
Gwangmu Lee

. gwangmu@snu.ac.kr
. https://gwangmu.github.io

Authors

† ‡

Gwangmu Lee† Byoungyoung Lee†Woochul Shim‡

Input Explore control flow w/ random inputs.

CFG

2

Greybox Fuzzing [AFL], [libFuzzer]

Input Explore control flow w/ random inputs.

CFG

2

Greybox Fuzzing [AFL], [libFuzzer]

Fuzzer

Input Explore control flow w/ random inputs.

CFG

2

Coverage

Greybox Fuzzing [AFL], [libFuzzer]

Fuzzer

Input Explore control flow w/ random inputs.

CFG

2

Input Corpus

Coverage

Greybox Fuzzing [AFL], [libFuzzer]

Fuzzer

Input Explore control flow w/ random inputs.

CFG

2

Input Corpus

Coverage

Greybox Fuzzing [AFL], [libFuzzer]

Fuzzer

Input Explore control flow w/ random inputs.

CFG

2

Input Corpus

Coverage

Proof-of-concept
(PoC) Inputs

Greybox Fuzzing [AFL], [libFuzzer]

Greybox Fuzzing [AFL], [libFuzzer]

Input

CFG

3

Fuzzer

Explore control flow w/ random inputs.

Input Corpus

Coverage

Q: What if there’s a site of interest?

Greybox Fuzzing [AFL], [libFuzzer]

Input

CFG

3

Fuzzer

Explore control flow w/ random inputs.

Input Corpus

Coverage

Q: What if there’s a site of interest?

Crash reproduction
for Debugging

Target: Crash site

Applications of Targeted Fuzzing

4

1-day PoC Generation
for Exploitation

Target: Patched site

Static Analysis Verification
for False-positive Verification

Target: Reported site

Crash reproduction
for Debugging

Target: Crash site

Applications of Targeted Fuzzing

4

Crash reproduction
for Debugging

Target: Crash site

1-day PoC Generation
for Exploitation

Target: Patched site

Static Analysis Verification
for False-positive Verification

Target: Reported site

Crash reproduction
for Debugging

Target: Crash site

Applications of Targeted Fuzzing

4

Crash reproduction
for Debugging

Target: Crash site

1-day PoC Generation
for Exploitation

Target: Patched site

Static Analysis Verification
for False-positive Verification

Target: Reported site

Static Analysis Verification
for False-positive Verification

Target: Reported site

Crash reproduction
for Debugging

Target: Crash site

Applications of Targeted Fuzzing

4

Crash reproduction
for Debugging

Target: Crash site

1-day PoC Generation
for Exploitation

Target: Patched site

1-day PoC Generation
for Exploitation

Target: Patched site

Static Analysis Verification
for False-positive Verification

Target: Reported site

Static Analysis Verification
for False-positive Verification

Target: Reported site

Input

use(p)

free(p)

Requirement 1: Prioritizing ordered target sites

Input

CFG

Case: Reproducing use-after-free

5

free(p)

use(p)

Input

use(p)

free(p)

Requirement 1: Prioritizing ordered target sites

Input

CFG

Case: Reproducing use-after-free

5

free(p)

use(p)

1

2

Input

use(p)

free(p)

Requirement 1: Prioritizing ordered target sites

Input

CFG

Case: Reproducing use-after-free

5

free(p)

use(p)

✗

✓

✓

✓

1

2

Input

use(p)

free(p)

Requirement 1: Prioritizing ordered target sites

Input

CFG

Case: Reproducing use-after-free

Should be
prioritize more

5

free(p)

use(p)

✗

✓

✓

✓

1

2

Requirement 2: Prioritizing data conditions

Input

CFG

Case: Reproducing heap-buffer-overflow

6

Input

alloc(10)

use([i])

✗
✓

✓
✓

use([i])2

alloc(10) 1

Requirement 2: Prioritizing data conditions

Input

CFG

Case: Reproducing heap-buffer-overflow

6

Input

alloc(10)

use([i])

✗
✓

✓
✓

“i >= 10”use([i])2

i >= 10?

