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Complete Verification is Difficult

Pentium FDIV: The processor bug that shook

the world

By Desire Athow October 30, 2014

] 20 years already

The Ryzen 3000 Boot Problem With Newer Linux Distros Might
Be Due To RdRand Issue

Written by Michael Larabel in AMD on 8 July 2019 at 09:42 AM EDT. 121 Comments

As outlined yesterday, AMD's Ryzen 3000 processors are very fast but having issues
booting newer Linux distributions. The exact issue causing that boot issue on 2019
Linux distribution releases doesn't appear to be firmly resolved yet but some are
believing it is an RdRand instruction issue on these newer processors manifested by

systemd.
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Complete Verification is Difficult

Pentium FDIV: The processor bug that shook
the world The Ryzen 3000 Boot Proble
By Desire Athow October 30, 2014 Be Due TO RdRand |Ssue

| 20 years already Written by Michael Larabel in AMD on 8 July
o o @ BB As outlined yesterday, AMD'

NEWS

Intel finds specialized TSX enterprise bug ol
Haswell, Broadwell CPUs

O$ODO OO
By Mark Hachman
Senior Editor, PC\World
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Skylake bug causes Intel chips to
freeze under complex workloads

By Joel Hruska on January 11, 2016 at 4:22 pm LJCon

?
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Intel has disclosed that its sixth-generation Core products (known as Skylake) suffer from
a CPU bug that can cause a system to hang. The company has only publicly identified
one application family that causes it, Prime95.

So we keep observing CPU bugs




DiFuzzRTL: Differential Fuzz Testing
to Find CPU Bugs



DiFuzzRTL Found Real-world CPU Bugs

We found 16 real-world bugs in OpenRISC and RISC-V CPUs

RISC ’



DiFuzzRTL Fuzzes CPU RTL Designs

What does the Fuzzer do ?
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DiFuzzRTL Fuzzes CPU RTL Designs

What does the Fuzzer do ?

Fuzz loop == Compile-time workflow
== Run-time workflow

Mutate inputs guided by a coverage! | ‘Source _,l Coverage |
L[ file instrumentationJ l

Mutated
. input Target
corpus ) program

If new coverage? I
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DiFuzzRTL Fuzzes CPU RTL Designs

How to fuzz CPU RTL designs ?

v' Requirement 1. Framework for detecting the CPU bugs

v" Requirement 2. New coverage definition for the RTL designs
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[1] Framework for detecting
the CPU bugs




Detecting CPU Bugs

CPU bug
Abnormal CPU behavior
Different from a predefined ISA

10
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Detecting CPU Bugs

CPU bug : 4

Abnormal CPU behavior RISC-V°
Different from a predefined ISA v misaligned Ir instruction

Testing CPU RTL design alone cannot detect bugs
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DiFuzzRTL approach

Differential Testing Framework

Detects CPU bugs by comparing with the ISA simulator
ISA simulator — Software implementation of the ISA

ISA simulator
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DiFuzzRTL approach

Testing CPU RTL Design and ISA simulator

Defines Siminput for a unified input space
Simlnput — Fuzz input containing instruction, data, and interrupt
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DiFuzzRTL approach

Testing CPU RTL Design and ISA simulator

Defines Siminput for a unified input space

Simlnput — Fuzz input containing instruction, data, and interrupt

BxlOB : (6130671b addiw ad, zero, 0x13 INT.: O006)

Belmd @ (O1chB36f jal tl, pc + Gxlc INT.: G661)

Bxl26 : (B2e32823 SW td, Bx36(tl) INT.: ©166)

Bx3600 : (3943648f unknown INT.: G606)

Bx316 : (Be4ffl13b unknown INT.: G606)
Siminput

Framework for detecting the CPU bugs
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DiFuzzRTL approach

Testing CPU RTL Design and ISA simulator

Defines Siminput for a unified input space
Simlnput — Fuzz input containing instruction, data, and interrupt

Testbench /.) 'n-).
0x100 : (0138871b | addiw ad, zero, 0x13 INT.: 0060)
0x104 : (01cO836F | jal tl, pc + Oxlc INT.: 8861) w
0x128 : (02e32823 | sw t4, 0x30(t1) INT.: 0160) s
02300 (-;m; f'ﬂf unknown INT. : HH) ff I
0x310 : (OG 2h | _amlenonm THT /m ] I— DI erentla

