dist =0, 1,[mMax] Low

CDGF: Constraint Distance as a Generalized Metric.

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

© @ b

:] Dist = 1, [MAX]MAX] Lowest
B

Dist =0, 1, |MAX Low

Dist=0, 0, 5 High
__—
Dist=0, 0, O Highest

14

CDGF: Constraint Distance as a Generalized Metric.

Constrants

1. goto:@
2. goto:(2)

3. cond:[i >= 10

Case: Reproducing heap-

buffer-overflow

Instrumentation Priority
ONO,

j Dist = 1, IMAX|MAX| Lowest
:} Dist =0, 1,[MAX] Low
Dist=0, 0, 5 High
L
Dist=0, 0, O Highest
__—

14

CDGF: Constraint Distance as a Generalized Metric.

Constrants

1. goto:@
2. goto:(2)

3. cond:[i >= 10

Case: Reproducing heap-buffer-overflow

Instrumentation

@ @ [Constr‘aints]

j Dist = 1 ®MAXEMAX = 2Max+1
:] Dist =0 1 oMAX = Max+1

i=5 Dist=0® 0®5 = §

L _—
Dist=0® 0®0 = 0
L _—

14

CDGF: Constraint Distance as a Generalized Metric.

Constramts D Case: Reproducing heap-buffer-overflow
1. goto:@
2. gottd):@) @ Instrumentation
3. :-i =10 || —o- ..

con ” A @ @ [Constr‘aints]

Dist = 1 @ MAXeMAX =2Max-+1|

alloc(le@ :] Dist =0 1 ®MAX =i Max+1 |
L _—

Dist=0® 05 = §

use([i])
i=10 Dist=0® 00 = 0
i>= 107 —_— Neaao- !

A — " Prioritization with a single distance metric.

14

Template-based Constraint Generation

Multiple target sites

Use Cases

use-after-free (ASAN dump)
double-free (ASAN dump)
use-of-uninit-value (MSAN dump)

f@p \

2

Two target sites
+ [Jata condition

Use Cases

heap-buffer-overf. (ASAN dump)
stack-buffer-overf. (ASAN dump)
Static anlys. verification (report)

One target site
+ Data condition

Use Cases

divide-by-zero (UBSAN dump)
assertion-failure (Debug dump)

1-day PoC generation (Fix commit)

15

Template-based Constraint Generation

Multiple target sites

Use Cases

use-after-free (ASAN dump)
double-free (ASAN dump)
use-of-uninit-value (MSAN dump)

f@p \

2

Two target sites
+ [Jata condition

Use Cases

heap-buffer-overf. (ASAN dump)
stack-buffer-overf. (ASAN dump)
Static anlys. verification (report)

One target site
+ Data condition

Use Cases

divide-by-zero (UBSAN dump)
assertion-failure (Debug dump)

1-day PoC generation (Fix commit)

15

Template-based Constraint Generation

4)
S
(@) (@)
cond
_ J
: : Two target sites One target site
Multiple target sites S N
p ! + [Jata condition + [ata condition
Use Cases Use Cases Use Cases
use-after-free (ASAN dump) heap-buffer-overf. (ASAN dump) divide-by-zero (UBSAN dump)
double-free (ASAN dump) stack-buffer-overf. (ASAN dump) assertion-failure (Debug dump)

use-of-uninit-value (MSAN dump) Static anlys. verification (report) 1-day PoC generation (Fix commit)

15

Template-based Constraint Generation

Multiple target sites

Use Cases

use-after-free (ASAN dump)
double-free (ASAN dump)
use-of-uninit-value (MSAN dump)

2

=

~

Two target sites

+ Data condition

Use Cases

heap-buffer-overf. (ASAN dump)
stack-buffer-overf. (ASAN dump)
Static anlys. verification (report)

[%

One target site
+ Data condition

Use Cases

divide-by-zero (UBSAN dump)
assertion-failure (Debug dump)
1-day PoC generation (Fix commit)

15

Implementation & Evaluation

Implementation

 Based on AFL 2.52b.

e Custom LLVM pass for
distance instrumentation.

Evaluation

« CPU: 20-core Intel Xeon , ,
Crash reproduction 1-day PoC Generation
Gold 6209U @ 2.10GHz with 47 real-world crashes with 12 real-world commits

« Memory: DDR4 502 GB Baseline: DGF (AFLGO)

Conclusion

« DGF lacks some of key mechanisms for targeted fuzzing.
« Ordered target sites
« Data conditions

« CDGF augments DGF with a new distance metric.
» Ordered DGF-style distance + Angora-style data distance.

« The prototype implementation of CDGF outperforms DGF.
« 2.88x speedup in crash reproduction.
« 3.65x speedup in 1-day PoC generation.

17

Thank you for listening

Gwangmu Lee
SEOUL NATIONAL UNIVERSITY

Currently looking for a postdoc position.

D<A gwangmu@snu.ac.kr
) https://gwangmu.github.io

Backup

Template-based Constraint Generation

Template

CGF

Applications

constraint %cause:
site <|w>
constraint %trans:
nT site <>
constraint %crash:
site <@»>

constraint %alloc:
site <>

2T+D constraint %access:

site <@»

cond(_out-of-bound

constraint %constr:
1T+D site <@»>

cond(data-cond)

)

ASAN: use-after-free
double-free

MSAN: use-of-uninit-value

ASAN: heap-buffer-overflow
stack-buffer-overflow
Static analysis verification

ASAN: assertion-failure
divide-by-zero

1-day PoC generation

20

Discussion

Some crash types are incompatible to current aata distance.

« Global buffer overflow
« Mostly used as a look-aside table.
« Near-boundary access *# Near-overflow condition.

« Use-after-free
« Data condition: “Given free(p) and use(q), p == q"
 Integer difference between pointers doesn’'t make sense.

21

