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Abstract—Security bugs in CPUs have critical security impacts
to all the computation related hardware and software components
as it is the core of the computation. In spite of the fact that
architecture and security communities have explored a vast
number of static or dynamic analysis techniques to automatically
identify such bugs, the problem remains unsolved and challenging
largely due to the complex nature of CPU RTL designs.

This paper proposes DIFUZZRTL, an RTL fuzzer to auto-
matically discover unknown bugs in CPU RTLs. DIFUZZRTL
develops a register-coverage guided fuzzing technique, which ef-
ficiently yet correctly identifies a state transition in the finite state
machine of RTL designs. DIFUZZRTL also develops several new
techniques in consideration of unique RTL design characteristics,
including cycle-sensitive register coverage guiding, asynchronous
interrupt events handling, a unified CPU input format with
Tilelink protocols, and drop-in-replacement designs to support
various CPU RTLs. We implemented DIFUZZRTL, and per-
formed the evaluation with three real-world open source CPU
RTLs: OpenRISC Mor1kx Cappuccino, RISC-V Rocket Core,
and RISC-V Boom Core. During the evaluation, DIFUZZRTL
identified 16 new bugs from these CPU RTLs, all of which
were confirmed by the respective development communities and
vendors. Six of those are assigned with CVE numbers, and to the
best of our knowledge, we reported the first and the only CVE
of RISC-V cores, demonstrating its strong practical impacts to
the security community.

I. INTRODUCTION

CPU security bugs critically damage all the computation-
related hardware and software units. Due to the bug, CPUs may
produce a wrong computational result, freeze the execution,
reboot the computer, or allow unprivileged users to access
privileged data. One unique and critical challenge of CPU bugs
is that unlike software security bugs, it is extremely difficult
to deploy the patch as CPUs are hard-wired circuits which
cannot be re-wired once manufactured.

By far, many serious CPU bugs have been discovered.
Focusing on the cases in open source CPUs, it is reported that
OpenSparc had 296 bugs [1]. Proprietary CPUs such as Intel
CPUs also suffered from the CPU security bugs. The Pentium
FDIV bug [2] returned incorrect binary floating point results
when dividing a number, which costed Intel 475 million dollars
to replace the flawed processors [3]. More recently, a group of
security researchers discovered multiple security vulnerabilities
related to CPU’s speculative execution—Spectre, Meltdown,
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SPOILER, Foreshadow, MDS [4–7]. We note there have been
many more CPU security bugs other than those: Pentium F00F
bug, which rebooted the computer upon executing a certain
instruction; Intel SGX Bomb, which rebooted the computer
upon intentionally violating memory integrity; and Intel TSX-
NI bug, in which a detail of the bug is unknown but Intel
disabled TSX through the microcode update [8, 9].

There have been tremendous efforts in automatically iden-
tifying CPU RTL bugs through static or dynamic analysis
techniques [10–13], but the problem remains unsolved and
still challenging largely due to the complex nature of CPU
RTL designs. In particular, RTL designs implement complex
sequential and combinational logics of hardware circuits, which
in fact materializes the finite state machines (FSM). Thus, the
general goal of RTL bug finding is to exhaustively explore as
many states in FSM as possible. However, such an exploration
either through static or dynamic techniques is challenging
mostly because there are too many states to be covered.

This paper proposes DIFUZZRTL, an RTL fuzzer specifically
designed to discover CPU RTL vulnerabilities. The core ideas
behind DIFUZZRTL can be summarized with following two
approaches: a dynamic testing approach and a differential
testing approach, both of which help DIFUZZRTL to efficiently
find RTL bugs. First, DIFUZZRTL takes a dynamic testing
approach, particularly the coverage-guided fuzzing, so as to
comprehensively explore hardware logics embodied in the
RTL design. Second, DIFUZZRTL takes a differential-testing
approach to clearly identify an RTL vulnerability. In other
words, DIFUZZRTL keeps comparing an execution result of
an RTL design with that of a golden model (i.e., an ISA-level
simulation result), thus detecting the bugs at ISA level.

