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Abstract
Directed greybox fuzzing is an augmented fuzzing tech-

nique intended for the targeted usages such as crash reproduc-
tion and proof-of-concept generation, which gives directed-
ness to fuzzing by driving the seeds toward the designated
program locations called target sites. However, we find that
directed greybox fuzzing can still suffer from the long fuzzing
time before exposing the targeted crash, because it does not
consider the ordered target sites and the data conditions. This
paper presents constraint-guided directed greybox fuzzing
that aims to satisfy a sequence of constraints rather than
merely reaching a set of target sites. Constraint-guided grey-
box fuzzing defines a constraint as the combination of a target
site and the data conditions, and drives the seeds to satisfy the
constraints in the specified order. We automatically generate
the constraints with seven types of crash dumps and four types
of patch changelogs, and evaluate the prototype system CAFL
against the representative directed greybox fuzzing system
AFLGo with 47 real-world crashes and 12 patch changelogs.
The evaluation shows CAFL outperforms AFLGo by 2.88x
for crash reproduction, and better performs in PoC generation
as the constraints get explicit.

1 Introduction

Fuzz testing [32] is one of the most effective techniques in
discovering the vulnerabilities in software programs. Fuzzing
keeps running a target program with a randomly generated
input in hopes that the program exhibits an erroneous runtime
behavior (such as memory corruptions or triggering asser-
tions). Most fuzzing techniques leverage the coverage-guided
fuzzing technique [12, 46], where its input mutation is fo-
cused on extending the code coverage, because it allows to
efficiently explore the deeper level of code to be tested.

In particular, directed greybox fuzzing (DGF) [21, 22, 44]
focuses on driving the testing toward a set of specific program
locations, called target sites, which allows to intensively fuzz
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such locations. Compared to the coverage-guided fuzzing,
DGF is particularly useful if information on such locations
are available. For instance, when developers get a crash report
from third-party users, developers may need to reproduce
the reported crash to pinpoint the root cause of the crash.
Another example includes when attackers need to generate
1-day proof-of-concept (PoC) inputs for the outdated systems
with the released patch, where changed locations suggest the
potential cause of the fixed crash.

However, we find that DGF techniques take a very long
time to identify the targeted crash largely due to the following
two limitations. First, DGF assumes that the target sites are
independent to each other, implying that it does not consider
order dependency between multiple target sites (i.e., a certain
target site should be executed before another target site). The
most common examples of such cases would be the use-after-
free cases, where the crash occurs only when the program
reaches the free location before reaching the use location that
references the freed memory object. Since DGF generally
favors the shorter execution paths, the lack of order-dependent
target sites can easily lead DGF to bypass them.

Second, DGF does not consider the data conditions re-
quired for the targeted crash and overlook the seeds that sat-
isfy such data conditions. The most intuitive examples include
the buffer overflow crashes, where the seeds accessing the
memory close to the boundary would have a higher chance to
cause the crash than the seeds accessing further away from it.
Another example is the PoC generation based on the patch,
where the changed data condition may be involved in the
cause of the fixed crash. Again, since DGF is not aware of the
data conditions, it is likely to falsely prioritize the seeds with
the control-flow based distance, which may adversely affect
seed scheduling.

In this paper, we propose constraint-guided directed grey-
box fuzzing (CDGF) that resolves the limitations of DGF.
Rather than reaching a set of target sites, CDGF aims to sat-
isfy a sequence of constraints and prioritizes the seeds that
better satisfy those in order. A constraint consists of a single
target site and optionally a number of data conditions, which



is regarded as being satisfied when the program reaches the
target site and satisfies the data condition at the target site.
Constraints can be specified more than one, and in such cases,
the constraints must be satisfied in the specified order.

To measure how well a given seed satisfies the constraints,
CDGF defines the seed distance based on the distance of the
constraints, as opposed to the conventional DGF that defines
the seed distance as the average distance to the target sites.
The distance of the constraints indicates how well a given seed
satisfies the constraints (i.e., the shorter the better). CDGF
prioritizes the seeds with the shorter distances so that the
mutated seeds can try the next unsatisfied constraints on the
basis of the already satisfied constraints, quickly yielding the
desired seed that exhibits the targeted crash.

In addition, we present the algorithmic methods to auto-
matically generate the constraints from the additional infor-
mation sources, namely crash dumps from memory error de-
tectors [33, 39, 41] and changelogs from patches. With the
use-after-free crash dumps, we generate the constraints to
drive the seeds to the free location first before the crash lo-
cation, so that the program first frees the vulnerable memory
object before accessing it at the crash location. With the buffer
overflow crash dumps, we generate the constraints to drive
the seeds to the boundary of the vulnerable buffer to increase
the chance of accessing the buffer out of bound. With the
patch changelogs, we generate the constraints to transform
the seeds into the buggy conditions indicated by the patch
changelogs. Overall, our auto-generated constraints support
seven kinds of crashes and four types of changelogs in total.

To demonstrate the effectiveness of CDGF in exposing the
targeted crash, we implemented CAFL based on AFL 2.52b
[46] and compared CAFL with the representative DGF system
AFLGo [21] using 47 crash dumps and 12 patch changelogs
in various real-world programs. The evaluation shows that
CAFL outperforms AFLGO by 2.88x in reproducing 47 real-
world crashes, and better performs in PoC generation as the
constraints are more explicit.

The main contributions of this paper can be summarized as
follows:

• We present the constraint-guided directed greybox
fuzzing (CDGF), which augments the conventional DGF
with the ordered target sites and the data conditions.

• We automatically generate the constraints with the given
additional information sources, namely crash dumps and
patch changelogs, that support seven crash types and
four changelog types in total.

• We implement CAFL, the prototype fuzzing system with
CDGF, and demonstrate the superior performance in ex-
posing the targeted crash compared to the representative
DGF system AFLGo under various real-world crashes.

The rest of the paper is organized as follows. In §2, we
provide a brief background about the conventional DGF and

Figure 1: Example control-flow graph with DGF distances specified
on each basic block.

its limitations by CVE examples. In §3, we present the basic
idea of CDGF and demonstrate how CDGF resolves the limi-
tations manifested by the examples. In §4, we formally define
the constraint itself and the distance metric of a sequence
of constraints. In §5, we provide an algorithmic method to
automatically generate the constraints from the additional
information sources. In §6, we describe the internal organi-
zation of CAFL, the prototype fuzzing system equipped with
CDGF. In §7, we compare the performance of CAFL against
the representative DGF system, AFLGo [21]. In §8, we dis-
cuss the various aspects of CDGF and propose the direction
of future improvements. We introduce the research work rel-
evant to this paper and DGF systems in §9, and finally we
conclude the paper in §10.

2 Background and Motivation

In this section, we briefly introduce the fundamentals of DGF
and its usage examples in §2.1 and §2.2, and point out the
limitations and the consequential effects by examples in §2.3.
Finally, we summarize the requirements of an augmented
DGF to resolve the limitations in §2.4.

2.1 Directed Greybox Fuzzing

The directed greybox fuzzing (DGF) [21, 22, 44] intends to
intensively fuzz a set of program locations, called target sites.
The target sites are the preferred program locations where
the seeds are driven to reach, usually set to the crash and its
relevant locations. For example in Figure 1 that illustrates a
simple control-flow graph with a use-after-free bug, the target
sites may be set to the free location d and the use location f.

The major premise of DGF is that, when mutated, a seed
close to the target sites is more probable to reach the target
sites than the farther one. To decide the closeness of a seed,
DGF first defines the distance of each basic block as the har-
monic mean of the shortest path length to each target site. For
example in Figure 1, the distance of a is the harmonic mean
of the shortest path length to each of d and f, or ( 1

3 +
1
3 )−1 = 3

2 .
Then, DGF calculates the distance of a given seed as the aver-
age distance of every executed basic block. For example, if the
executed basic blocks are [a,b,e,f], its distance is calculated



Figure 2: Simplified control-flow graph of yasm 1.3.0 (left) and the distance of example seeds in DGF and CDGF (right). To reproduce the
use-after-free vulnerability, a seed must reach the red target site (T1) and the blue target site (T2) in order. CDGF distances in red and blue
represent the distance portion of the target site T1 and T2, respectively.

as ( 3
2 +1+1+0)/4 = 0.875.

Generally, the seed distance gets shorter when a seed cov-
ers more target sites, but it adversely increases if it takes a
longer execution path without reaching additional target sites.
For example, if a seed reaches both target sites by execut-
ing [a,b,c,d,a,b,e,f], its distance is ( 3

2 +1+ 4
5 +0+ 3

2 +1+
1+ 0)/8 = 0.85, which is shorter than 0.875. On the other
hands, if a seed merely takes a longer path by executing
[a,b,c,a,b,e,f], its distance is ( 3

2 +1+ 4
5 +

3
2 +1+1+0)/7 =

0.971, which is much longer than 0.875.

2.2 Usage Example
DGF can be utilized in any use cases where the target sites
can be precisely defined. Below are the prime usages where
various users can leverage DGF.

2.2.1 Static Analyzer Verification

Developers of the moderate-sized projects commonly em-
ploy static analyzers, which discover the potential bug in the
source code at compile time. The static analyzers provide
a detailed diagnostic about the potential bug, including the
crash location and the assumed data conditions for the crash.

