DiFuzzRTL: Differential Fuzz Testing to
Find CPU Bugs

Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek,
Jangwoo Kim, Byoungyoung Lee

Computer Security Lab & High Performance Computer System Lab
Seoul National University

{hurjaewon, sshkeb96, dongup, ebaek, jangwoo, byoungyoung} @snu.ac.kr

v

g8y M 2 o =t o

SEOUL NATIONAL UNIVERSITY

n&.‘«ff

I, 7L \

111111111
55555

Pentlum FDIV bug

LLLLLLER ?? z

Continued Verification

CPU vendors invest huge efforts into
the Functional verification

Check if CPU RTL design correctly
follows ISA

Complete Verification is Difficult

CPU vendors invest huge efforts into
the Functional verification

Check if CPU RTL design correctly
follows ISA

So we keep observing CPU bugs

4

Complete Verification is Difficult

Pentium FDIV: The processor bug that shook
the world . -
CPU vendors invest huge efforts into

By Desire Athow October 30, 2014
the Functional verification

Check if CPU RTL design correctly
follows ISA

] 20 years already

So we keep observing CPU bugs

4

Complete Verification is Difficult

Pentium FDIV: The processor bug that shook

the world

By Desire Athow October 30, 2014

] 20 years already

The Ryzen 3000 Boot Problem With Newer Linux Distros Might
Be Due To RdRand Issue

Written by Michael Larabel in AMD on 8 July 2019 at 09:42 AM EDT. 121 Comments

As outlined yesterday, AMD's Ryzen 3000 processors are very fast but having issues
booting newer Linux distributions. The exact issue causing that boot issue on 2019
Linux distribution releases doesn't appear to be firmly resolved yet but some are
believing it is an RdRand instruction issue on these newer processors manifested by

systemd.

, into

rectly

So we keep observing CPU bugs

Complete Verification is Difficult

Pentium FDIV: The processor bug that shook
the world The Ryzen 3000 Boot Problem With Newer Linux Distros Might | into
By Desire Athow October 30, 2014 Be Due TO RdRand |Ssue
| 20 years already Written by Michael Larabel in AMD on 8 July 2019 at 09:42 AM EDT. 121 Comments
o o @ BB As outlined yesterday, AMD's Ryzen 3000 processors are very fast but having issues reCtly
The exact issue causing that boot issue on 2019

NEWS
appear to be firmly resolved yet but some are

Intel finds specialized TSX enterprise bugon | " neare
Haswell, Broadwell CPUs " !

6ODO OO

By Mark Hachman
Senior Editor, PCWorld

~—

So we keep observing CPU bugs

Complete Verification is Difficult

Pentium FDIV: The processor bug that shook
the world The Ryzen 3000 Boot Proble
By Desire Athow October 30, 2014 Be Due TO RdRand |Ssue

| 20 years already Written by Michael Larabel in AMD on 8 July
o o @ BB As outlined yesterday, AMD'

NEWS

Intel finds specialized TSX enterprise bug ol
Haswell, Broadwell CPUs

O$ODO OO
By Mark Hachman
Senior Editor, PC\World
~—

Skylake bug causes Intel chips to
freeze under complex workloads

By Joel Hruska on January 11, 2016 at 4:22 pm LJCon

?

f||Y|G+|S|Y|F

Intel has disclosed that its sixth-generation Core products (known as Skylake) suffer from
a CPU bug that can cause a system to hang. The company has only publicly identified
one application family that causes it, Prime95.

So we keep observing CPU bugs

DiFuzzRTL: Differential Fuzz Testing
to Find CPU Bugs

DiFuzzRTL Found Real-world CPU Bugs

We found 16 real-world bugs in OpenRISC and RISC-V CPUs

RISC ’

DiFuzzRTL Fuzzes CPU RTL Designs

What does the Fuzzer do ?

DiFuzzRTL Fuzzes CPU RTL Designs
What does the Fuzzer do ?

Mutate inputs guided by a coverage!

DiFuzzRTL Fuzzes CPU RTL Designs

What does the Fuzzer do ?

Fuzz loop == Compile-time workflow
== Run-time workflow

Mutate inputs guided by a coverage! | ‘Source _,l Coverage |
L[file instrumentationJ l

Mutated
. input Target
corpus) program

If new coverage? I

DiFuzzRTL Fuzzes CPU RTL Designs

How to fuzz CPU RTL designs ?