We find that realizing aforementioned ideas involve several
challenges, particularly related to inherent characteristics of
RTL designs. The first challenge is that DIFUZZRTL needs a
new execution coverage metric tailored for RTL designs. A
multiplexer in RTL designs may seem to be a good choice
for coverage metrics, because it is similar to branches in
software code. However, we find that the multiplexer-based
coverage proposed by the state-of-the-art RTL fuzzer [14],
has critical limitations due to following two reasons: 1) cycle-
accurate natures of RTL circuit designs and 2) a vast number
of multiplexers in a circuit. We also confirmed through our
evaluation §VI that the above reasons clearly impose two



limitations on the fuzzer: 1) it was not able to correctly capture
the states due to cycle-insensitivity; and 2) it has scalability
limitations due to complex multiplexer wiring.

The second challenge is that DIFUZZRTL needs a systematic
way to explore all possible input spaces of RTL designs.
Conventional software fuzzing typically assumes the one-
dimensional input space (i.e., file input space to fuzz user
programs, or system call input space to fuzz kernels). However,
CPU RTLs accept multi-dimensional inputs in the form of
raw bus packets, so called stimuli, which is sent from various
controllers—memory controllers (as a response to memory
read/write requests), interrupt controllers (raising an interrupt
request), etc. Worse yet, these packets are delivered to CPU
RTLs in every clock cycle, further complicating the input space
that CPU RTLs take.

DIFUZZRTL addresses above two challenges with following
design features. First, DIFUZZRTL’s coverage measurement
is based on a control register, which is a register whose value
can be used for any muxes’ control signal. Then DIFUZZRTL
measures the control register value every clock cycle, thereby
making it clock-sensitive and correctly capture the explored
states by RTL designs. Moreover, since a single control
register is connected to multiple muxes’ control signals, the
number of control registers is far less than the number of
wires connected to the mux’s control signals, addressing the
scalability limitation of mux-based coverage as well. We
highlight that DIFUZZRTL was able to fuzz even a complex
out-of-order machine which has about twenty thousands of
lines of implementation complexity. Second, DIFUZZRTL
provides systematic mechanisms to test a newly designed input
format for CPU RTLs, SimInput. SimInput includes full-fledged
information to run CPU RTLs, from memory address and value
pairs to interrupt signals, and it is automatically translated into
bus protocols that CPU RTLs are accepting. In order to execute
CPU RTLs as specified by SimInput, DIFUZZRTL works as a
pseudo SoC for the CPU, which includes a memory unit and
an interrupt controller inside.

We implemented DIFUZZRTL as a full-fledged fuzzing
framework for CPU RTLs. DIFUZZRTL automatically instru-
ments a given CPU RTL to measure the register coverage,
then keeps running two simulators, ISA and RTL simulators,
while providing an identical input to both simulators. After
each run, DIFUZZRTL cross-checks the architectural states,
and if it identifies the difference, DIFUZZRTL automatically
reports such an input as a potential bug. In order to demonstrate
its strong practical aspect, we implemented DIFUZZRTL to
support three real-world CPU RTLs: OpenRISC Mor1kx
Cappuccino, RISC-V Rocket Core, and RISC-V Boom Core,
which are widely used for academic researches as well as
industry production. We note these CPU RTLs include not
only simple in-order pipelined cores but also complex out-of-
order superscalar cores.