However, developers often do not have high confidence
in such diagnostics, as static analyzers are known to suffer
from a high false alarm rate [27, 35]. Such diagnostics are
often ignored until they are verified by the actual crash reports.
Rather, developers can leverage DGF to proactively verify the
diagnostics by setting the target sites to the analyzed crash
locations.

2.2.2 Crash Reproduction

Developers also accept the crash reports from the users or
other developers. Crash reports are often accompanied by a
proof-of-concept (PoC) input and a crash dump from memory
error detectors (e.g., AddressSanitizer [39] and MemorySani-
tizer [41]) that describes which type of crash occurs at which
program location and which program locations are involved
in. For example, a use-after-free crash dump specifies the
location where the memory is freed.

When fixing the reported crash with only one PoC input,
developers may have trouble in comprehending the crash as
the PoC input represents only one concrete execution path.
Furthermore, even after developers patch the source code to
invalidate a given PoC input, they may not certain that the
root cause has been fixed. In this situation, developers can
utilize DGF to reproduce the crash by setting the target sites
to the crash and its relevant locations.

2.2.3 PoC Generation

The prime targets of attackers are the outdated systems with
the unpatched vulnerabilities, whose patches are already re-
leased in public. Since the patched source locations and the
data conditions are supposed to fix the vulnerability, attackers
can analyze the patch changelog and adversely utilize DGF to
generate PoC inputs for the unpatched system, by setting the
patched program locations in the pre-patched source code.

2.3 Limitation
However in practice, DGF can easily suffer from the long
fuzzing time to expose the targeted crash due to the two major
limitations: independent target sites and no data condition.

2.3.1 Independent Target Sites

DGF regards all target sites as independent and has no concept
of reaching a preconditional site before a crash site. This lets
DGF bypass such a precondition, precluding the chance of
crash reproduction.

For example, Figure 2 describes a simplified control-flow
graph of yasm 1.3.0 that suffers from a use-after-free vul-
nerability. To reproduce the vulnerability, a seed must have
TYPE_INT to free the memory object at the target site T1, and
have ident enabled to use the freed object at the target site
T2. The seeds in Figure 2 are deemed as more desirable in the
order of C, B and A, as the latter seeds better follow the steps
required to reproduce use-after-free.

However, since DGF regards T1 and T2 independent, it
calculates the seed distances based on the average distance to
both target sites. This distance metric discourages the longer



Figure 3: Simplified control-flow graph of CVE-2017-7578 (left) and the distance of example seeds in DGF and CDGF (right). To reproduce
the buffer overflow vulnerability, a seed must access buf out of bound at the blue target site (T2) at the final iteration, i=L-1. Values in red and
blue are captured at the target site T1 and T2, respectively.

execution paths, which results in even longer distances in
Seed B and C (0.971) than Seed A (0.875). As a result, DGF
focuses on the least desirable seed, Seed A.

2.3.2 No Data Condition

DGF has no mechanism to drive the seeds to a desired data
condition. For example, typical buffer overflow bugs are likely
to occur when a seed is around the boundary of the vulnerable
buffer, but DGF cannot drive a seed to such a boundary.

Figure 3 shows a simplified control-flow graph of the CVE-
2017-7578 heap buffer overflow vulnerability. To reproduce
the vulnerability, a seed must allocate buf at T1, and have
GRAD to access it out of bound at T2, which only happens when
the seed reaches T2 at the last iteration, i = L-1. Each of
example seeds in Figure 3 have different Ls (L = {4,8,8})
and access T2 at the different iterations (i = {0,5,6}). The
seeds are more desirable in the order of Seed C, B and A,
since GRAD in the seed allows the program to access out of
bound more closely.

However, since DGF does not recognize the data condition
of the seeds, it falsely prioritizes the seeds based on their dis-
tances to the target sites. For example, DGF would prioritize
Seed A the most, as it has a shortest execution path while
iterating only 4 times, while others iterate 8 times.

2.4 Requirements

With the limitations in §2.3, we set two major requirements
to enable the fast exposure of the targeted crash as follows.

Ordered target sites. Since most of the vulnerabilities have
a separate program location that represents the precondition
of the crash, DGF must be able to drive the seeds to such a
location before the crash location.

Data conditions. Since most of the vulnerabilities are ac-
companied by the desired data conditions, DGF must be able
to drive the seeds to such data conditions.

3 Constraint-guided DGF

In this section, we present constraint-guided directed grey-
box fuzzing, an augmented directed greybox fuzzing guided
with a sequence of constraints. We describe a brief overview
of constraint-guided directed greybox fuzzing in §3.1, and
explain how constraint-guided directed greybox fuzzing can
successfully prioritize the desirable seeds in §3.2.

3.1 Overview
Constraint-guided directed greybox fuzzing (CDGF) aims
to satisfy a sequence of constraints in order, as opposed
to the conventional DGF that merely aims to reach a set of
independent target sites. Each constraint has its own target
site that is required to be reached, and data conditions that
need to be satisfied at its target site.

To achieve this goal, CDFG fuzzes in favor of the seeds that
are more likely to satisfy all the constraints. In other words, it
gives a shorter seed distance for following two cases: 1) if it
satisfies more number of constraints and 2) if it is closer to
satisfy the first unsatisfied constraint than another.

To determine how close a seed is to satisfy a sequence
of given constraints, CDGF first defines the distance of an
individual constraint as the sum of the distance to the target
site and the data conditions. This yields a shorter distance
when it more closely approaches its target site, and it better
satisfies the data conditions. Specifically, CDGF combines
the DGF-style distance for target sites [21, 22, 44] with the
Angora-style distance for data conditions [23]. CDGF then
defines the distance of a constraint sequence, or the total dis-
tance, by combining the distances of each constraint. CDGF
regards the distance of an individual constraint maxed out if
the preceding constraints are not satisfied, yielding a longer
total distance when more constraints are left unsatisfied.

3.2 Example
3.2.1 Ordered Target Sites

Figure 4 shows the constraints for yasm 1.3.0 use-after-free
in Figure 2, which can be automatically generated from the



CONSTRAINT %free:
site T1
cond "none"

CONSTRAINT %use:
site T2
cond "none"

Figure 4: Constraints to reproduce yasm 1.3.0 use-after-free.

crash dump. The constraints instruct the program to first reach
T1 where the memory object is freed, then to reach T2 where
the freed memory object is used. Given the seeds in Figure 2
and the constraints in Figure 4, CDGF calculates the distance
of the seeds as follows.

• Seed A. Since it approaches T1 the closest at the block
b, which is two blocks away from T1, the distance of
the first constraint %free is 2. Meanwhile, since it fails
to reach T1, the target site of the first constraint %free,
the distance of the second constraint %use is maxed out
regardless of whether it reaches T2. By combining two
distances, the seed distance is calculated as 2+max.

• Seed B. Since it approaches T1 closer by touching the
block c, which is one block away from T1, the distance of
T1 is 1. Meanwhile, the distance of %use is still maxed
out, as it still fails to reach T1 before reaching T2. Com-
bining both, the seed distance is calculated as 1+max.

• Seed C. Since it reaches T1 before T2, the distance of
%free is 0. Meanwhile, since it deflects T2 by one basic
block at e, the distance of %use is 1. Combining both,
the seed distance is 1.

Notice that CDGF properly gives a shorter seed distance to
a more desirable seed, namely C < B < A, where a seed with
a shorter seed distance better follows the steps to reproduce
use-after-free. By prioritizing the seed with a shorter distance,
CDGF can develop the seeds on the basis of more desirable
seeds and quickly reproduce the crash.

3.2.2 Data Conditions

Figure 5 shows the constraints for CVE-2017-7578 in Fig-
ure 3, which can also be automatically generated from the
crash dump. The constraints first instruct the program to reach
T1 to allocate a buffer (%alloc), and then reach T2 to access it
(%access). At T2, the data condition instructs the program to
reduce the difference between the size of buf and the access
offset, gravitating toward the boundary (cond).

As all the seeds in Figure 3 reaches the target sites, CDGF
calculates the seed distances based on the data condition
distance of the second constraint %access, which is defined
as the difference between the size of buf at T1 and the access
offset at T2. For example, since the size of buf and the access
offset in Seed A is 40 and 10 respectively, the distance of the

CONSTRAINT %alloc:
site T1:malloc() # .ret = malloc(), .size = L*10
cond "none"

CONSTRAINT %access:
site T2:buf[] # .addr = &buf[i*10+10]
cond "%alloc.size <= %access.addr - %alloc.ret"

Figure 5: Constraints to reproduce CVE-2017-7578.

data condition is 40−10 = 30. Similarly, the distances of the
data condition in Seed B and C are calculated as 80−60 = 20
and 80−70 = 10, respectively. Notice that how CDGF gives a
shorter seed distance in the desired order, C < B < A, where
the seeds better drive the access offset out of bound.

4 Constraints

To enable CDGF, it is essential to define the constraint itself
and the distance metric of the constraints. In this section, we
first define the constraint in §4.1, then define the distance of a
sequence of constraints in §4.2.

4.1 Definition

A constraint is a combination of a target site to reach, and
the data conditions to satisfy at the target site. A constraint is
called satisfied if: i) the program reaches the target site, and
ii) the data conditions are all satisfied at the target site, if any.
Examples are the CONSTRAINT %free, %use in Figure 4 and
%alloc and %access in Figure 5.

