
DiFuzzRTL: Differential Fuzz Testing to
Find CPU Bugs

Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek,
Jangwoo Kim, Byoungyoung Lee

Computer Security Lab & High Performance Computer System Lab

Seoul National University

{hurjaewon, sshkeb96, dongup, ebaek, jangwoo, byoungyoung} @snu.ac.kr

2

Intel
Pentium
FDIV bug

Pentium FDIV bug

2

Intel
Pentium
FDIV bug

$475 million

CPU vendors invest huge efforts into
the Functional verification

Check if CPU RTL design correctly
follows ISA

Continued Verification

3

Check if CPU RTL design correctly
follows ISA

CPU vendors invest huge efforts into
the Functional verification

Complete Verification is Difficult

4

So we keep observing CPU bugs

Check if CPU RTL design correctly
follows ISA

CPU vendors invest huge efforts into
the Functional verification

Complete Verification is Difficult

4

So we keep observing CPU bugs

Check if CPU RTL design correctly
follows ISA

CPU vendors invest huge efforts into
the Functional verification

Complete Verification is Difficult

4

So we keep observing CPU bugs

Check if CPU RTL design correctly
follows ISA

CPU vendors invest huge efforts into
the Functional verification

Complete Verification is Difficult

4

So we keep observing CPU bugs

Check if CPU RTL design correctly
follows ISA

CPU vendors invest huge efforts into
the Functional verification

Complete Verification is Difficult

4

So we keep observing CPU bugs

DiFuzzRTL: Differential Fuzz Testing
to Find CPU Bugs

5

DiFuzzRTL Found Real-world CPU Bugs

6

We found 16 real-world bugs in OpenRISC and RISC-V CPUs

DiFuzzRTL Fuzzes CPU RTL Designs

7

What does the Fuzzer do ?

DiFuzzRTL Fuzzes CPU RTL Designs

7

What does the Fuzzer do ?

Mutate inputs guided by a coverage!

DiFuzzRTL Fuzzes CPU RTL Designs

7

What does the Fuzzer do ?

Mutated
input Target

program

If new coverage?

Fuzz loop

Source
file

Seed
corpus

Compile-time workflow

Run-time workflow

Mutation

Coverage
instrumentation

Mutate inputs guided by a coverage!

How to fuzz CPU RTL designs ?

DiFuzzRTL Fuzzes CPU RTL Designs

8

How to fuzz CPU RTL designs ?

✓ Requirement 1. Framework for detecting the CPU bugs

DiFuzzRTL Fuzzes CPU RTL Designs

8

?

>./a.out

.

.

How to fuzz CPU RTL designs ?

✓ Requirement 2. New coverage definition for the RTL designs

✓ Requirement 1. Framework for detecting the CPU bugs

DiFuzzRTL Fuzzes CPU RTL Designs

8

?

>./a.out

.

.

>./a.out

.

.

? ?
?

[1] Framework for detecting
the CPU bugs

9

?

>./a.out

.

.

Detecting CPU Bugs

10

CPU bug
Abnormal CPU behavior
Different from a predefined ISA

Framework for detecting the CPU bugs

Detecting CPU Bugs

10

CPU bug
Abnormal CPU behavior
Different from a predefined ISA ✓ misaligned lr instruction

Framework for detecting the CPU bugs

Detecting CPU Bugs

10

CPU bug
Abnormal CPU behavior
Different from a predefined ISA

Testing CPU RTL design alone cannot detect bugs

✓ misaligned lr instruction

Framework for detecting the CPU bugs

Differential Testing Framework

11

Detects CPU bugs by comparing with the ISA simulator
ISA simulator – Software implementation of the ISA

ISA simulator

DiFuzzRTL approach

Framework for detecting the CPU bugs

Differential Testing Framework

11

Detects CPU bugs by comparing with the ISA simulator
ISA simulator – Software implementation of the ISA

Results should be same

ISA simulator

DiFuzzRTL approach

Framework for detecting the CPU bugs

Differential Testing Framework

11

Detects CPU bugs by comparing with the ISA simulator
ISA simulator – Software implementation of the ISA

Results should be same

ISA simulator

=

?

Differential
testing

DiFuzzRTL approach

Framework for detecting the CPU bugs

Differential Testing Framework

11

Detects CPU bugs by comparing with the ISA simulator
ISA simulator – Software implementation of the ISA

Results should be same

ISA simulator

=

?