DiFuzzRTL Fuzzes CPU RTL Designs

How to fuzz CPU RTL designs ?

v' Requirement 1. Framework for detecting the CPU bugs

)
-~~~
. |

%

(1
9

DiFuzzRTL Fuzzes CPU RTL Designs

How to fuzz CPU RTL designs ?

v' Requirement 1. Framework for detecting the CPU bugs

v" Requirement 2. New coverage definition for the RTL designs

>./la.out

—\
+ 8

$

&
XY

(s
2

[1] Framework for detecting
the CPU bugs

Detecting CPU Bugs

CPU bug
Abnormal CPU behavior
Different from a predefined ISA

10
Framework for detecting the CPU bugs

Detecting CPU Bugs

CPU bug : 4

Abnormal CPU behavior RISC-V°
Different from a predefined ISA v misaligned Ir instruction

10
Framework for detecting the CPU bugs

Detecting CPU Bugs

CPU bug : 4

Abnormal CPU behavior RISC-V°
Different from a predefined ISA v misaligned Ir instruction

Testing CPU RTL design alone cannot detect bugs

10
Framework for detecting the CPU bugs

DiFuzzRTL approach

Differential Testing Framework

Detects CPU bugs by comparing with the ISA simulator
ISA simulator — Software implementation of the ISA

ISA simulator

11
Framework for detecting the CPU bugs

DiFuzzRTL approach

Differential Testing Framework

Detects CPU bugs by comparing with the ISA simulator
ISA simulator — Software implementation of the ISA

ISA simulator

Framework for detecting the CPU bugs Results should be same "

DiFuzzRTL approach

Differential Testing Framework

Detects CPU bugs by comparing with the ISA simulator
ISA simulator — Software implementation of the ISA

ISA simulator _ D,

Framework for detecting the CPU bugs Results should be same "

DiFuzzRTL approach

Differential Testing Framework

Detects CPU bugs by comparing with the ISA simulator
ISA simulator — Software implementation of the ISA

Differential

ISA simulator _ D,

Framework for detecting the CPU bugs Results should be same "

DiFuzzRTL approach

Testing CPU RTL Design and ISA simulator

Defines Siminput for a unified input space
Simlnput — Fuzz input containing instruction, data, and interrupt

ERNE
la s
addi . ,
Sw ,
slli ,

ISA simulator _ D,

Framework for detecting the CPU bugs Results should be same *

DiFuzzRTL approach

Testing CPU RTL Design and ISA simulator

Defines Siminput for a unified input space
Simlnput — Fuzz input containing instruction, data, and interrupt

BxlO8 : (B130871b addiw ad, zero, GOx13 INT.: GOO6)

Bxlfd : (O1lc@®36f jal tl, pc + Gxlc INT.: G661)
Bx128 : (B2e32823 SW td, Ox30(tl) INT.: G168)
Bx308 : (3943648f INT.: GOG8)

Bx318 : (B64£f13b unknown INT.: GOG8)

Siminput

Differential
testing

ISA simulator

Framework for detecting the CPU bugs Results should be same *

DiFuzzRTL approach

Testing CPU RTL Design and ISA simulator

Defines Siminput for a unified input space

Simlnput — Fuzz input containing instruction, data, and interrupt

BxlOB : (6130671b addiw ad, zero, 0x13 INT.: O006)

Belmd @ (O1chB36f jal tl, pc + Gxlc INT.: G661)

Bxl26 : (B2e32823 SW td, Bx36(tl) INT.: ©166)

Bx3600 : (3943648f unknown INT.: G606)

Bx316 : (Be4ffl13b unknown INT.: G606)
Siminput

Framework for detecting the CPU bugs

—

(Testbench)

ISA simulator

~

Differential
testing

Results should be same

DiFuzzRTL approach

Testing CPU RTL Design and ISA simulator

Defines Siminput for a unified input space
Simlnput — Fuzz input containing instruction, data, and interrupt

Testbench /.) 'n-).
0x100 : (0138871b | addiw ad, zero, 0x13 INT.: 0060)
0x104 : (01cO836F | jal tl, pc + Oxlc INT.: 8861) w
0x128 : (02e32823 | sw t4, 0x30(t1) INT.: 0160) s
02300 (-;m; f'ﬂf unknown INT. : HH) ff I
0x310 : (OG 2h | _amlenonm THT /m] I— DI erentla

Generates Slmlnput and tests both CPU and ISA simulator g

N
@ -l
ISA simulator _ >_5

Framework for detecting the CPU bugs Results should be same *

[2] New coverage definition
for the RTL designs

13

Coverage for RTL Design

RTL (Register Transfer Level) ?
Abstraction to describe hardware circuit implementation