Generates Slmlnput and tests both CPU and ISA simulator g

N
@ -l
ISA simulator \_ >_5

Framework for detecting the CPU bugs Results should be same *



[2] New coverage definition
for the RTL designs
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Coverage for RTL Design

RTL (Register Transfer Level) ?
Abstraction to describe hardware circuit implementation

New coverage definition for the RTL designs
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Coverage for RTL Design

Verification goal ?
Explore as many states in the FSM

input;

)l | stateS
J | >
q 24__(5]? FSM Modeling
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Coverage for RTL Design

Verification goal ?
Explore as many states in the FSM

input;

|_—[} statef \

Coverage should guide the input to find new states

FSM Modeling @ @
AN O)

1nputS

[ register MUX Finite State Machine (FSM)

New coverage definition for the RTL designs
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Limitation of Previous Coverage Measures

* Branch coverage [vineeth et al. ET5'15], [Alif et al. DATE’18]
* MUX control coverage (evin et al. iccap1s]
* FSM coverage [pinos et al. TC’98], [Jian et al. TCAD'15]

Branch coverage MUX control coverage FSM coverage

New coverage definition for the RTL designs
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* MUX control coverage (evin et al. iccap1s]
* FSM coverage [pinos et al. TC’98], [Jian et al. TCAD'15]

Cannot capture FSM MUX control coverage FSM coverage

New coverage definition for the RTL designs

15



Limitation of Previous Coverage Measures

- ' - Not accurate
o -MUX-control-coveragefrermetrr—teeapast Not efficient
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15
New coverage definition for the RTL designs



Limitation of Previous Coverage Measures

Not accurate
Not efficient

Not automatic

Cannot capture FSM Incurs large instrument overhead Needs manual efforts

15
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DiFuzzRTL approach

Register Coverage: New Coverage for RTL

New coverage definition for the RTL designs
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DiFuzzRTL approach

Register Coverage: New Coverage for RTL

Accurate: correctly captures FSM exploration

Efficient: incurs only 7% runtime overhead

Automatic: requires no manual effort from developers \
-'-O‘

New coverage definition for the RTL designs



DiFuzzRTL approach

Capturing FSM Exploration (@

Monitors registers to correctly capture the FSM exploration

inputg
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| | statef
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[ register MUX Finite State Machine (FSM)

New coverage definition for the RTL designs




DiFuzzRTL approach

Capturing FSM Exploration (@

Monitors registers to correctly capture the FSM exploration
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DiFuzzRTL approach

Capturing FSM Exploration (@

Monitors registers to correctly capture the FSM exploration

Cycle 0 1
input; 1 0

input; 1 1

Finite State Machine (FSM)

New coverage definition for the RTL designs



DiFuzzRTL approach

Capturing FSM Exploration (@

Monitors registers to correctly capture the FSM exploration

Regstate:

Cycle

0
inputg| 1 0
1

inputg

Finite State Machine (FSM)
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DiFuzzRTL approach

Capturing FSM Exploration (@

Monitors registers to correctly capture the FSM exploration

£
-
@> (]

Finite State Machine (FSM)

Regstate:

Cycle 0

1
input; 1 0
input; 1 1
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DiFuzzRTL approach

Capturing FSM Exploration (@

Monitors registers to correctly capture the FSM exploration

Cycle 0

input;, 1
input; 1

2
0
0

New coverage definition for the RTL designs
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DiFuzzRTL approach

Monitoring Control Register

Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal

CPU Number of
registers
Mori1kx 258
Rocket 1,300
Boom 4900

New coverage definition for the RTL designs
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Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal

CPU Number of Register Register

registers
Morlkx ) 258 , DiFuzzRTL
Rocket 1309 static analyzer
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Monitoring Control Register

Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal

CPU Number of Register Register B —
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Rocket 1,300 q ‘ B 0—7z
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DiFuzzRTL approach

Monitoring Control Register

Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal

CPU Number of Register Register i

registers 1 —)
Mor1kx 258 | / ]
Rocket 1,300 — X
Boom 4,900 L B ﬂ 3

\_ b RTL Module /

I
Control registers  Not control register 2. Control register identification
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Monitoring Control Register

Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal
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DiFuzzRTL approach

Monitoring Control Register

Improves efficiency by monitoring only control registers
Control register — Registers wired into MUX select signal

CPU Number of

control registers

Number of
registers

-
I.‘
os

Morikx | Automatically identifies the control registers

Rocket 1,300 ZU7/
4,900 330

Boom

New coverage definition for the RTL designs
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DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

covmap
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1
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_ covsum
Register cov. 3 !