Differential
testingAutomatically detects CPU bugs by comparing the results

DiFuzzRTL approach

Framework for detecting the CPU bugs

=

?

Differential
testing

Testing CPU RTL Design and ISA simulator

12

Defines SimInput for a unified input space
SimInput – Fuzz input containing instruction, data, and interrupt

Results should be same

ISA simulator

DiFuzzRTL approach

Framework for detecting the CPU bugs

=

?

Differential
testing

Testing CPU RTL Design and ISA simulator

12

Defines SimInput for a unified input space
SimInput – Fuzz input containing instruction, data, and interrupt

Results should be same

SimInput

ISA simulator

DiFuzzRTL approach

Framework for detecting the CPU bugs

=

?

Differential
testing

Testing CPU RTL Design and ISA simulator

12

Defines SimInput for a unified input space
SimInput – Fuzz input containing instruction, data, and interrupt

Results should be same

SimInput

Testbench

ISA simulator

DiFuzzRTL approach

Framework for detecting the CPU bugs

=

?

Differential
testing

Testing CPU RTL Design and ISA simulator

12

Defines SimInput for a unified input space
SimInput – Fuzz input containing instruction, data, and interrupt

Results should be same

SimInput

Testbench

ISA simulator

Generates SimInput and tests both CPU and ISA simulator

DiFuzzRTL approach

Framework for detecting the CPU bugs

[2] New coverage definition
for the RTL designs

13

>./a.out

.

.

? ?
?

Coverage for RTL Design

14

RTL (Register Transfer Level) ?
Abstraction to describe hardware circuit implementation

New coverage definition for the RTL designs

Coverage for RTL Design

14

RTL (Register Transfer Level) ?
Abstraction to describe hardware circuit implementation

BS

PS

RS

stateS

1

0
1

0

1

0

inputS

BF1

0

stateF

1

0

RF

inputF

register
1
0

MUX

New coverage definition for the RTL designs

Coverage for RTL Design

14

RTL (Register Transfer Level) ?
Abstraction to describe hardware circuit implementation

BS

PS

RS

stateS

1

0
1

0

1

0

inputS

BF1

0

stateF

1

0

RF

inputF

register
1
0

MUX

RF , BS

BF , BS

BF , PS RF , PS

BF , RS

RF , RS

Finite State Machine (FSM)

FSM Modeling

New coverage definition for the RTL designs

Coverage for RTL Design

14

BS

PS

RS

stateS

1

0
1

0

1

0

inputS

BF1

0

stateF

1

0

RF

inputF

register
1
0

MUX

RF , BS

BF , BS

BF , PS RF , PS

BF , RS

RF , RS

Finite State Machine (FSM)

FSM Modeling

Verification goal ?
Explore as many states in the FSM

New coverage definition for the RTL designs

Coverage for RTL Design

14

BS

PS

RS

stateS

1

0
1

0

1

0

inputS

BF1

0

stateF

1

0

RF

inputF

register
1
0

MUX

RF , BS

BF , BS

BF , PS RF , PS

BF , RS

RF , RS

Finite State Machine (FSM)

FSM Modeling

Coverage should guide the input to find new states

Verification goal ?
Explore as many states in the FSM

New coverage definition for the RTL designs

Limitation of Previous Coverage Measures

15

• Branch coverage [Vineeth et al. ETS’15], [Alif et al. DATE’18]

• MUX control coverage [Kevin et al. ICCAD’18]

• FSM coverage [Dinos et al. TC’98], [Jian et al. TCAD’15]

RF , BS

BF , BS

BF , PS RF , PS

BF , RS

RF , RS

FSM coverage

BFRF

stateF ?

stateS ?

RS PS BS

Branch coverage

BS

PS

RS

stateS

1

0
1

0

1

0

BF1

0

stateF

1

0

RF

MUX control coverage

New coverage definition for the RTL designs

Limitation of Previous Coverage Measures

15

• Branch coverage [Vineeth et al. ETS’15], [Alif et al. DATE’18]

• MUX control coverage [Kevin et al. ICCAD’18]

• FSM coverage [Dinos et al. TC’98], [Jian et al. TCAD’15]

Not accurate

RF , BS

BF , BS

BF , PS RF , PS

BF , RS

RF , RS

FSM coverage

BFRF

stateF ?

stateS ?