New coverage definition for the RTL designs

Coverage for RTL Design

RTL (Register Transfer Level) ?
Abstraction to describe hardware circuit implementation

input;

° J 0l P
1 S
Rg 1]4- Bg

inputg

1 register MUX

New coverage definition for the RTL designs

Coverage for RTL Design

RTL (Register Transfer Level) ?
Abstraction to describe hardware circuit implementation

input;

1 register MUX

New coverage definition for the RTL designs

—

FSM Modeling

Finite State Machine (FSM)

Coverage for RTL Design

Verification goal ?
Explore as many states in the FSM

input;

)l | stateS
J | >
q 24__(5]? FSM Modeling
R 1} B,

inputg

[register MUX Finite State Machine (FSM)

New coverage definition for the RTL designs

Coverage for RTL Design

Verification goal ?
Explore as many states in the FSM

input;

|_—[} statef \

Coverage should guide the input to find new states

FSM Modeling @ @
AN O)

1nputS

[register MUX Finite State Machine (FSM)

New coverage definition for the RTL designs

14

Limitation of Previous Coverage Measures

* Branch coverage [vineeth et al. ET5'15], [Alif et al. DATE’18]
* MUX control coverage (evin et al. iccap1s]
* FSM coverage [pinos et al. TC’98], [Jian et al. TCAD'15]

Branch coverage MUX control coverage FSM coverage

New coverage definition for the RTL designs

15

Limitation of Previous Coverage Measures

* -Branch-coverage trmetreraersasitatferarontetst Not gccurate

* MUX control coverage (evin et al. iccap1s]
* FSM coverage [pinos et al. TC’98], [Jian et al. TCAD'15]

Cannot capture FSM MUX control coverage FSM coverage

New coverage definition for the RTL designs

15

Limitation of Previous Coverage Measures

- ' - Not accurate
o -MUX-control-coveragefrermetrr—teeapast Not efficient

* FSM coverage [pinos et al. TC’98], [Jian et al. TCAD'15]

Cannot capture FSM Incurs large instrument overhead FSM coverage

15
New coverage definition for the RTL designs

Limitation of Previous Coverage Measures

Not accurate
Not efficient

Not automatic

Cannot capture FSM Incurs large instrument overhead Needs manual efforts

15
New coverage definition for the RTL designs

DiFuzzRTL approach

Register Coverage: New Coverage for RTL

New coverage definition for the RTL designs

DiFuzzRTL approach

Register Coverage: New Coverage for RTL

Accurate: correctly captures FSM exploration

New coverage definition for the RTL designs

DiFuzzRTL approach

Register Coverage: New Coverage for RTL

Accurate: correctly captures FSM exploration

Efficient: incurs only 7% runtime overhead

New coverage definition for the RTL designs

DiFuzzRTL approach

Register Coverage: New Coverage for RTL

Accurate: correctly captures FSM exploration

Efficient: incurs only 7% runtime overhead

Automatic: requires no manual effort from developers \
-'-O‘

New coverage definition for the RTL designs

DiFuzzRTL approach

Capturing FSM Exploration (@

Monitors registers to correctly capture the FSM exploration

inputg
1 R
| 0 ':;—‘F 1 B

| | statef

M | states
—7] J
04~ P,
1
q Rs \r‘—g“:Bs
inputg

[register MUX Finite State Machine (FSM)

New coverage definition for the RTL designs

DiFuzzRTL approach

Capturing FSM Exploration (@

Monitors registers to correctly capture the FSM exploration

input;
14— R; 1 .
0 F
l statef HR t t
I state$ XOR egs LA
Ri, R
/OJ { F. S}
0 0[P,)
T e
inputg
1 register MUX Finite State Machine (FSM)

New coverage definition for the RTL designs

DiFuzzRTL approach

Capturing FSM Exploration (@

Monitors registers to correctly capture the FSM exploration

Cycle 0 1
input; 1 0

input; 1 1

Finite State Machine (FSM)

New coverage definition for the RTL designs

DiFuzzRTL approach

Capturing FSM Exploration (@

Monitors registers to correctly capture the FSM exploration

Regstate:

Cycle

0
inputg| 1 0
1

inputg

Finite State Machine (FSM)

New coverage definition for the RTL designs

DiFuzzRTL approach

Capturing FSM Exploration (@

Monitors registers to correctly capture the FSM exploration

£
-
@> (]

Finite State Machine (FSM)

