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Implementation & Evaluation

Implementation
• Based on AFL 2.52b.
• Custom LLVM pass for 

distance instrumentation.

Evaluation
• CPU: 20-core Intel Xeon 

Gold 6209U @ 2.10GHz
• Memory: DDR4 502 GB Baseline: DGF (AFLGo)

16

Crash reproduction
with 47 real-world crashes

1-day PoC Generation
with 12 real-world commits



Conclusion

• DGF lacks some of key mechanisms for targeted fuzzing.
• Ordered target sites
• Data conditions

• CDGF augments DGF with a new distance metric.
• Ordered DGF-style distance + Angora-style data distance.

• The prototype implementation of CDGF outperforms DGF.
• 2.88x speedup in crash reproduction.
• 3.65x speedup in 1-day PoC generation.
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Template-based Constraint Generation
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CGF ApplicationsTemplate

constraint %cause:
site <  >

constraint %trans:
site <  >

constraint %crash:
site <  >

constraint %alloc:
site <  >

constraint %access:
site <  >
cond

constraint %constr:
site <  >
cond

nT

2T+D

1T+D

oob

cond

out-of-bound

data-cond

ASAN: use-after-free
double-free

MSAN: use-of-uninit-value

ASAN: heap-buffer-overflow
stack-buffer-overflow

Static analysis verification

ASAN: assertion-failure
divide-by-zero

1-day PoC generation



Discussion

Some crash types are incompatible to current data distance.

• Global buffer overflow
• Mostly used as a look-aside table.
• Near-boundary access ≠ Near-overflow condition.

• Use-after-free
• Data condition: “Given free(p) and use(q), p == q”
• Integer difference between pointers doesn’t make sense. 
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