RS PS BS

BS

PS

RS

stateS

1

0
1

0

1

0

BF1

0

stateF

1

0

RF

MUX control coverageCannot capture FSM

New coverage definition for the RTL designs

Limitation of Previous Coverage Measures

15

• Branch coverage [Vineeth et al. ETS’15], [Alif et al. DATE’18]

• MUX control coverage [Kevin et al. ICCAD’18]

• FSM coverage [Dinos et al. TC’98], [Jian et al. TCAD’15]

Not accurate
Not efficient

RF , BS

BF , BS

BF , PS RF , PS

BF , RS

RF , RS

FSM coverage

BFRF

stateF ?

stateS ?

RS PS BS

BS

PS

RS

stateS

1

0
1

0

1

0

BF1

0

stateF

1

0

RF

Cannot capture FSM Incurs large instrument overhead

New coverage definition for the RTL designs

Limitation of Previous Coverage Measures

15

• Branch coverage [Vineeth et al. ETS’15], [Alif et al. DATE’18]

• MUX control coverage [Kevin et al. ICCAD’18]

• FSM coverage [Dinos et al. TC’98], [Jian et al. TCAD’15]

Not accurate
Not efficient
Not automatic

RF , BS

BF , BS

BF , PS RF , PS

BF , RS

RF , RS

BFRF

stateF ?

stateS ?

RS PS BS

BS

PS

RS

stateS

1

0
1

0

1

0

BF1

0

stateF

1

0

RF

Cannot capture FSM Incurs large instrument overhead Needs manual efforts

New coverage definition for the RTL designs

Register Coverage: New Coverage for RTL

16

DiFuzzRTL approach

New coverage definition for the RTL designs

Register Coverage: New Coverage for RTL

16

Accurate: correctly captures FSM exploration

DiFuzzRTL approach

New coverage definition for the RTL designs

Efficient: incurs only 7% runtime overhead

Register Coverage: New Coverage for RTL

16

Accurate: correctly captures FSM exploration

DiFuzzRTL approach

New coverage definition for the RTL designs

Efficient: incurs only 7% runtime overhead

Register Coverage: New Coverage for RTL

16

Automatic: requires no manual effort from developers

Accurate: correctly captures FSM exploration

DiFuzzRTL approach

New coverage definition for the RTL designs

Capturing FSM Exploration

17

Monitors registers to correctly capture the FSM exploration

BS

PS

RS

stateS

1

0
1

0

1

0

inputS

BF1

0

stateF

1

0

RF

inputF

register
1
0

MUX

RF , BS

BF , BS

BF , PS RF , PS

BF , RS

RF , RS

Finite State Machine (FSM)

DiFuzzRTL approach

New coverage definition for the RTL designs

Capturing FSM Exploration

17

Monitors registers to correctly capture the FSM exploration

BS

PS

RS

stateS

1

0
1

0

1

0

inputS

BF1

0

stateF

1

0

RF

inputF

register
1
0

MUX

Regstate
XOR

{RF , RS}
։

{BF , BS}

RF , BS

BF , BS

BF , PS RF , PS

BF , RS

RF , RS

Finite State Machine (FSM)

DiFuzzRTL approach

New coverage definition for the RTL designs

Capturing FSM Exploration

18

RF , BS

BF , BS

BF , PS RF , PS

BF , RS

RF , RS

Finite State Machine (FSM)

Cycle 0 1 2

inputF 1 0 0

inputS 1 1 0

Monitors registers to correctly capture the FSM exploration

DiFuzzRTL approach

New coverage definition for the RTL designs

Regstate:
{RF , RS}

Capturing FSM Exploration

18

RF , BS

BF , BS

BF , PS RF , PS

BF , RS

RF , RS

Finite State Machine (FSM)

Cycle 0 1 2

inputF 1 0 0

inputS 1 1 0

0

1

1

Monitors registers to correctly capture the FSM exploration

DiFuzzRTL approach

New coverage definition for the RTL designs

Regstate:
{BF , PS}

Capturing FSM Exploration

18

RF , BS

BF , BS

BF , PS RF , PS

BF , RS

RF , RS

Finite State Machine (FSM)