alloc(10) 1

Requirement 2: Prioritizing data conditions

Input

CFG

Case: Reproducing heap-buffer-overflow

6

Input

alloc(10)

use([i])

✗
✓

✓
✓

“i >= 10”

i=5

use([i])2

i >= 10?

alloc(10) 1

Requirement 2: Prioritizing data conditions

Input

CFG

Case: Reproducing heap-buffer-overflow

6

Input

alloc(10)

use([i])

✗
✓

✓
✓

“i >= 10” - ✗

i=5

use([i])2

i >= 10?

alloc(10) 1

Requirement 2: Prioritizing data conditions

Input

CFG

Case: Reproducing heap-buffer-overflow

6

Input

alloc(10)

use([i])

✗
✓

✓
✓

“i >= 10” - ✗

i=5 i=10

use([i])2

i >= 10?

alloc(10) 1

Requirement 2: Prioritizing data conditions

Input

CFG

Case: Reproducing heap-buffer-overflow

6

Input

alloc(10)

use([i])

✗
✓

✓
✓

✓
✓

“i >= 10” - ✗ ✓

i=5 i=10

use([i])2

i >= 10?

alloc(10) 1

Requirement 2: Prioritizing data conditions

Input

CFG

Case: Reproducing heap-buffer-overflow

6

Input

alloc(10)

use([i])

✗
✓

✓
✓

✓
✓

“i >= 10” - ✗ ✓

i=5 i=10

Should be
prioritize more

use([i])2

i >= 10?

alloc(10) 1

(CDGF)

7

CDGF: Directed Greybox Fuzzing (DGF) as a base. [AFLGo]

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 1 Low

Dist = 0, 1 Low

use([i]).

alloc(10)

Dist = 0, 0 Highi=5

Dist = 0, 0 Highi=10

8

 DGF: prioritize inputs by their
minimum control-flow distance to .

CDGF: Directed Greybox Fuzzing (DGF) as a base. [AFLGo]

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 1 Low

Dist = 0, 1 Low

use([i]).

alloc(10)

Dist = 0, 0 Highi=5

Dist = 0, 0 Highi=10

8

 DGF: prioritize inputs by their
minimum control-flow distance to .

CDGF: Directed Greybox Fuzzing (DGF) as a base. [AFLGo]

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 1 Low

Dist = 0, 1 Low

use([i]).

alloc(10)

Dist = 0, 0 Highi=5

Dist = 0, 0 Highi=10

8

 DGF: prioritize inputs by their
minimum control-flow distance to .

CDGF: Directed Greybox Fuzzing (DGF) as a base. [AFLGo]

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 1 Low

Dist = 0, 1 Low

use([i]).

alloc(10)

Dist = 0, 0 Highi=5

Dist = 0, 0 Highi=10

8

 DGF: prioritize inputs by their
minimum control-flow distance to .

CDGF: Directed Greybox Fuzzing (DGF) as a base. [AFLGo]

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 1 Low

Dist = 0, 1 Low

use([i]).

alloc(10)

Dist = 0, 0 Highi=5

Dist = 0, 0 Highi=10

8

 DGF: prioritize inputs by their
minimum control-flow distance to .

CDGF: Directed Greybox Fuzzing (DGF) as a base. [AFLGo]

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 1 Low

Dist = 0, 1 Low

use([i]).

alloc(10)

Dist = 0, 0 Highi=5

Dist = 0, 0 Highi=10

8

 DGF: prioritize inputs by their
minimum control-flow distance to .

CDGF: Directed Greybox Fuzzing (DGF) as a base. [AFLGo]

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 1 Low

Dist = 0, 1 Low

use([i]).

alloc(10)

Dist = 0, 0 Highi=5

Dist = 0, 0 Highi=10

8

Low

 DGF: prioritize inputs by their
minimum control-flow distance to .

CDGF: Let’s introduce an order.

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 1 Low

Dist = 0, 1 Low

use([i]).

alloc(10)

Dist = 0, 0 Highi=5

Dist = 0, 0 Highi=10

9

1

2

21

CDGF: Let’s introduce an order.