Regstate:

Cycle 0

1
input; 1 0
input; 1 1

18
New coverage definition for the RTL designs

DiFuzzRTL approach

Capturing FSM Exploration (@

Monitors registers to correctly capture the FSM exploration

Cycle 0

input;, 1
input; 1

2
0
0

New coverage definition for the RTL designs

Finite State Machine (FSM)

Regstate:

18

DiFuzzRTL approach

Monitoring Control Register

Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal

CPU Number of
registers
Mori1kx 258
Rocket 1,300
Boom 4900

New coverage definition for the RTL designs

DiFuzzRTL approach

Monitoring Control Register

Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal

CPU Number of Register Register
registers

Mor1kx 258 | /

Rocket 1,300

Boom 4,900

Control registers Not control register

New coverage definition for the RTL designs

DiFuzzRTL approach

Monitoring Control Register

Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal

CPU Number of Register Register

registers
Morlkx) 258 , DiFuzzRTL
Rocket 1309 static analyzer
Boom 4,900

Control registers Not control register

19
New coverage definition for the RTL designs

DiFuzzRTL approach

Monitoring Control Register

Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal

CPU Number of Register Register B —
registers |

Morlkx | 258 | / L]

Rocket 1,300 q ‘ B 0—7z

Boom 4,900 Y W

_ tlj RTL Moduy

19

Control registers Not control register

New coverage definition for the RTL designs

DiFuzzRTL approach

Monitoring Control Register

Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal

CPU Number of Register Register
registers
Morilkx 258 ’

Rocket 1,300
Boom 4900

Control registers Not control register 1. MUX select signal identification

19
New coverage definition for the RTL designs

DiFuzzRTL approach

Monitoring Control Register

Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal

CPU Number of Register Register i

registers 1 —)
Mor1kx 258 | /]
Rocket 1,300 — X
Boom 4,900 L B ﬂ 3

_ b RTL Module /

I
Control registers Not control register 2. Control register identification

19

New coverage definition for the RTL designs

DiFuzzRTL approach

Monitoring Control Register

Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal

CPU Number of Number of
registers control registers

Mor1kx 258 90

Rocket 1,300 207

Boom 4900 330

New coverage definition for the RTL designs

DiFuzzRTL approach

Monitoring Control Register

Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal

CPU Number of

control registers

Number of
registers

-
I.‘
os

Morikx | Automatically identifies the control registers

Rocket 1,300 ZU7/
4,900 330

Boom

New coverage definition for the RTL designs

19

DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

New coverage definition for the RTL designs

DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

New coverage definition for the RTL designs

DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

New coverage definition for the RTL designs

DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

covmap

1

(%)

1

1

regstate %)

(%)

_ covsum
Register cov. 3 !

‘s = instrumentation ©>€
B -

1. Efficient new state identification y

New coverage definition for the RTL designs

DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

Control registers covmap

1

0

. 1

: XOR) 1

regstate 9

0

_ covsum
. Register cov. 3 !

‘e = instrumentation ©>€
lasssssssssssEsssssEssEEEsEEEEEs o

1. Efficient new state identification y

New coverage definition for the RTL designs

DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

Control registers covmap

1

0

. 1

: XOR) 1

regstate 9

4 :

0

_ covsum
. Register cov. 3 !

‘e = instrumentation ©>€
lasssssssssssEsssssEssEEEsEEEEEs o

1. Efficient new state identification y

New coverage definition for the RTL designs

DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

Control registers covmap
1
0
. 1
* XOR) 1
; Q
regstate 9
4 :
0
_ covsum
. Register cov. 3 !
‘e = instrumentation ©>€
lasssssssssssEsssssEssEEEsEEEEEs o

1. Efficient new state identification y

New coverage definition for the RTL designs

DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

Control registers covmap
1
0
. 1
* XOR) 1
= write 1
regstate »0 > 1
4 :
0
_ covsum
. Register cov. 3 !
‘e = instrumentation ©>€
lasssssssssssEsssssEssEEEsEEEEEs —

1. Efficient new state identification y

New coverage definition for the RTL designs

DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

Control registers covmap
1
0
. 1
* XOR) 1
= write 1
regstate »0 > 1
4 :
If new index? 0
_ covsum
. Register cov. 3 !
‘e = instrumentation ©>€
lasssssssssssEsssssEssEEEsEEEEEs o

1. Efficient new state identification y

New coverage definition for the RTL designs

DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

Control registers covmap
1
(%)
. 1
* XOR) 1
= write 1
regstate »0 |1
4 -
If new index? 0
Reai covsum++
.« eglster COl{. 354
= Instrumentation ©>€
CEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE -

