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CDGF: Constraint Distance as a Generalized Metric.
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Implementation & Evaluation

Implementation

 Based on AFL 2.52b.

e Custom LLVM pass for
distance instrumentation.

Evaluation

« CPU: 20-core Intel Xeon , ,
Crash reproduction 1-day PoC Generation
Gold 6209U @ 2.10GHz with 47 real-world crashes with 12 real-world commits

« Memory: DDR4 502 GB Baseline: DGF (AFLGO)




Conclusion

« DGF lacks some of key mechanisms for targeted fuzzing.
« Ordered target sites
« Data conditions

« CDGF augments DGF with a new distance metric.
» Ordered DGF-style distance + Angora-style data distance.

« The prototype implementation of CDGF outperforms DGF.
« 2.88x speedup in crash reproduction.
« 3.65x speedup in 1-day PoC generation.
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Template-based Constraint Generation

Template

CGF

Applications

constraint %cause:
site <|w>
constraint %trans:
nT site <>
constraint %crash:
site <@»>

constraint %alloc:
site <>

2T+D constraint %access:

site <@»

cond( _out-of-bound

constraint %constr:
1T+D site <@»>

cond( data-cond )

)

ASAN: use-after-free
double-free

MSAN: use-of-uninit-value

ASAN: heap-buffer-overflow
stack-buffer-overflow
Static analysis verification

ASAN: assertion-failure
divide-by-zero

1-day PoC generation
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Discussion

Some crash types are incompatible to current aata distance.

« Global buffer overflow
« Mostly used as a look-aside table.
« Near-boundary access *# Near-overflow condition.

« Use-after-free
« Data condition: “Given free(p) and use(q), p == q"
 Integer difference between pointers doesn’'t make sense.
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