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 1 Low

Dist = 0, 1 Low

use([i]).

alloc(10)

Dist = 0, 0 Highi=5

Dist = 0, 0 Highi=10

9

1

2

21

CDGF: Let’s introduce an order.

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 1 Low

Dist = 0, 1 Low

use([i]).

alloc(10)

Dist = 0, 0 Highi=5

Dist = 0, 0 Highi=10

MAX

9

←

1

2

21

Max-out
as is not
reached yet

1

Lowest

Low

CDGF: Let’s introduce an order.

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 1

Dist = 0, 1

use([i]).

alloc(10)

Dist = 0, 0 Highi=5

Dist = 0, 0 Highi=10

 is relatively prioritized than .

10

MAX

1

2

21

Lowest

Low

CDGF: …and the distance to data condition.

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 0 Lowest

Dist = 0, 1 Low

use([i]).

alloc(10)

Dist = 0, 0 Highi=5

Dist = 0, 0 Highi=10

11

MAX

1

2

21

High

High
i >= 10?

CDGF: …and the distance to data condition.

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 0 Lowest

Dist = 0, 1 Low

use([i]).

alloc(10)

Dist = 0, 0 Highi=5

Dist = 0, 0 Highi=10

11

MAX

i=5

i=10

1

2

21

i >= 10?

CDGF: …and the distance to data condition.

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 0, - Lowest

Dist = 0, 1, - Low

use([i]).

alloc(10)

Dist = 0, 0, 5 Highi=5

Dist = 0, 0, 0 Highi=10

12

>=

MAX MAX

MAX

Integer
distance
to the solution.

←

1

2

i >= 10?

21

CDGF: …and the distance to data condition.

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Dist = 1, 0, - Lowest

Dist = 0, 1, - Low

use([i]).

alloc(10)

Dist = 0, 0, 5 Highi=5

Dist = 0, 0, 0 Highesti=10

 is prioritized the most.

13

MAX MAX

MAX

i=10

1

2

i >= 10?

21 >=

CDGF: Constraint Distance as a Generalized Metric.

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Lowest

Low

use([i]).

alloc(10)

Highi=5

Highesti=10

14

Dist = 1, 0, -

Dist = 0, 1, -

Dist = 0, 0, 5

Dist = 0, 0, 0

MAX MAX

MAX
1

2

i >= 10?

21 >=

CDGF: Constraint Distance as a Generalized Metric.

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Lowest

Low

use([i]).

alloc(10)

Highi=5

Highesti=10

14

Dist = 1, 0, -

Dist = 0, 1, -

Dist = 0, 0, 5

Dist = 0, 0, 0

MAX MAX

MAX
1

2

i >= 10?

21 >=

1. goto:
2. goto:
3. cond:

Constraints

1

2

i >= 10i >= 10

CDGF: Constraint Distance as a Generalized Metric.

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Lowest

Low

use([i]).

alloc(10)

Highi=5

Highesti=10

14

Dist = 1, 0, -

Dist = 0, 1, -

Dist = 0, 0, 5

Dist = 0, 0, 0

MAX MAX

MAX
1

2

i >= 10?

21 >=

1. goto:
2. goto:
3. cond:

Constraints

1

2

i >= 10i >= 10

2Max+1

Max+1

Constraints

5

0

MAX MAX

MAX

⊕ ⊕

⊕ ⊕

⊕ ⊕

⊕ ⊕

CDGF: Constraint Distance as a Generalized Metric.

Input

CFG

Case: Reproducing heap-buffer-overflow

Instrumentation Priority

Lowest

Low

use([i]).

alloc(10)

Highi=5

Highesti=10

14

Dist = 1, 0, -

Dist = 0, 1, -

Dist = 0, 0, 5

Dist = 0, 0, 0

MAX MAX

MAX
1

2

i >= 10?

21 >=

1. goto:
2. goto:
3. cond:

Constraints

1

2

i >= 10i >= 10

2Max+1

Max+1

Constraints

5

0

MAX MAX

MAX

⊕ ⊕

⊕ ⊕

⊕ ⊕

⊕ ⊕

 Prioritization with a single distance metric.