During the evaluation, DIFUZZRTL identified total of 16
new bugs in those CPU RTLs, all of those are confirmed by
the respective development communities or vendors. More
importantly, six bugs of those are assigned with CVE numbers,

signifying its practical impacts to the security community. To
the best of our knowledge, DIFUZZRTL reported the first and
only CVE vulnerabilities of any RISC-V cores. DIFUZZRTL
has demonstrated the wide testing coverage with respect to
the bug types in CPU RTLs, including atomic operation,
instruction decoding, and even the performance bugs. In
particular, DIFUZZRTL identified the vulnerability from the
RISC-V boom core, which is similar to the notorious Pentium
FDIV vulnerability, thereby helping to avoid unfortunate
CPU recall cases that Intel experienced before. Particularly
comparing the fuzzing performance of DIFUZZRTL against
RFuzz [14] (i.e., the state of the art RTL fuzzer), DIFUZZRTL
showed significantly better performances. In terms of execution
speed, DIFUZZRTL is 40 times faster than RFuzz to run CPU,
and in terms of states exploration efficiency, DIFUZZRTL is
6.4 times faster than RFuzz to identify a vulnerable state.

II. BACKGROUND

In this section, we provide a brief background of RTL
verification and the concept of coverage-guided fuzzing, which
has largely succeeded in software testing. Finally we introduce
and argue the benefits of adopting coverage-guided fuzzing to
RTL verification.

A. CPU Development and Testing

CPU Development. In general, modern CPUs are developed
with the following two phases: 1) modeling a CPU architecture,
called Instruction Set Architecture (ISA); and 2) implementing
a microarchitecture with Register-Transfer level (RTL) abstrac-
tion, which follows the ISA. In the first phase, Instruction Set
Architecture (ISA) is defined, which dictates an architectural
level of inputs and outputs, as well as describing desired
operational behaviors to generate an output from a given input.
In particular, ISA defines how the programmer-visible states
(e.g., registers and memory states) are updated in response to
executing a well-formatted instruction.

Based on the ISA, a microarchitecture is designed in Register-
Transfer level (RTL) abstraction, materializing the conceptual
ISA model into a real hardware design. RTL can be expressed
with various hardware description languages such as Verilog
or VHDL [15, 16], which can be synthesized into a hardware
circuit. Since ISA does not dictate the implementation details
(e.g., the pipeline depth, cache size), there can be various
microarchitectures for the same ISA, each of which has its
own unique RTL implementation characteristics. For instance,
although both Rocket and Boom cores implement the same
RISC-V ISA, the former is an in-order and the latter is an
out-of-order core with different pipeline stages.

During the development cycle, CPU should be thoroughly
tested from many different aspects, including functionality,
performance, security, etc. Particularly focusing on the dy-
namic testing techniques (we discuss static testing techniques
in §VIII), such a testing can be performed with either an ISA
simulation or an RTL simulation, as we describe next in turn.
Testing with ISA Simulation. An ISA simulator is a
software-only implementation, which simulates all the ISA-
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Fig. 1: Framework of ISA simulation and RTL simulation.
RTL simulation requires SoC to run CPU RTL design with an
executable file.

level operational behaviors (illustrated in Figure 1-(a)). To be
more specific, ISA simulators mimic the behavior of the CPU
and it maintains all the architectural registers and memory
states as its internal value while executing instructions. Thus
ISA simulator has its own memory unit, interrupt controller
and other components as well as the CPU implementation.
Using this ISA simulator, developers can test if the new ISA
can well support various software stacks running on it without
any issues. Moreover, the simulator can be used as a reference
model for the architecture, manifesting how programmer-visible
states should be updated if running a specific instruction.
Testing with RTL Simulation. RTL simulation is used to sim-
ulate the real-time behaviors of the design implemented in RTL.
The major difference between RTL and ISA simulation is that
the RTL simulation is aware of a cycle concept, representing a
clock cycle of the synchronous circuit. Thus the cycle accurate
behaviors of the design including microarchitectural states are
tested during the simulation, which cannot be performed with
the ISA simulation.

However, the RTL design alone cannot be simulated since
the design is just a representation of a circuit for the CPU. To
operate the RTL design, input stimuli should be provided to the
ports of the design while the simulation. Thus, an SoC including
memory units and interrupt controller is implemented to feed
input stimuli on the CPU design. Thus, the SoC completes the
CPU design for RTL simulation to run a meaningful software
code on it. Figure 1-(b) shows a simple SoC to test CPU designs.
Before the simulation, an input executable file is loaded to the
emulated memory in host and the CPU in RTL simulation runs
the executable. In the simulation, SoC continuously receives
data including instructions from the emulated memory and
generates input stimuli for the CPU design. Upon receiving
the input, the CPU RTL design runs the intended instructions.