Cycle 0 1 2

inputF 1 0 0

inputS 1 1 0

1

0

1

Monitors registers to correctly capture the FSM exploration

DiFuzzRTL approach

New coverage definition for the RTL designs

Regstate:
{RF , BS}

Capturing FSM Exploration

18

RF , BS

BF , BS

BF , PS RF , PS

BF , RS

RF , RS

Finite State Machine (FSM)

Cycle 0 1 2

inputF 1 0 0

inputS 1 1 0

2

0

0

Monitors registers to correctly capture the FSM exploration

DiFuzzRTL approach

New coverage definition for the RTL designs

Monitoring Control Register

19

Improves efficiency by monitoring only control registers
Control register – Registers wired into MUX select signal

CPU Number of
registers

Mor1kx 258

Rocket 1,300

Boom 4,900

DiFuzzRTL approach

New coverage definition for the RTL designs

Monitoring Control Register

19

Improves efficiency by monitoring only control registers
Control register – Registers wired into MUX select signal

1

0

Register

MUX

Control registers

CPU Number of
registers

Mor1kx 258

Rocket 1,300

Boom 4,900

1

0

Register

MUX

Not control register

DiFuzzRTL approach

New coverage definition for the RTL designs

DiFuzzRTL
static analyzer

Monitoring Control Register

19

Improves efficiency by monitoring only control registers
Control register – Registers wired into MUX select signal

1

0

Register

MUX

Control registers

CPU Number of
registers

Mor1kx 258

Rocket 1,300

Boom 4,900

1

0

Register

MUX

Not control register

DiFuzzRTL approach

New coverage definition for the RTL designs

W

Z
Y

1

0
1

0

1

0

X

RTL Module

Monitoring Control Register

19

Improves efficiency by monitoring only control registers
Control register – Registers wired into MUX select signal

1

0

Register

MUX

Control registers

CPU Number of
registers

Mor1kx 258

Rocket 1,300

Boom 4,900

1

0

Register

MUX

Not control register

DiFuzzRTL approach

New coverage definition for the RTL designs

1. MUX select signal identification

W

Z
Y

1

0
1

0

1

0

X

RTL Module

Monitoring Control Register

19

Improves efficiency by monitoring only control registers
Control register – Registers wired into MUX select signal

1

0

Register

MUX

Control registers

CPU Number of
registers

Mor1kx 258

Rocket 1,300

Boom 4,900

1

0

Register

MUX

Not control register

DiFuzzRTL approach

New coverage definition for the RTL designs

2. Control register identification

W

Z
Y

1

0
1

0

1

0

X

RTL Module

Monitoring Control Register

19

Improves efficiency by monitoring only control registers
Control register – Registers wired into MUX select signal

1

0

Register

MUX

Control registers

CPU Number of
registers

Mor1kx 258

Rocket 1,300

Boom 4,900

1

0

Register

MUX

Not control register

DiFuzzRTL approach

New coverage definition for the RTL designs

Monitoring Control Register

19

Improves efficiency by monitoring only control registers
Control register – Registers wired into MUX select signal

CPU Number of
registers

Mor1kx 258

Rocket 1,300

Boom 4,900

Number of
control registers

90

207

330

DiFuzzRTL approach

New coverage definition for the RTL designs

Monitoring Control Register

19

Improves efficiency by monitoring only control registers
Control register – Registers wired into MUX select signal