Variable capturing. Once the target site is reached, the con-
straint captures the variables used at the target site. Which
variables are captured depends on the type of the location
indicated by the target site. For example in Figure 5, the
dereferenced address (&buf[i*10+10]) is captured as addr
because T2:buf[] is a dereference, and the size of the allo-
cation (L*10) and the allocated address are captured as size
and ret respectively, because T1:malloc() is an allocation.

Data condition. A data condition is a boolean expres-
sion between captured variables and a comparison operator
that needs to be satisfied at the target site. A data condi-
tion can reference any variables captured by the preceding
constraints or the constraint that it belongs to. For exam-
ple in Figure 5, cond "%alloc.size <= %access.addr
- %alloc.ret" is the data condition that references the vari-
ables size and ret from the constraint %alloc and the vari-
able addr from the constraint %access.

Orderedness. Constraints may be specified more than one.
In such cases, they must be satisfied in the specified order. For
example in Figure 4, the %free constraint must be satisfied
before the %use constraint to trigger use-after-free.



4.2 Distance of Constraints

In this section, we develop the distance of a constraint se-
quence called total distance, given a basic block trace that
a seed executes at runtime. To do so, we first define the dis-
tance to a target site in §4.2.1, and define the distance of data
conditions in §4.2.2. We combine two distances to define the
distance of a constraint in §4.2.3, and finally we define the
total distance in §4.2.4.

4.2.1 Target Site Distance

Basic block distance. We define the distance to a target
site in a similar manner to the prior work [21, 22, 44]. First,
the distance of two basic blocks, or the basic block distance
d(B1,B2) is defined as

d(B1,B2) =


0 if B1 = B2,
min(d(Bs,B2)+1),∀Bs if B1⇝ B2,
∞ else,

(1)

where Bs is the successor basic blocks of B1, including the
called basic blocks if B1 contains any call instruction. We
denote by B1 ⇝ B2 if B2 is reachable from B1. We take
the minimum distance if two basic blocks are reachable via
multiple control-flow paths.
Target site distance. Using the basic block distance, we de-
fine the distance to a target site as the basic block distance
between its target site and the current basic block. Specifi-
cally, let B⃗ = [B1,B2, ...] be a basic block trace, a sequence of
executed basic blocks, and B∗ be the target site. Then, when
the program executes Bn, the distance of a target site DTARGET
is defined as

DTARGET = d(Bn,B∗). (2)

From now on, we decorate an arbitrary variable # with
#n to denote the value of the variable at the moment when
the program executes Bn in the trace. For example, Dn

TARGET
denotes the target site distance when the program executes
the nth basic block in the trace, Bn.

4.2.2 Data Condition Distance

Distance of an individual data condition. The distance
of an individual data condition is based on the distance of
integer values d̂(n⃗). Table 1 shows the definition of d̂2(n⃗) with
a given comparison operator, which is similar to the definition
of [23]. Basically, the distance between two integers is 0 if
the comparison is true, and farther from 0 as it is farther from
the solution. One additional operator with three integer values
n1 <= n2 < n3 yields 0 when n2 is between the two integers
n1 and n3, and produces a larger value as n2 is further from

Expression Meaning d̂(n⃗)

n1 == n2 Equal |n1 −n2 |

n1 ! =n2 Not equal 0 if true, otherwise 1.
n1 >= n2 Greater than or equal to max(n2 −n1,0)
n1 > n2 Greater than max(n2 −n1 +1,0)

n1 <= n2 Less than or equal to max(n1 −n2,0)
n1 < n2 Less than max(n1 −n2 +1,0)

n1 <= n2 < n3 Between max(n1 −n2,n2 −n3 +1,0)

Table 1: The distance d̂(n⃗) of integer values.

the range [n1,n3). We assume d̂(n⃗) is∞ if any one of integers
in n⃗ is undefined.

Using the distance of integer values d̂(n⃗) and given a data
condition Q, we define the distance of a data condition d̂n(Q)
when the program executes the nth basic block Bn as

d̂n(Q) =min(d̂2(n⃗)),∀n⃗ ∈ Varn(Q), (3)

where Varn(Q) is a set of variable vectors captured until the
program executes Bn, and 2 is the comparison operator of
Q. Basically, d̂n(Q) is equal to the minimum distance of all
captured variables until Bn, or∞ if any one of the variables
is not captured yet, thus undefined.

As a special case, if a condition is denoted by assert rather
than cond, we define the distance of such a data condition
in a pass-or-fail manner, yielding 0 when the condition is
satisfied or∞ otherwise. This prevents falsely measuring the
distance when the numerical aspects of the integer values bear
no significance, such as the pointer addresses.
Distance of multiple data conditions. The distance of mul-
tiple data conditions is supposed to indicate how close a seed
is to satisfy all the data conditions. To this end, we define the
distance of data conditions so that it gets shorter when more
data conditions are satisfied, and if the number of satisfied
data conditions is the same, the first unsatisfied data condition
is closer to be satisfied. Let Q⃗ = [Q1,Q2, ...] be a sequence of
data conditions, and ρ is the index of the first unsatisfied data
condition.1 Then the distance of data conditions Dn

DATA can be
defined as

Dn
DATA = cdata ·Nunsat +min(cdata, d̂n(Qρ)), (4)

where Nunsat = N(Q⃗)− ρ is the number of unsatisfied data
conditions, and cdata is the maximum distance of an individ-
ual data condition. We set cdata to 232, so that a single data
condition distance can represent any distance values between
4-byte integers. Notice that Dn

DATA gives a shorter distance
when Nunsat gets smaller, and the distance of the first unsatis-
fied data condition d̂(Qρ) has a shorter distance.

4.2.3 Constraint Distance

The distance of an individual constraint is the sum of the
target site distance and the data condition distance. Formally,

1We assume ρ is the last index if all data conditions are satisfied.



if Dn
CONSTR is the distance of a constraint,

Dn = Dn
TARGET+Dn

DATA. (5)

Until the constraint is satisfied, Dn changes the value in the
following ways.

1. Before the target site: Dn = d(Bn,B∗)+ cdata ·N(Q⃗).

Before reaching the target site B∗, the distance to the target
site is d(Bn,B∗) when the program executes Bn in the trace.
Meanwhile, the distance of the data conditions is at its max-
imum, cdata ·N(Q⃗), because not all referenced variables are
captured (i.e., defined) until the program reaches the target
site.

2. At the target site: Dn = 0+Dn
DATA.

After reaching the target site, the distance of a constraint
is solely determined by the distance of its data conditions,
Dn
DATA. The distance gets shorter as more data conditions are

satisfied and the first unsatisfied data conditions is in a closer
condition to be satisfied.

3. When constraint satisfied: Dn = 0.

Similar to other distance definitions, the distance of a con-
straint is 0 if the constraint is satisfied, that is when: i) the
target site is reached and ii) its data conditions are all satis-
fied at the target site. This is naturally derived from the other
distance definitions, because such situation indicates both
Dn
TARGET and Dn

DATA are 0, so is the sum of them.

4.2.4 Total Distance

The distance of a constraint sequence, or the total distance,
is the serial combination of the distance of each individual
constraint Dn

i . Let B⃗∗ = [B∗1,B
∗
2, ...,B

∗
M] be a sequence of target

sites that belong to each of the M constraints. Furthermore,
let τn be the index of the first unsatisfied constraint.2 Then
the total distance Dn can be defined as

Dn = ccon · (N(B⃗∗)−τn)+min(ccon,Dn
τn ). (6)

Here, ccon is the maximum distance of an individual con-
straint, and N(B⃗∗) is the number of target sites in B⃗∗. We set
ccon to 235, so that a constraint can accommodate up to 8 data
conditions. Until all constraints are satisfied, Dn changes the
value in the following ways.

1. When no constraint satisfied:
Dn = ccon · (N(B⃗∗)−1)+min(ccon,Dn

1).

Since no constraint has been satisfied yet, τn is 1 because
the first unsatisfied constraint is the very first constraint.
Hence, the total distance is the distance of the first constraint,
plus the maximum distances of the rest of the constraints.

2Similar to ρ, we assume τn is M if all constraints are satisfied.

CONSTRAINT %cause:
site <cause_site >
cond "none"

CONSTRAINT %trans:
site <trans_site >
cond "none"

CONSTRAINT %crash:
site <crash_site >
cond "none"

Figure 6: nT constraint template.

2. When last constraint remains: Dn =min(ccon,Dn
M).

Once all constraints are satisfied except the last one, the
total distance is solely determined by the distance of the last
constraint, because (N(B⃗∗)−τn) = (M−M) = 0.

3. When all constraints satisfied: Dn = 0.

Similar to the distances defined so far, the total distance gets
zero as both of the terms are reduced to zero. Inversely, the
zero total distance indicates that all constraints are satisfied
in the specified order.

Finally, we define the total distance of a seed as the mini-
mum total distance throughout its execution. Formally, if s is
a seed that generates the basic block trace B⃗, the total distance
of a seed D(s) is defined as D(s) =min(Dn),∀n.