Template-based Constraint Generation

15

Multiple target sites

cond cond

1

2

3

1

2

Two target sites
+ Data condition

One target site
+ Data condition

Use Cases

use-after-free (ASAN dump)
double-free (ASAN dump)

use-of-uninit-value (MSAN dump)

Use Cases

heap-buffer-overf. (ASAN dump)
stack-buffer-overf. (ASAN dump)
Static anlys. verification (report)

Use Cases

divide-by-zero (UBSAN dump)
assertion-failure (Debug dump)

1-day PoC generation (Fix commit)

Template-based Constraint Generation

15

Multiple target sites

cond cond

1

2

3

1

2

Two target sites
+ Data condition

One target site
+ Data condition

Use Cases

use-after-free (ASAN dump)
double-free (ASAN dump)

use-of-uninit-value (MSAN dump)

Use Cases

heap-buffer-overf. (ASAN dump)
stack-buffer-overf. (ASAN dump)
Static anlys. verification (report)

Use Cases

divide-by-zero (UBSAN dump)
assertion-failure (Debug dump)

1-day PoC generation (Fix commit)

Template-based Constraint Generation

15

Multiple target sites

cond cond

1

2

3

1

2

Two target sites
+ Data condition

One target site
+ Data condition

Use Cases

use-after-free (ASAN dump)
double-free (ASAN dump)

use-of-uninit-value (MSAN dump)

Use Cases

heap-buffer-overf. (ASAN dump)
stack-buffer-overf. (ASAN dump)
Static anlys. verification (report)

Use Cases

divide-by-zero (UBSAN dump)
assertion-failure (Debug dump)

1-day PoC generation (Fix commit)

Template-based Constraint Generation

15

Multiple target sites

cond cond

1

2

3

1

2

Two target sites
+ Data condition

One target site
+ Data condition

Use Cases

use-after-free (ASAN dump)
double-free (ASAN dump)

use-of-uninit-value (MSAN dump)

Use Cases

heap-buffer-overf. (ASAN dump)
stack-buffer-overf. (ASAN dump)
Static anlys. verification (report)

Use Cases

divide-by-zero (UBSAN dump)
assertion-failure (Debug dump)

1-day PoC generation (Fix commit)

Implementation & Evaluation

Implementation
• Based on AFL 2.52b.
• Custom LLVM pass for

distance instrumentation.

Evaluation
• CPU: 20-core Intel Xeon

Gold 6209U @ 2.10GHz
• Memory: DDR4 502 GB Baseline: DGF (AFLGo)

16

Crash reproduction
with 47 real-world crashes

1-day PoC Generation
with 12 real-world commits

Conclusion

• DGF lacks some of key mechanisms for targeted fuzzing.
• Ordered target sites
• Data conditions

• CDGF augments DGF with a new distance metric.
• Ordered DGF-style distance + Angora-style data distance.

• The prototype implementation of CDGF outperforms DGF.
• 2.88x speedup in crash reproduction.
• 3.65x speedup in 1-day PoC generation.

17

18

Gwangmu Lee

. gwangmu@snu.ac.kr

. https://gwangmu.github.io

Currently looking for a postdoc position.

19

Template-based Constraint Generation

20

CGF ApplicationsTemplate

constraint %cause:
site < >

constraint %trans:
site < >

constraint %crash:
site < >

constraint %alloc:
site < >

constraint %access:
site < >
cond

constraint %constr:
site < >
cond

nT

2T+D

1T+D

oob

cond

out-of-bound

data-cond

ASAN: use-after-free
double-free

MSAN: use-of-uninit-value

ASAN: heap-buffer-overflow
stack-buffer-overflow

Static analysis verification

ASAN: assertion-failure
divide-by-zero

1-day PoC generation

Discussion

Some crash types are incompatible to current data distance.

• Global buffer overflow
• Mostly used as a look-aside table.
• Near-boundary access ≠ Near-overflow condition.

• Use-after-free
• Data condition: “Given free(p) and use(q), p == q”
• Integer difference between pointers doesn’t make sense.

21