‘s = instrumentation ©>€
B -

1. Efficient new state identification y
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Module-based coverage map instrumentation

Control registers covmap
1
(%)
. 1
* XOR) 1
= write 1
regstate »0 |1
4 -
If new index? 0
Reai covsum++
.« eglster COl{. 354
= Instrumentation ©>€
CEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE -

1. Efficient new state identification y

New coverage definition for the RTL designs



DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

New coverage definition for the RTL designs



DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

2. Scalable coverage

computation 6>q
-
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DiFuzzRTL approach

RTL-based Coverage Instrumentation

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

2. Scalable coverage
computation e>4 L11111 <\
Automatically instruments regstate, covsum and covmap

vlEs

9
Sum of covsum
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DiFuzzRTL

Accurate, Efficient, and Automatic fuzzer to find CPU bugs

Coverage-guided input generation

Automatic testing and bug detection

Register coverage increased ?

Seed
corpus

M

RTL simulation

!Simlnput

el

LOF

ISA simulation

Cross-check
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Implementation & Evaluation Setup

* Prototype with three CPU RTL designs:
Morlkx (OpenRISC),
Rocket, and Boom (RISC-V)

F\’ISC ’
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Implementation & Evaluation Setup

* Prototype with three CPU RTL designs:
Morlkx (OpenRISC),
Rocket, and Boom (RISC-V)

®

* RTL testing environments:
Software simulation, and FPGA prototyping
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What DifuzzRTL Found?

Project ISA Bug ID Description Confirmed Fixed
Mork1x OpenRISC  CVE-2020-13455  Reservation is not cancelled when there is snooping hit between lwa and swa v pending
CVE-2020-13454  Jump to link register does not assert illegal instruction exception v pending
CVE-2020-13453  Misaligned swa raise exception when reservation is not set v pending
Issue #114 1.£11. 1. ££1 instruction decoding bug v v
Issue #99 eear register not saving instruction virtual address when illegal instruction exception v v
Rocket chip  RISCV Issue #2345 Instruction retired count not increased when ebreak v pending
Boom RISCV CVE-2020-13251  Source field in ProbeAckData does not match the sink field of ProbeRequest v v
Issue #458 Floating point instruction which has invalid rm field does not raise exception v v
Issue #454 FS bits in mstatus register is set after fle.d instruction v pending
Issue #492 When frm is set DYN, floating point instruction with DYN rm field should raise exception v v
Issue #493 Rounding mode in £sqrt instruction does not work v v
Issue #503 invalid operation flag is not set after invalid £div instruction v v
CVE-2020-29561 Misaligned 1r instruction on a cached line set the reservation v v
Spike RISCV CVE-2020-13456  Misaligned 1r.d should not set load reservation v v
Issue #2390 Reading dpc register should raise exception in machine mode v v
Issue #426 Faulting virtual address should not be written to mtval when ebreak v v

* Found 16 new CPU bugs

* 6 of those were assigned with CVE numbers. Isue #4158 118

e Showed the effectiveness of DiFuzzRTL

Elapsed time (h)

Bug ID
riscv-torture  mux-cov reg-cov
X 20.3
Issue #504 X X 31.7

XNot able to reproduce bug

e Case study with Issue #492 (invalid rm bug) and CVE-2020-29561 (misaligned Ir bug)

23
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Future Use Cases

* Detecting micro-architectural side channels, e.g., Spectre, Meltdown

=

Spectre Meltdown
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Future Use Cases

* Detecting micro-architectural side channels, e.g., Spectre, Meltdown

* Fuzzing an entire SoC with DiFuzzRTL, e.g., memory consistency bug

=

Spectre Meltdown Multicore SoC
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Conclusion

 DiFuzzRTL, an accurate, efficient, and automatic fuzzer for CPU RTL
designs

Register coverage increased ?
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ISA simulation  Cross-check
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Conclusion

 DiFuzzRTL, an accurate, efficient, and automatic fuzzer for CPU RTL

designs

 We found several real-world bugs with DiFuzzRTL

Register coverage increased ?

—¥

Mutation
—¥

Siminput

H

Seed
corpus

0oooao

RTL simulation

ISA simulation

Cross-check

CPU Bug ID

Morlkx CVE-2020-13455, 2020-13453, 2020-13454
Issue 114, 99

Rocket [ssue 2345

Boom CVE 2020-13251, 2020-29561
Issue 458, 454,492,493, 503

Spike CVE-2020-13456

Issue 426, 2390
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