5 Constraint Generation

The basic approach of constraint generation is, given an addi-
tional information source, finding proper target sites and data
conditions to fill out a pre-defined constraint template. We de-
sign constraint generation for two such sources: crash dumps
from memory error detectors [39, 41] and patch changelogs.

5.1 Crash Dump
Constraint generation for crash dumps refers to the bug types
to choose an appropriate template. We compose three tem-
plates that can support seven bug types in total. In particular,
the nT template with multiple target sites handles use-after-
free, double-free, and use-of-uninitialized-value (§5.1.1), the
2T+D template with two target sites and data conditions han-
dles stack-buffer-overflow and heap-buffer-overflow (§5.1.2),
and the 1T+D template with one target site and data conditions
handles assertion-failure and divide-by-zero (§5.1.3).

5.1.1 Multiple Target Sites (nT)

Figure 6 shows the nT constraint template with multiple target
sites. The template is useful when a crash dump informs
the target sites required to be reached in order. The bracket-
enclosed placeholders are replaced to the program location
found at the top of the corresponding stack dumps.



CONSTRAINT %alloc:
site <alloc_site >
cond "none"

CONSTRAINT %access:
site <access_site >
assert "%alloc.ret <= %access.addr < %alloc.endaddr"
cond "%alloc.endaddr <= %access.addr"

Figure 7: 2T+D constraint template with buffer overflow data condi-
tions. %alloc.endaddr is %alloc.ret + %alloc.size.

CONSTRAINT %constr:
site <target_site >
cond "<data_cond >"

Figure 8: 1T+D constraint template.

Avoiding wrapper functions. To make the target sites more
representative, we avoid choosing a target site inside memory
wrappers by checking if the name of the stack frame caller
contains the keywords such as "alloc", "free", or "mem". If a
location is inside a memory wrapper, we take the location of
lower stack frames instead.
Constraint description. The template specifies multiple tar-
get sites that are required to be reached in the specified order
to reproduce the crash. The %cause constraint represents
where the cause is generated. The %trans constraint rep-
resents where the cause is transferred. Finally, the %crash
constraint represents where the crash occurs.
Corresponding bug types. Use-after-free, double-free, and
use-of-uninitialized-value correspond to the nT constraint tem-
plate. Use-after-free and double-free bugs set <cause_site>
and <crash_site> to where an address is freed and used,
and do not use the %trans constraint. Use-of-uninitialized-
value sets <cause_site> and <crash_site> to where the
uninitialized value is created and used, and set <trans_site>
to where it is transferred if the uninitialized value is mediated
by multiple variables.

5.1.2 Two Target Sites with Data Conditions (2T+D)

Figure 7 shows the 2T+D constraint template with two target
sites and data conditions. The illustrated data conditions are
for buffer-overflow bugs, where endaddr denotes the end of
the allocated memory, namely ret + size. Similar to the
nT template, the bracket-enclosed placeholders are replaced
to the program location at the top of the corresponding stack
dumps. We capture the variables inside of memory wrappers,
even if the target sites are set to outside of them.
Constraint description. The template specifies two target
sites and data conditions to reproduce buffer-overflow. The
%alloc constraint first guides the program to where a buffer
is allocated. When <alloc_site> is reached, it captures
the begin and end address of the allocated buffer as ret and
endaddr. Next, the %access constraint guides to where the

buffer is accessed. When <access_site> is reached, the
assert condition first identifies whether the accessed address
(%access.addr) belongs to the buffer allocated by <alloc_-
site>. If it does, to increase the likelihood of overflow, the
cond condition drives the accessed address to the boundary.

Notice that the data conditions are intended to drive buffer-
overflow, not to detect one; while the likelihood of buffer-
overflow is increased by both data conditions (i.e., assert
and cond), the actual buffer-overflow will be detected by the
memory error detectors [39, 41] regardless of whether both
data conditions are satisfied.
Corresponding bug types. Heap-buffer-overflow and stack-
buffer-overflow correspond to the 2T+D constraint template. In
both bugs, <alloc_site> is set to where a buffer is allocated
and <access_site> to where a buffer is accessed out of
bound. The template currently does not support global-buffer-
overflow and buffer-underflow. See §8 for details.

5.1.3 One Target Site with Data Conditions (1T+D)

Figure 8 shows the 1T+D constraint template with one target
site and data conditions. The template is useful when a crash
dump does not reveal multiple target sites, but the bug type
suggests some definite buggy conditions.
Constraint description. The template specifies one target
site that is required to be reached and data conditions that
needs to be satisfied at the target site. The %constr con-
straint specifies such a target site (<target_site>) and data
conditions (<data_cond>).
Corresponding bug types. Divide-by-zero and assertion-
failure correspond to the 1T+D template. Divide-by-zero
sets <target_site> to the crashing division expression and
<data_cond> to %constr.rhs == 0, where rhs indicates
the divisor operand. Assertion-failure sets <target_site>
to the failed assertion check, and <data_cond> to the negated
assertion condition.

5.2 Patch Changelog

Constraint generation for patch changelogs uses the 1T+D
constraint template shown in Figure 8. Since the patch is
supposed to fix the cause of the crash, we utilize the changed
source locations by assuming that they signify the cause.
Constraint description. The constraint first guides the pro-
gram to <target_site> that represents the changed loca-
tions. When <target_site> is reached, it attempts to gener-
ate the cause by satisfying <data_cond> that represents the
changed data conditions.
Determining constraint. To find a proper constraint, a given
patch changelog is matched with a series of pre-defined cases,
earlier cases being potentially more direct to the cause of
the bug. The following describe the case matching, which is
algorithmically described in Appendix C.



afl-clang-fast

Figure 9: System overview of CAFL.

• C1. If any new exception checks are introduced, it sets
<target_site> to their source locations and creates
<data_cond> with newly introduced exception condi-
tions. We assume the conditions that lead to a return state-
ment or a function call with a keyword such as "throw"
or "error" suggest exception checks.

• C2. If any branch condition is changed, it sets
<target_site> to the changed conditions and creates
<data_cond> where the pre- and post-patched condi-
tions are mutually exclusive to each other. In other words,
if Cpre and Cpost are the pre- and post-patch conditions,
<data_cond> = (Cpre && !Cpost) || (!Cpre && Cpost).

• C3. If any variables are replaced, it sets <target_site>
to the replaced variable and creates <data_cond> that
tests if the value of the pre-patched variable is not equal
to the post-patched one.

• C4. If all the preceding cases are not applicable, it
falls back to the data-condition-free constraint, setting
<target_site> to all the changed program locations.

Multiple target sites. If the changed locations are more than
one, it ties all changed locations with a sentinel function that
represents a single unified target site, and sets <target_-
site> to the sentinel function. Specifically, it inserts a sen-
tinel function call to each of change locations, so that the
program calls the sentinel function whenever it reaches them.

6 Implementation

We implemented CAFL, the prototype fuzzing system of
CDGF based on AFL 2.52b [46]. In this section, we first
describe a brief system overview in §6.1, and explain the
operation of the CAFL components in §6.2 to §6.4.

6.1 System Overview
Figure 9 shows the system overview of CAFL. First, the
CAFL compiler accepts the source code and the constraints
such as Figure 4, and instruments both edge coverage and the
target site distances. The target site distances are instrumented
by installing the checkpoint API calls provided by the CAFL
runtime. Then, the CAFL fuzzer fuzzes the binary and re-
ceives the seed distance from the CAFL runtime, prioritizing
the seeds with shorter total distances.

6.2 CAFL Compiler

Coverage instrumentation. The CAFL compiler generates
the LLVM [17, 28] IR bitcode and annotates the target sites
to prevent them optimized out. It then instruments the edge
coverage using the AFL [46] instrumentation compiler with
optimizations enabled.
Call graph construction. To calculate the target site dis-
tance, the CAFL compiler first constructs the program-wide
call graph. When it comes to the function pointers, the CAFL
compiler assumes all the functions whose prototypes are ex-
actly matching as the potential callees. If such a function is
not found, the CAFL compiler alternatively assumes the func-
tions with partially matching prototypes at the earlier part as
the potential callees.
Target site distance instrumentation. Starting from each
target site, the CAFL compiler calculates the target site dis-
tance of the basic blocks and inserts the checkpoint calls,
while recursively crawling up the control-flow graph and the
call graph until it reaches the main function. As a special
case, the CAFL compiler attaches the captured variables to
the checkpoint call at the target site and forwards them to the
CAFL runtime.

6.3 CAFL Runtime

Seed distance tracking. At fuzzing time, the CAFL runtime
keeps track of the seed distance using the target site distance
feedback through the checkpoints. The instrumented binary
forwards the tuple of [τ,d(Bn,B∗τ)] through the checkpoints,
where τ is the index of the constraint and d(Bn,B∗τ) is the
target site distance of the τth constraint. The CAFL runtime
selectively accepts the target site distance of the first unsatis-
fied constraint, and updates the current seed distance.

At the target site, the CAFL runtime receives the captured
variables through the checkpoint call and calculates the data
condition distances. To prevent the released memory from
disrupting distance measurement, the CAFL runtime also
disposes a captured variable if i) it is a memory pointer and ii)
released by free/realloc (heap objects) or stack unwinding
(stack objects). If the distance of the current constraint gets 0,
the CAFL runtime advances to the next constraint.
Seed distance reporting. While tracking the seed distance,
the CAFL runtime reports the distance of the current seed to
the CAFL fuzzer via a dedicated shared memory interface.



