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DiFuzzRTL Found Real-world CPU Bugs
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We found 16 real-world bugs in OpenRISC and RISC-V CPUs



DiFuzzRTL Fuzzes CPU RTL Designs
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What does the Fuzzer do ?
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What does the Fuzzer do ?

Mutated 
input Target 

program

If new coverage?

Fuzz loop

Source
file

Seed
corpus

Compile-time workflow

Run-time workflow

Mutation

Coverage 
instrumentation

Mutate inputs guided by a coverage!
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Detecting CPU Bugs
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CPU bug
Abnormal CPU behavior
Different from a predefined ISA

Testing CPU RTL design alone cannot detect bugs

✓ misaligned lr instruction

Framework for detecting the CPU bugs
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Detects CPU bugs by comparing with the ISA simulator
ISA simulator – Software implementation of the ISA

Results should be same

ISA simulator
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Differential 
testingAutomatically detects CPU bugs by comparing the results

DiFuzzRTL approach

Framework for detecting the CPU bugs
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Differential 
testing

Testing CPU RTL Design and ISA simulator 

12

Defines SimInput for a unified input space
SimInput – Fuzz input containing instruction, data, and interrupt

Results should be same

SimInput

Testbench

ISA simulator

Generates SimInput and tests both CPU and ISA simulator

DiFuzzRTL approach

Framework for detecting the CPU bugs
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Efficient: incurs only 7% runtime overhead

Register Coverage: New Coverage for RTL
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Automatic: requires no manual effort from developers

Accurate: correctly captures FSM exploration

DiFuzzRTL approach

New coverage definition for the RTL designs
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Monitoring Control Register
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CPU Number of 
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Improves efficiency by monitoring only control registers
Control register – Registers wired into MUX select signal

CPU Number of 
registers

Mor1kx 258

Rocket 1,300

Boom 4,900

Number of 
control registers

90

207

330

Automatically identifies the control registers

DiFuzzRTL approach

New coverage definition for the RTL designs
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Sum of covsum

RTL-based Coverage Instrumentation 

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation
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2. Scalable coverage 
computation

Automatically instruments regstate, covsum and covmap

DiFuzzRTL approach

New coverage definition for the RTL designs



DiFuzzRTL

Accurate, Efficient, and Automatic fuzzer to find CPU bugs
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Coverage-guided input generation

Automatic testing and bug detection

ISA simulation

RTL simulation

Cross-check

SimInput

Mutation

Seed
corpus

=

?

Register coverage increased ?
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• Prototype with three CPU RTL designs: 
Mor1kx (OpenRISC), 
Rocket, and Boom (RISC-V)

• RTL testing environments:
Software simulation, and FPGA prototyping



What DifuzzRTL Found?

• Found 16 new CPU bugs
• 6 of those were assigned with CVE numbers.

• Showed the effectiveness of DiFuzzRTL
• Case study with Issue #492 (invalid rm bug) and CVE-2020-29561 (misaligned lr bug)
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• Detecting micro-architectural side channels, e.g., Spectre, Meltdown
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• Detecting micro-architectural side channels, e.g., Spectre, Meltdown
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Spectre Meltdown Multicore SoC

• Fuzzing an entire SoC with DiFuzzRTL, e.g., memory consistency bug
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ISA simulation

RTL simulation

Cross-check

SimInput

Mutation

Seed
corpus

=

?

Register coverage increased ?

• DiFuzzRTL, an accurate, efficient, and automatic fuzzer for CPU RTL 
designs

• We found several real-world bugs with DiFuzzRTL

CPU Bug ID

Mor1kx CVE-2020-13455, 2020-13453, 2020-13454
Issue 114, 99

Rocket Issue 2345

Boom CVE 2020-13251, 2020-29561
Issue 458, 454, 492, 493, 503

Spike CVE-2020-13456
Issue 426, 2390
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