1. Efficient new state identification y

New coverage definition for the RTL designs

DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

New coverage definition for the RTL designs

DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

2. Scalable coverage

computation 6>q
-

LT

9
Sum of covsum

New coverage definition for the RTL designs

DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

2. Scalable coverage
computation e>4 L11111 <\
Automatically instruments regstate, covsum and covmap

vlEs

9
Sum of covsum

20
New coverage definition for the RTL designs

DiFuzzRTL

Accurate, Efficient, and Automatic fuzzer to find CPU bugs

Coverage-guided input generation

Automatic testing and bug detection

Register coverage increased ?

Seed
corpus

M

RTL simulation

!Simlnput

el

LOF

ISA simulation

Cross-check

21

Implementation & Evaluation Setup

* Prototype with three CPU RTL designs:
Morlkx (OpenRISC),
Rocket, and Boom (RISC-V)

F\’ISC ’

22

Implementation & Evaluation Setup

* Prototype with three CPU RTL designs:
Morlkx (OpenRISC),
Rocket, and Boom (RISC-V)

®

* RTL testing environments:
Software simulation, and FPGA prototyping

22

What DifuzzRTL Found?

Project ISA Bug ID Description Confirmed Fixed
Mork1x OpenRISC CVE-2020-13455 Reservation is not cancelled when there is snooping hit between lwa and swa v pending
CVE-2020-13454 Jump to link register does not assert illegal instruction exception v pending
CVE-2020-13453 Misaligned swa raise exception when reservation is not set v pending
Issue #114 1.£11. 1. ££1 instruction decoding bug v v
Issue #99 eear register not saving instruction virtual address when illegal instruction exception v v
Rocket chip RISCV Issue #2345 Instruction retired count not increased when ebreak v pending
Boom RISCV CVE-2020-13251 Source field in ProbeAckData does not match the sink field of ProbeRequest v v
Issue #458 Floating point instruction which has invalid rm field does not raise exception v v
Issue #454 FS bits in mstatus register is set after fle.d instruction v pending
Issue #492 When frm is set DYN, floating point instruction with DYN rm field should raise exception v v
Issue #493 Rounding mode in £sqrt instruction does not work v v
Issue #503 invalid operation flag is not set after invalid £div instruction v v
CVE-2020-29561 Misaligned 1r instruction on a cached line set the reservation v v
Spike RISCV CVE-2020-13456 Misaligned 1r.d should not set load reservation v v
Issue #2390 Reading dpc register should raise exception in machine mode v v
Issue #426 Faulting virtual address should not be written to mtval when ebreak v v

* Found 16 new CPU bugs

* 6 of those were assigned with CVE numbers. Isue #4158 118

e Showed the effectiveness of DiFuzzRTL

Elapsed time (h)

Bug ID
riscv-torture mux-cov reg-cov
X 20.3
Issue #504 X X 31.7

XNot able to reproduce bug

e Case study with Issue #492 (invalid rm bug) and CVE-2020-29561 (misaligned Ir bug)

23

Future Use Cases

Future Use Cases

* Detecting micro-architectural side channels, e.g., Spectre, Meltdown

=

Spectre Meltdown

24

Future Use Cases

* Detecting micro-architectural side channels, e.g., Spectre, Meltdown

* Fuzzing an entire SoC with DiFuzzRTL, e.g., memory consistency bug

=

Spectre Meltdown Multicore SoC

24

Conclusion

Conclusion

 DiFuzzRTL, an accurate, efficient, and automatic fuzzer for CPU RTL
designs

Register coverage increased ?

Seed
corpus

—¥

Mutation
—¥

Siminput

0oooao

RTL simulation I"n?

I
&
%

ISA simulation Cross-check

25

Conclusion

 DiFuzzRTL, an accurate, efficient, and automatic fuzzer for CPU RTL

designs

 We found several real-world bugs with DiFuzzRTL

Register coverage increased ?

—¥

Mutation
—¥

Siminput

H

Seed
corpus

0oooao

RTL simulation

ISA simulation

Cross-check

CPU Bug ID

Morlkx CVE-2020-13455, 2020-13453, 2020-13454
Issue 114, 99

Rocket [ssue 2345

Boom CVE 2020-13251, 2020-29561
Issue 458, 454,492,493, 503

Spike CVE-2020-13456

Issue 426, 2390

25

Thank you