CONSTRAINT %cause:
site <cause_site >
cond "none"

CONSTRAINT %crash:
site <crash_site >:<crash_var >
cond "<crash_begin > <= %crash.value < <crash_end >"

Figure 10: Constraint template for LAVA-1 crashes.

To facilitate monitoring the fuzzing status, the CAFL runtime
also reports additional runtime statistics, such as at which
constraint a seed is stuck.

6.4 CAFL Fuzzer

Seed scoring. As the seeds with shorter total distances are
generally deemed as desirable, the CAFL fuzzer first scores
each seed negative-proportionally to its total distance, giving a
bigger score to a shorter total distance. Meanwhile, some may
be the local minima whose total distance cannot be shortened
further. To avoid such local minimum seeds, the CAFL fuzzer
exponentially scales down the seed score with respect to the
fuzzed times and the stuck depth, the seed depth during which
a seed fails to reduce the total distance shorter than the shortest
seed distance of all the parent seeds. Formally, given a seed s
with the total distance of D(s), the score of the seed S(s) is

S(s) = (Dmax −D(s)) ·pow(c f uzz,NumFuzzed(s)) ·
pow(cstuck,S tuckDepth(s)), (7)

where Dmax = ccon ·N(B⃗∗) is the maximum total distance, and
NumFuzzed(s) and S tuckDepth(s) is the fuzzed times and
the stuck depth of the seed s, respectively. c f uzz and cstuck are
the scale-down factors, which we set to 0.95 and 0.85.
Seed creation. The CAFL fuzzer creates a new seed when-
ever it observes a seed whose score is bigger than the current
biggest. The CAFL fuzzer also creates seeds in a conventional
way, namely when a seed covers new control-flow edges, to
diversify the data context of seeds.
Seed prioritization. The CAFL fuzzer modifies the seed
scheduling algorithm of AFL by regulating the selection prob-
ability of each seed based on its score. Specifically, the CAFL
fuzzer ranks each seed in an increasing order of its score, and
gives an exponentially higher probability of being chosen. We
give the probabilities with respect to the ranks rather than the
scores, as the total distance is a combination of two different
distance metrics whose numerical scales are not compatible.
Formally, if R(s) is the rank of the seed s, the probability of
choosing the seed s is defined as P(s) = 1/exp(R(s)).

7 Evaluation

Since the state-of-the-art DGF system Hawkeye [22] is not
publicly available, we compare CAFL with AFLGo [21] that

ID Buggy
Range Size AFLGo CAFL

2T 2T+D

4961 0x10000000 >1000.0 m 0.9 m 0.2 m
7002 0x10000000 4.3 m >1000.0 m 0.1 m
13796 0x10000000 >1000.0 m 459.3 m 121.5 m

292 0x200000 >1000.0 m >1000.0 m 0.6 m
660 0x200000 >1000.0 m >1000.0 m 0.6 m

3089 0x200000 >1000.0 m >1000.0 m 0.8 m
4383 0x200000 >1000.0 m >1000.0 m 0.2 m
7700 0x200000 >1000.0 m >1000.0 m 0.3 m
14324 0x200000 >1000.0 m >1000.0 m 0.9 m
2543 0x4000 >1000.0 m >1000.0 m 0.3 m
4049 0x4000 >1000.0 m >1000.0 m 0.6 m
1199 0x80 >1000.0 m >1000.0 m 0.3 m
2285 0x80 >1000.0 m >1000.0 m 0.7 m
9763 0x80 >1000.0 m >1000.0 m 0.3 m
16689 0x80 >1000.0 m >1000.0 m 0.7 m
17222 0x80 >1000.0 m >1000.0 m 1.2 m

357 0x1 >1000.0 m >1000.0 m 1.3 m
3377 0x1 >1000.0 m >1000.0 m 0.7 m

Table 2: LAVA-1 crash reproduction time comparison. All repro-
duction times are cut off at 1000 minutes. T stands for target sites,
and D stands for data conditions.

Hawkeye is built upon. We evaluate both on a server node with
20-core Intel Xeon Gold 6209U CPU @ 2.10GHz and 502 GB
of DDR4 main memory. We run CAFL on Ubuntu 18.04 and
AFLGo on Ubuntu 16.04, due to the OS compatibility issue
in AFLGo. We repeat each evaluation 3 times and average
them, except when AFLGo exceeds the timeout. We configure
AFLGo with the default parameters described in the official
repository (-z exp -c 45m) [1].

In this section, we first present the microbenchmark results
using LAVA-1 [25] in §7.1, and present the crash reproduc-
tion time upon 47 real-world crashes in §7.2. Finally, we
present the PoC generation time upon 12 crashes in §7.3. All
constraints are automatically generated.

7.1 Microbenchmark: LAVA-1

We compare the crash reproduction time with 18 crashes
from LAVA-1 [25] by measuring the time taken to reproduce
the crash injected to the Linux file command [8]. Figure 10
shows the constraint template used to reproduce the crashes in
LAVA-1. Since LAVA-1 provides the detail crash information
including i) the program location involved in the cause of the
crash, ii) the program location where the program crashes,
and iii) the buggy variable and its data range where it causes
the crash, we utilize the information to fill the placeholders in
the constraint template. Specifically, we set the cause location
and the crash location to <cause_site> and <crash_site>
respectively, and the begin and end value of the buggy range to
<crash_begin> and <crash_end>. Setting this constraints
as 2T+D, we construct the constraints for 2T by disabling the
data condition to "none". We set the targets sites for AFLGo
to the same as in 2T.



Program Bug Location Bug Type Template AFLGo CAFL Speedup1T nT 1T nT nT+D

gifsicle 1.90 fmalloc.c:19 Double free nT 8.0 m 7.0 m 15.2 m 7.2 m - 1.0x
gifsicle 1.90 giffunc.c:185 Use after free nT 15.2 m 27.6 m 27.0 m 18.4 m - 0.8x

ImageM 7.0.6-5 mat.c:1374 Use after free nT 180.1 m 404.5 m 17.3 m 8.6 m - 20.9x
libming 0.4.8 decompile.c:398 Use after free nT 103.8 m 33.0 m 12.7 m 14.8 m - 2.6x
libtiff 4.0.3 tiff2pdf.c:394 Use after free nT >6000.0 m >6000.0 m >6000.0 m 1593.5 m - 3.8x
libtiff 4.0.9 tiff2pdf.c:405 Use after free nT >6000.0 m >6000.0 m >6000.0 m 2887.0 m - 2.1x
libzip 1.2.0 zip_buffer.c:53 Use after free nT >2000.0 m 379.5 m 1642.3 m 825.3 m - 0.5x
mJS 1.21 mjs_string.c:524 Use after free nT 32.4 m 58.8 m 31.1 m 24.2 m - 1.3x

nasm 2.14rc0 preproc.c:1290 Use after free nT * * 774.2 m 65.2 m - -
nasm 2.14rc16 preproc.c:5055 Use after free nT * * 7176.1 m >12000.0 m - -

yasm 1.3.0 intnum.c:415 Use after free nT >2000.0 m 218.2 m 120.2 m 32.3 m - 6.8x
jbig2dec 0.16 jbig2_arith.c:264 Uninitialized value nT 168.9 m 53.3 m 130.1 m 56.0 m - 1.0x
jbig2dec 0.16 jbig2_mmr.c:88 Uninitialized value nT >2000.0 m >2000.0 m 1064.2 m 710.3 m - 2.8x

jasper 1.900.12 jas_seq.c:90 Assertion failure 1T+D 2.4 m - 3.2 m - 1.2 m 2.0x
jasper 1.900.13 jpc_dec.c:1817 Assertion failure 1T+D 136.1 m - 30.0 m - 15.7 m 8.7x
jasper 1.900.13 jpc_bs.c:197 Assertion failure 1T+D 16.7 m - 6.1 m - 9.9 m 2.7x
jasper 1.900.13 jpc_t2cod.c:297 Assertion failure 1T+D >2000.0 m - 1990.1 m - 281.8 m 7.1x
jasper 1.900.17 jpc_math.c:94 Assertion failure 1T+D 130.1 m - 220.1 m - 122.4 m 1.1x
libsixel 1.8.3 stb_image.h:5052 Assertion failure 1T+D * - 15.4 m - 31.9 m -
libtiff 4.0.7 tif_dirwrite.c:2098 Assertion failure 1T+D 58.1 m - 165.3 m - 24.4 m 2.4x

GraphicsM 1.3.28 png.c:4638 Divide by zero 1T+D * - 4.5 m - 1.9 m -
imagew 1.3.1 imagew-cmd.c:850 Divide by zero 1T+D 1.0 m - 2.6 m - 1.4 m 0.7x
lame 3.99.5 get_audio.c:1454 Divide by zero 1T+D 3.4 m - 2.7 m - 1.5 m 2.3x
libtiff 4.0.7 tif_read.c:351 Divide by zero 1T+D >9000.0 m - >9000.0 m - 2046.0 m 4.4x

Average nT: 2.12x / 1T+D: 2.63x

Table 3: Crash reproduction time comparison with nT and 1T+D. All reproduction times are cut off at 2000 minutes, except libtiff use-after-free
(6000 minuntes) and divide-by-zero (9000 minutes), and nasm 2.14rc16 use-after-free (12000 minutes) due to the long reproduction time.
Speedup is between the shortest times of AFLGo and CAFL. Underlined times are the shortest. -: Not applicable. *: AFLGo fails to launch.