CPU Number of
registers

Mor1kx 258

Rocket 1,300

Boom 4,900

Number of
control registers

90

207

330

Automatically identifies the control registers

DiFuzzRTL approach

New coverage definition for the RTL designs

RTL-based Coverage Instrumentation

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

DiFuzzRTL approach

New coverage definition for the RTL designs

RTL-based Coverage Instrumentation

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

DiFuzzRTL approach

New coverage definition for the RTL designs

RTL-based Coverage Instrumentation

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

DiFuzzRTL approach

New coverage definition for the RTL designs

RTL-based Coverage Instrumentation

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

covmap

Register cov.
instrumentation

covsum

regstate

0

…

1

0

1

1

0

0

1. Efficient new state identification

3

DiFuzzRTL approach

New coverage definition for the RTL designs

RTL-based Coverage Instrumentation

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

XOR

Control registers covmap

Register cov.
instrumentation

covsum

regstate

0

…

1

0

1

1

0

0

1. Efficient new state identification

3

DiFuzzRTL approach

New coverage definition for the RTL designs

RTL-based Coverage Instrumentation

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

4

XOR

Control registers covmap

Register cov.
instrumentation

covsum

regstate

0

…

1

0

1

1

0

0

1. Efficient new state identification

3

DiFuzzRTL approach

New coverage definition for the RTL designs

RTL-based Coverage Instrumentation

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

4

XOR

Control registers covmap

Register cov.
instrumentation

covsum

regstate

0

…

1

0

1

1

0

0

1. Efficient new state identification

3

DiFuzzRTL approach

New coverage definition for the RTL designs

RTL-based Coverage Instrumentation

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

4

XOR

Control registers

write 1
0 → 1

covmap

Register cov.
instrumentation

covsum

regstate

0

…

1

0

1

1

0

0

1. Efficient new state identification

3

DiFuzzRTL approach

New coverage definition for the RTL designs

RTL-based Coverage Instrumentation

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

4

XOR

Control registers

If new index?

write 1
0 → 1

++

covmap

Register cov.
instrumentation

covsum

regstate

0

…

1

0

1

1

0

0

1. Efficient new state identification

3

DiFuzzRTL approach

New coverage definition for the RTL designs

→

RTL-based Coverage Instrumentation

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

4

XOR

Control registers

If new index?

write 1
0 → 1

4

++

covmap

Register cov.
instrumentation

covsum

regstate

0

…

1

0

1

1

0

0

1. Efficient new state identification

3

++

DiFuzzRTL approach

New coverage definition for the RTL designs

RTL-based Coverage Instrumentation

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

42

3

DiFuzzRTL approach

New coverage definition for the RTL designs

Sum of covsum

RTL-based Coverage Instrumentation

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

42

3

9

2. Scalable coverage
computation

DiFuzzRTL approach

New coverage definition for the RTL designs

Sum of covsum

RTL-based Coverage Instrumentation

20

Efficiently computes the number of new state explorations
Module-based coverage map instrumentation

42

3

9

2. Scalable coverage
computation

Automatically instruments regstate, covsum and covmap

DiFuzzRTL approach

New coverage definition for the RTL designs

DiFuzzRTL

Accurate, Efficient, and Automatic fuzzer to find CPU bugs

21

Coverage-guided input generation

Automatic testing and bug detection

ISA simulation

RTL simulation

Cross-check

SimInput

Mutation

Seed
corpus

=

?

Register coverage increased ?

Implementation & Evaluation Setup

22

• Prototype with three CPU RTL designs:
Mor1kx (OpenRISC),
Rocket, and Boom (RISC-V)

Implementation & Evaluation Setup

22

• Prototype with three CPU RTL designs:
Mor1kx (OpenRISC),
Rocket, and Boom (RISC-V)

• RTL testing environments:
Software simulation, and FPGA prototyping

What DifuzzRTL Found?

• Found 16 new CPU bugs
• 6 of those were assigned with CVE numbers.

• Showed the effectiveness of DiFuzzRTL
• Case study with Issue #492 (invalid rm bug) and CVE-2020-29561 (misaligned lr bug)

23

Future Use Cases

24

Future Use Cases

• Detecting micro-architectural side channels, e.g., Spectre, Meltdown

24
Spectre Meltdown

Future Use Cases

• Detecting micro-architectural side channels, e.g., Spectre, Meltdown

24
Spectre Meltdown Multicore SoC

• Fuzzing an entire SoC with DiFuzzRTL, e.g., memory consistency bug

Conclusion

25

Conclusion

25
ISA simulation

RTL simulation

Cross-check

SimInput

Mutation

Seed
corpus

=

?

Register coverage increased ?

• DiFuzzRTL, an accurate, efficient, and automatic fuzzer for CPU RTL
designs

Conclusion

25
ISA simulation

RTL simulation

Cross-check

SimInput

Mutation

Seed
corpus

=

?

Register coverage increased ?

• DiFuzzRTL, an accurate, efficient, and automatic fuzzer for CPU RTL
designs

• We found several real-world bugs with DiFuzzRTL

CPU Bug ID

Mor1kx CVE-2020-13455, 2020-13453, 2020-13454
Issue 114, 99

Rocket Issue 2345

Boom CVE 2020-13251, 2020-29561
Issue 458, 454, 492, 493, 503

Spike CVE-2020-13456
Issue 426, 2390

Thank you

26