Table 2 shows the crash reproduction time in AFLGo and
CAFL with two different constraint settings. The crashes are
sorted in the order of the buggy range size, the higher the
wider. AFLGo and CAFL with 2T all fails to reproduce the
crashes until the timeout when the buggy data range is nar-
rower than 0x10000000 = 227, but CAFL with 2T+D success-
fully reproduces the crashes in less than 2 minutes, except the
crash 13796 where reaching the crash location takes most of
the fuzzing time. It is worth noting that AFLGo and CAFL
with 2T cannot reproduce the crash 4961 and 7002 respec-
tively, even if the crashes have the widest buggy data range.
This is because both do not recognize the buggy data condi-
tion and ignore the seeds that are in a close condition, letting
them hidden among the irrelevant seeds.

7.2 Crash Reproduction
We compare the crash reproduction time with 47 crashes
from various real-world programs by measuring the time
taken to generate the same kind of crash at the same crash site.
We set the timeout to 2000 minutes, except four crashes that
require a longer timeout due to the long reproduction time. All
constraints are automatically generated with AddressSanitizer
[39] and MemorySanitizer [41] crash dumps.

To demonstrate the effect of the ordered target sites and
the data conditions, we measure the crash reproduction time
with various constraint settings. In 1T, we only set the crash
location to a target site. In nT, we set all available target
sites without data conditions. This setting corresponds to the
nT template, and the 1T+D and 2T+D templates without data

conditions. In nT+D, we set all available target sites with data
conditions. This setting corresponds to the 1T+D and 2T+D
templates. We set the same target sites for AFLGo.

Table 3 shows the crash reproduction times with the nT and
1T+D templates. With the nT template, CAFL outperforms
AFLGo by 2.12x on average. CAFL with nT generally per-
forms better for most crashes, but is merely effective when
the crash is relatively common (gifsicle 1.90 and mJS 1.21)
or the cause site always comes with the crash site (libzip
1.20 and jbig2dec 0.16). The crash in nasm 2.14rc16 requires
some grammar knowledge, which can be easily supported in
cooperation with grammar fuzzing [19, 20] in the future.

With the 1T+D template, CAFL outperforms AFLGo by
2.63x on average. Notice that the data-condition-enabled
nT+D setting constantly shows superior performance over
AFLGo in most crashes, and even when the data conditions
are not effective, CAFL with nT+D shows at least tentative
performance compared to AFLGo.

Table 4 shows the crash reproduction times with the 2T+D
template, where CAFL outperforms AFLGo by 3.65x on aver-
age. Notice that the data-condition-free nT setting sometimes
takes longer reproduction time than 1T in both AFLGo and
CAFL. This is mainly because the allocation site is commonly
reached regardless of it is targeted or not, causing nothing but
additional overheads in seed scheduling. However in CAFL,
this performance degradation is constantly compensated by
the data conditions represented by nT+D. Overall, CAFL out-
performs AFLGo by 2.88x on average. See Appendix D for
the detailed analysis on the minimum distance change during
the fuzzing session on various constraint settings.



Program Bug Location Bug Type Template AFLGo CAFL Speedup1T nT 1T nT nT+D

jasper 1.900.22 jpc_tsfb.c:225 Stack buffer overflow 2T+D 116.3 m † 98.0 m † 34.2 m 3.4x
lame 3.99.5 get_audio.c:1205 Stack buffer overflow 2T+D 142.1 m † 33.8 m † 34.2 m 4.2x
libsixel 1.8.1 frompnm.c:144 Stack buffer overflow 2T+D * * 33.3 m † 34.0 m -

fig2dev 3.2.7b gensvg.c:1005 Heap buffer overflow 2T+D 56.2 m 37.7 m 31.0 m 22.7 m 35.0 m 1.7x
fig2dev 3.2.7b read.c:1532 Heap buffer overflow 2T+D 180.9 m 151.5 m 16.4 m 11.0 m 14.9 m 13.8x
GraphicsM 1.4 pict.c:1114 Heap buffer overflow 2T+D >2000.0 m >2000.0 m >2000.0 m >2000.0 m 198.6 m 10.1x
GraphicsM 1.4 sun.c:223 Heap buffer overflow 2T+D 36.1 m 19.1 m 77.4 m 148.5 m 32.6 m 0.6x
GraphicsM 1.4 miff.c:428 Heap buffer overflow 2T+D * * 2.4 m 1.6 m 2.0 m -
ImageM 7.0.3-6 pixel-accessor.h:507 Heap buffer overflow 2T+D * * 22.5 m 25.0 m 13.5 m -

jbig2dec 0.16 jbig2_generic.c:356 Heap buffer overflow 2T+D 19.1 m 20.9 m 9.0 m 8.0 m 6.5 m 2.9x
jasper 1.900.3 jpc_dec.c:1668 Heap buffer overflow 2T+D 61.9 m 79.9 m 2.2 m 3.1 m 1.4 m 44.2x
libming 0.4.7 parser.c:66 Heap buffer overflow 2T+D 81.8 m 620.4 m 124.1 m 27.3 m 15.2 m 5.4x
libsixel 1.8.2 frompnm.c:289 Heap buffer overflow 2T+D * * 40.5 m 202.0 m 61.3 m -
libsixel 1.8.4 fromgif.c:278 Heap buffer overflow 2T+D * * 63.6 m 81.2 m 14.6 m -

libarchive 3.1.2 format_zip.c:694 Heap buffer overflow 2T+D >2000.0 m >2000.0 m 1002.3 m ‡ 690.9 m 2.9x
libtiff 4.0.6 tif_packbits.c:85 Heap buffer overflow 2T+D 2.2 m 1.9 m 5.0 m 0.8 m 1.0 m 2.4x
libtiff 4.0.7 tif_swab.c:291 Heap buffer overflow 2T+D >2000.0 m >2000.0 m 645.6 m 1560.3 m 213.7 m 9.4x
libtiff 4.0.7 tif_unix.c:115 Heap buffer overflow 2T+D 74.3 m 154.4 m 280.8 m 137.2 m 27.8 m 2.7x
libtiff 4.0.7 tiffcrop.c:3911 Heap buffer overflow 2T+D 7.8 m 22.8 m 8.6 m 35.3 m 23.3 m 0.9x
libtiff 4.0.7 tiff2ps.c:2487 Heap buffer overflow 2T+D 2.0 m 1.6 m 4.5 m 2.5 m 5.8 m 0.6x
libtiff 4.0.9 pal2rgb.c:196 Heap buffer overflow 2T+D 5.3 m 37.0 m 3.7 m 11.2 m 10.2 m 1.4x

libtiff 4.0.10 tiff2ps.c:2479 Heap buffer overflow 2T+D 283.0 m 65.5 m 50.7 m 10.8 m 7.7 m 8.5x
mJS 1.21 mjs_string.c:58 Heap buffer overflow 2T+D 229.8 m 39.5 m 86.2 m 31.0 m 5.0 m 7.9x

Average 3.65x

Table 4: Crash reproduction time comparison with 2T+D. All reproduction times are cut off at 2000 minutes. Speedup is between the shortest
times of AFLGo and CAFL. Underlined times are the shortest. -: Not applicable. *: AFLGo fails to launch. †: Essentially equivalent to 1T. ‡:
Skipped due to the high instrumentation overheads.

7.3 PoC Generation

We compare the PoC generation time with 12 crashes. Similar
to §7.2, all constraints are automatically generated from the
patch changelog from git [9] and Mercurial [16].

We measure the PoC generation time with various con-
straint settings. In T, we set the target site to the sentinel
function, which ties the selected source locations as described
in §5.2. In T+D, we add the data condition created by the case
matching in §5.2. We set the same target sites for AFLGo.

Table 5 shows the PoC generation time in AFLGo and
CAFL. Overall, CAFL outperforms AFLGo by 3.65x on
average. With the data conditions determined by the case
C1, CAFL with T+D generally outperforms CAFL with T
and AFLGo, especially in GraphicsMagick 1.4 and jasper
1.900.12 with significant margins. This is because the case
C1 leverages the new exception checks in changelogs, which
strongly imply the condition of underlying crashes. CAFL
still performs better than AFLGo even with weaker cases (C2
and later), but in some cases, the data conditions adversely
affect the generation time (yasm 1.3.0).

8 Discussion

Use-cases with manually written constraints. While all
the evaluated cases in this paper are based on the auto-
generated constraints, there are several promising use-cases of
CDGF if developers write manual constraint descriptions. For
example, CDGF can be used to help developer’s debugging
process. If a developer wants to generate an input which fol-

lows a specific execution path, the developer can run CDGF
with the manual constraints with the representative target sties
in a desired order. As another example, developers may utilize
program-specific domain knowledge to seek for the root cause
of crashes. This can be done by adding suspicious target sites
or data conditions to the constraints automatically generated
with the crash dumps.

Bugs that require three or more constraints. In some
cases, uninitialized values in use-of-uninitialized-value bugs
are mediated by a chain of store instructions, where each of
stores introduces additional constraint between the two fun-
damental constraints for creating and using the uninitialized
value. Among the bugs we evaluated, one use-of-uninitialized-
value bug is mediated by one store instruction, which makes it
require three constraints for creating, transferring, and using
the uninitialized value (jbig2_mmr.c:88 in jbig2dec v0.16).

Call-stack-overflow bugs may require multiple constraints
at the entry of the recurring function to make the execution
stack grow deeper. Unfortunately, we could not cover call-
stack-overflow bugs in our evaluation, as they often require
a high level of grammar fuzzing [19, 20], which CAFL does
not support at the moment.

Ineffective scenarios. The current auto-generated data con-
ditions may cause inefficiency if the cause of a crash is com-
pletely unrelated to the near-crash conditions. For example,
the uninitialized offsets causing some buffer-overflow crashes
are irrelevant to the distance derived by the out-of-bound data
condition. CAFL currently mitigates the problem with seed
scheduling (see §6.3), but how much inefficiency such a data
condition can cause needs further investigation.



Program Bug Location Bug Type Case Data Condition AFLGo CAFL SpeedupT T+D

libming 0.4.8 decompile.c:398 Use after free C1 act.p->Constant >poolcounter [6] * 64.3 m 45.2 m -
libsndfile 1.0.28 pcm.c:670 Global buffer overflow C1 pchs >0 && pchs != mchs [5] * 214.9 m 205.3 m -

GraphicsMagick 1.4 pict.c:1114 Heap buffer overflow C1 row_count+Max*2 >= 0x7fff [10] >2000.0 m >2000.0 m 121.0 m 16.5x
libtiff 4.0.9 pal2rgb.c:196 Heap buffer overflow C1 tss_out / tss_in <3 [15] 25.1 m 1.8 m 8.7 m 13.9x

jasper 1.900.12 jas_seq.c:90 Assertion failure C1 x &&y >SIZE_MAX / x [11] 9.4 m 18.4 m 1.0 m 9.4x
jasper 1.900.13‡ jas_seq.c:90 Assertion failure C1 xoff >= width || yoff >= height [3] 10.6 m 1.6 m 2.0 m 6.6x

libsixel 1.8.3 stb_image.h:5052 Assertion failure C1 bits <0 || bits >8 [7] * 24.4 m 21.0 m -
libtiff 4.0.7 tiff2ps.c:2487 Heap buffer overflow C2 cc + nc == tf_bytesperrow [13] 4.5 m 114.3 m 20.3 m 0.2x
libtiff 4.0.7 tif_unix.c:115 Heap buffer overflow C2 s <ns &&row >= imagelength [2] 32.6 m 11.4 m 17.5 m 2.9x
yasm 1.3.0 intnum.c:415 Use after free C3 e->numterm != numterm [18] 1406.9 m 107.1 m 219.1 m 13.1x
libtiff 4.0.7 tif_fax3.c:413 Heap buffer overflow C3 bytes_read != stripsize [14] 26.4 m 35.5 m 31.2 m 0.8x

libming 0.4.7 parser.c:66 Heap buffer overflow C4 † [4] 30.1 m 26.5 m - 1.1x

Average 3.65x

Table 5: PoC generation time comparison. All reproduction times are cut off at 2000 minutes. Underlined times are the shortest. *: AFLGo
fails to launch. †: Not applicable. ‡: Incompletely fixed crash at the same location in jasper 1.900.12.

CONSTRAINT %free:
site <free_site > ; free()

CONSTRAINT %use:
site <use_site >
cond "%use.addr == %free.arg0"

Figure 11: Hypothetical use-after-free constraint template.

Bugs that require further research. Among the overflow
bugs, we have observed that global-buffer-overflow and buffer-
underflow bugs are merely benefited from the simple data
conditions used now. For global-buffer-overflow bugs, the
global buffers mostly serve as look-aside tables rather than
regular buffers, eliminating the arithmetic relation between
the access offset and the buffer boundary. For buffer-underflow
bugs, most programs access the beginning of the buffer so
commonly that the data conditions are unable to distinguish
inputs. Constructing more sophisticated data conditions for
these bugs requires further research.
Issue on distance of pointer conditions. The current defini-

tions of data conditions consider values as arithmetic entities,
whose distances can be derived from the arithmetic value
differences between them. However, we found there is yet
another class of data conditions that are not appropriate to be
handled with the arithmetic value differences. The represen-
tative case would be data conditions between pointers. The
pointer data conditions are problematic because, if two point-
ers point to different memory objects, their value differences
do not carry any semantic meaning.

As an example, Figure 11 shows an hypothetical con-
straint template for use-after-free bugs. Even if this con-
straint template has no syntactical problem, the data con-
dition cond "%use.addr == %free.arg0" makes little
sense, because the smaller integer error between %use.addr
and %free.arg0 does not mean they are more likely to be
pointing to the same memory object after mutation.

We noted that the similar problem arises in any tempo-
ral pointer bugs, such as double-free. To avoid this problem,
CAFL currently does not specify such pointer conditions for
temporal pointer bugs (nT), and resorts to the "fuzzy" nature

of fuzzing to find the crashing input. A reasonable distance
metric for pointer conditions still requires further research.

9 Related Work

Directed greybox fuzzing. AFLGo [21] and SemFuzz [44]
are the first DGF systems. Published about the same time,
they both drive the seed toward a set of target sites in a way
to shorten the distance of the seeds to them. Hawkeye [22]
improves DGF based on AFLGo by modifying the distance
definition to reflect the call trace. However, such conventional
DGF systems lack the concept of the ordered target sites
and data conditions, which results in the long fuzzing time
before exposing targeted crashes. ParmeSan [36] improves
distance measuring with dynamic control-flow graphs. Since
the distance metric of CDGF does not depend on the type
of control-flow graphs, CAFL can also be benefited from
dynamic control-flow graph.
Static analysis-assisted directed fuzzing. Some of the di-
rected fuzzing work attempt to leverage static analysis to
guide fuzzers toward desired locations. [29, 30] utilizes the
crashing execution paths presented by static analyzers rather
than the distance metric. [43] performs an online static analy-
sis to determine at which program location a seed becomes
unreachable to the target sites. Unfortunately, they either lack
the mechanism to facilitate the crash reproduction at the crash
location [43] or over-constrain the fuzzing to inaccurately
analyzed paths [29, 30].
Targeted analysis with symbolic execution. Compared to
fuzzing techniques, symbolic execution techniques have ad-
vantages in solving hard branch conditions. As such, hybrid
fuzzing techniques [42, 45] utilize the targeted symbolic exe-
cution, which specifically solve hard branch conditions where
the fuzzer is stuck. Moreover, [26] incorporates the targeted
symbolic execution to DGF and drills through hard branch
conditions where DGF is stuck. In this regard, CAFL can
leverage targeted symbolic execution particularly in solving
hard branch conditions. It is worth noting that this would re-



quire handling well-known issues in performing symbolic
execution—e.g., environment modeling such as system/li-
brary calls and solving complex symbolic memory references.
ML-based directed fuzzing. NEUZZ [40] incorporates a
neural network model that predicts the branch coverage of
mutated seeds to increase the branch coverage. FuzzGuard
[47] adopts machine learning to improve the effectiveness of
DGF by filtering out the mutated inputs if the learned model
predicts a given input is unlikely to shorten the seed distance.
As stated in [47], FuzzGuard is orthogonal to DGF and can
be incorporated to any of targeted fuzzing systems.
Alternative distance metrics. Angora [23] incorporates the
distance of integer values to facilitate the branch condition
solving. [34] introduces a new distance metric that utilizes
the similarity between the call stack of the executed seed and
the use-after-free PoC input. Unfortunately, [34] is limited to
the vulnerability that belongs to the use-after-free family.
Domain-specific fuzzing. Rather than reaching the targeted
locations, some research allow users to manually determine
the high-level objective of the fuzzing. FuzzFactory [37] al-
lows a user to write a domain-specific seed creation rule,
which in turn creates the more beneficial seeds in favor of the
user-custom conditions. However, it lacks the general mech-
anism to auto-generate the conditions and drive the seeds
against them, such as distances.
PoC generation. [31] utilizes symbolic execution to discover
a concrete input that reaches the target program location, and
[24] generates PoC inputs using symbolic execution. 1dVul
[38] utilizes DGF and symbolic execution to generate the
1-day PoC for the patch-released vulnerability. Unlike [24,31,
38], CAFL does not require symbolic execution.

10 Conclusion

We present CDGF, an augmented DGF that combines the tar-
get sites with the data conditions to define constraints, and
attempts to satisfy the constraints in the specified order. We de-
fine the distance metric for a constraint sequence to prioritize
the seeds that better satisfy the constraints, and automatically
generate the constraints with seven types of crash dumps and
four types of patch changelogs. The evaluation shows the pro-
totype CDGF system CAFL outperforms the representative
DGF system AFLGo by 2.88x in 47 real-world crashes, and
better performs in PoC generation as the constraints are more
explicit.
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A Definition of Constraint Language

A.1 Basic Syntax
Figure 12 shows the context-free grammar of the constraint
language. A constraint description (ConstrDesc) consists of
multiple ordered constraints (Constr) enumerated in the re-
quired satisfaction order. A constraint has a head (Constr-
Head) that specifies its name and a body (ConstrBody) that
specifies the target site and the data conditions. A constraint
is considered to be satisfied if the target site is reached and all
data conditions are satisfied in the order of appearance, if any.

A.2 Constraint Body
A constraint body (ConstrBody) specifies a target site (Tar-
getSite) and data conditions (DataCond). Multiple data con-
ditions need to be satisfied in the specified order. Data con-
ditions are optional, so if no data condition is specified, the
constraint is considered to be satisfied when the target site is
reached.

A.2.1 Target Site

A target site (TargetSite) specifies a targeted source location
(Location). It includes the file name followed by the column
and line numbers (String:Int:Int). When reached, the con-
straint captures the variables used by the source-level expres-
sion pointed by the location. The variables may be captured
at a different source location if it is annotated ([Location]).

A target site may specify multiple target source locations
((|| Location)∗). In that case, the target site is considered to be
reached if any one of the source locations is reached. The vari-
ables are not captured if some source locations have different
expression types.

A.2.2 Data Condition

A data condition (DataCond) specifies a condition expression
(ConditionExpr) that must be satisfied at the target site. A data
condition can be declared in two types; cond and assert.
If a data condition is declared as cond, the distance of the
data condition follows the distance derived from the specified
condition. If it is declared as assert, the distance of the data
condition is maxed out unless the condition is satisfied and
has zero distance.

A.3 Condition Expressions
A condition expression (ConditionExpr) represents a boolean
condition in terms of given value expressions. The distance
of a condition expression is zero when it is satisfied, other-
wise follows the operator-specific distance rules (CmpOp).
Condition expressions may be combined with logical oper-
ators (LogicOp), where the distance is calculated based on

http://lcamtuf.coredump.cx/afl/


ConstrDesc→Constr∗

Constr→ConstrHead:ConstrBody

ConstrHead→ CONSTRAINTConstrNameExpr
ConstrNameExpr→ %S tring

ConstrBody→ TargetS ite DataCond∗

TargetS ite→ site Location (|| Location)∗ |
site Location [Location]

Location→ S tring:Int:Int

DataCond→ (cond | assert) "ConditionExpr"

ConditionExpr→ (ConditionExpr) | none |
ValueExpr CmpOp ValueExpr |
ConditionExpr LogicOp ConditionExpr

ValueExpr→ (ValueExpr) | Int | Hex | Variable |
ValueExpr ArithOp ValueExpr

Variable→ConstrNameExpr.VarIdent
VarIdent→ value | ret | size | addr | readdr |

endaddr | lhs | rhs | argInt

Int→ -?(0-9)+, Hex→ 0x(0-9 | a-f | A-F)+, S tring→ (a-z | A-Z | _)(a-z | A-Z | 0-9 | _)∗

ArithOp→ + | - | / | *, CmpOp→ == | != | <= | < | >= | >, LogicOp→ && | ||

Figure 12: Context-free grammar of constraint description.

the distances of original expressions. See Appendix B for the
distance definitions.

A.4 Value Expressions

A value expression (ValueExpr) represents an arithmetic value
that can be used with comparison operators. It can be further
manipulated by the arithmetic operators (ArithOp) when it
is evaluated. All values have a canonical 64-bit integer type;
pointers are regard as regular 64-bit integers, and floating-
point values are casted to fixed-point values before captured.

A.4.1 Variable

A variable (Variable) indicates a captured value by the spec-
ified constraint. It consists of a constraint name expression
that specifies the name of the containing constraint (Constr-
NameExpr), and the variable identifier that specifies the value
to be referenced from the constraint (VarIdent).

A variable identifier indicates a variable by its place in the
expression where it has been captured (argInt). For example,
arg0 may be the 0th argument of a call expression or the left-
hand-side operand of a division expression. Some identifiers
are reserved with specific semantic meanings, such as ret
being the return value if the expression is a call expression.
Other reserved identifiers are listed below.

• value indicates the resulting value produced by the ex-
pression, such as the loaded value if the expression is a
dereference expression. This is also an alias of ret.

• addr indicates the dereferenced address if the expression
is a dereference expression.

• size and endaddr indicate the size and the end address
of the allocated memory respectively, if the expression
is the recognizable allocation function, such as malloc.

• readdr indicates the reallocated address if the expres-
sion is the recognizable reallocation function, such as
realloc.

• lhs and rhs indicate the value of left-hand-side and
right-hand-side operands if the expression is a binary
expression.

B Distance of Condition Expressions

B.1 Comparison Operators

The distance of the condition expression n1 2 n2, where n1
and n2 are integers and 2 is a comparsion operator, is cal-
culated based on the absolute difference between n1 and n2.
Specifically, the distance is the absolue difference if it is not
satisfied, or 0 otherwise. The detailed rationales behind the
distance of each comparison operator are as follows.

• The distances of ==, >= and <= are equal to the absolute
difference of two operands if unsatisfied, or 0 otherwise.

• The distances of > and < are the distances when it is
reformulated with >= and <=, respectively. (e.g., n1 >
n2⇒ n1 >= n2+1)

• The distance of != is the distance when it is reformulated
with > and <. (i.e., n1 != n2⇒ n1 > n2 || n1 < n2)

The formalized distance of each comparison operator is
shown in Table 1.

B.2 Logical Operators

The distance of the condition expression e1 #e2, where e1 and
e2 are also condition expressions and # is a logical operator,
is decided by the rules below.
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Figure 13: Minimum observed seed distance change of three representative programs. ccon and cdata are assumed to 1000 and 100, respectively.

• The distance of && takes the maximum distance of two
condition expressions.

• The distance of || takes the minimum distance of two
condition expressions.

Formally, if e′ is a condition expression where e′ = e1 # e2
and d̂#(e′) is the distance of e′, d̂&&(e′) = max(d̂(e1), d̂(e2))
and d̂||(e′) =min(d̂(e1), d̂(e2))

C Constraint Generation Algorithm for
Changelogs

Algorithm 1 shows the algorithm to find a proper constraint
with a given patch changelog. Given a set of changed loca-
tions, first it classifies each location with pre-defined cases
described in §5.2. It then takes a set of locations classified as
an earlier case to select target sites and generate data condi-
tions. The algorithm finally ties all selected target sites with a
sentinel function to make them into one target site.

D Analysis on Minimum Distance Change

Figure 13 shows the change of the minimum observed seed
distance during the fuzzing session of three representative
programs in Table 3 and Table 4. To visualize how the mini-
mum observed seed distance changes in various settings, we
select one trial and scale the time dimension to the average
time of its setting. While the distance change is from one trial,
the trends of the distance change were similar in every trial.
To describe the distance change more clearly, we convert the
original seed distance with ccon = 1000 and cdata = 100.

Figure 13a describes the minimum seed distance change of
the yasm 1.3.0 use-after-free crash. AFLGo and CAFL with
1T quickly reach the use location as soon as they begins, but
they are stuck at the use location for a long time, as most of
the seeds bypass the free location. On the other hands, CAFL
with nT attempts to reach the use location after reaching
the free location, and successfully reaches the use location
after 15 minutes. By prioritizing the seeds that reaches both in

Algorithm 1: FindConstraints
Input Ls: Set of changed locations. (pre: pre-patch, post:post-patch)
Output Tuple of a target site and data conditions.
foreach L in Ls do

if IsNewCond(L.post) and BodyContainsExcept(L.post) then
C1Tars← L

else if AreBothConds(L) and AreNotEqualConds(L) then
C2Tars← L

else if OneVarChanged(L) then C3Tars← L
else C4Tars← L

if not Empty(C1Tars) and AllSameCondExpr(C1Tars.post) then
TSs = GetCondLocs(C1Tars.pre)
DCs = GetConds(C1Tars.post)

else if not Empty(C2Tars) and AllSameCondExpr(C2Tars.pre) and
AllSameCondExpr(C2Tars.post) then

TSs = GetCondLocs(C2Tars.pre), C = GetConds(C2Tars)
DCs = CreateXorCond(C.pre, C.post)

else if not Empty(C3Tars) and AllSameChangedVars(C3Tars) then
TSs = GetChangedVarLocs(C3Tars.pre)
V = GetChangedVar(C3Tars)
DCs = CreateNECond(V.pre, V.post)

else
TSs = C4Tars, DCs = []

TS = TieTargetSites(TSs)
return (TS, DCs)

order, CAFL with nT reproduces the use-after-free crash after
another 17 minutes. nasm 2.14rc0 in Figure 13b exhibits the
similar behavior to yasm 1.3.0, where the crash is reproduced
faster by CAFL with nT even if CAFL with 1T first reaches
the use location.

Figure 13c describes the minimum distance change of
CAFL with three different constraint settings in libming 0.4.7.
1T quickly get zero seed distance by reaching the access loca-
tion, but it does not reproduce the crash as the seeds may not
reach the allocation site, nor satisfy the data conditions. nT
spends around 10 minutes to find the seeds that pass through
both the allocation and access locations, but it waste another
17 minutes at the access location as it does not recognize
the data conditions. nT+D spends about the same time to
reach the allocation site and the access location in order, and
it gradually converges to the solution of the data condition. As
a result, nT+D successfully reproduces the crash only after
another 5 minutes.
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