B. Fuzzing

Coverage-Guided Fuzzing. Fuzzing is a software test-
ing technique, which keeps running a target program with
randomly generated (or mutated) inputs so as to discover
previously unknown vulnerabilities. In particular, coverage-
guided fuzzing [17, 18] is arguably the most popular fuzzing
technique, which focuses on extending the execution coverage.
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Fig. 2: A general workflow of coverage-guided fuzzing tech-
niques

In each run of the target program, it measures the execution
coverage at runtime, and leverage the measured coverage as
feedback to generate (or mutate) the next input to be tested.
In order to measure the coverage, it is assumed that the target
program is instrumented beforehand such that the fuzzer can
collect certain coverage information at runtime (including a
basic block coverage, edge coverage, etc.)

For instance, Figure 2 shows a typical workflow of coverage-
guided fuzzers. The fuzzer starts by randomly choosing one
of the input from the input corpus, which maintains a set of
interesting inputs. Then this chosen input is randomly mutated
(such as a random bit flip, merging two bytes in random offsets,
replacing with a specific value, etc.). Next, the fuzzer runs the
target program with the mutated input, while measuring the
execution coverage of the mutated input. If this mutated input
covers the new execution coverage that were not explored
before, it is saved back to the input corpus so that it can
get another chance to be fuzzed in the future running. If
not, the mutated input is thrown away. The fuzzer repeats
aforementioned steps indefinitely, which results in coverage-
guided fuzzing because it is more likely to fuzz the input that
is more likely extending the coverage.

Differential Fuzz Testing. Most fuzzers have focused on
identifying memory corruption bugs [17–34], mostly because
1) it has strong security implications; 2) memory violation
conditions are relatively easy to define and thus relatively easy
to detect. On the other hand, fuzzing to find semantics bugs,
which identifies logical vulnerabilities deviating from developer-
intended program behaviors, are not well explored compared to
finding memory corruption bugs. In general, semantic bugs are
known to be difficult to find because it is difficult to express
semantic violation cases into well-formed safety violation
conditions, because many of those require specific domain
knowledge of target programs. To tackle this problem, previous
works introduced differential fuzzing techniques, where the
fuzzer identifies a bug by comparing the output of multiple
programs of the same purpose [35, 36]. In fact, such differential
testing techniques are also used for RTL verification as well,
particularly comparing one RTL’s execution results with a
golden model’s execution results [37], which inspired the design
of DIFUZZRTL.



III. MOTIVATION

The major motivation for DIFUZZRTL is to design a fuzzing
framework considering unique characteristics of RTL designs.
To this end, this section discusses two issues to design the
RTL fuzzer, coverage definitions for RTL fuzzing (§III-A) and
input space for RTL Fuzzing (§III-B).

A. Coverage Definition for RTL fuzzing

Example: A Memory Controller. Suppose a developer wants
to develop a simple memory controller, which connects CPU
with SDRAM and flash memory. Considering the unique
hardware characteristics, the memory controller takes 8-bits
from the flash at once. However, it takes 4-bits from the
SDRAM since SDRAM transfers only 4-bits per cycle. Thus,
the memory controller should assemble two data packets from
SDRAM to forward the entire 8-bits [38].

To this end, the developer designs following two independent
FSMs as shown in Figure 3-(a). First, the FSM for the flash
begins with the ready state (RF). If the valid signal is one, it
transitions to the busy state (BF) while taking the 8-bits from the
flash. Then it goes back to the ready state. Second, the FSM for
the SDRAM is similar to that of the flash, but the key difference
is that it has one more state in the middle, the pending state
(PS). This is because since SDRAM sends 8-bits of data with
two consecutive 4-bits of transmissions, the controller should
maintain two states (i.e., PS and BS) to represent the completion
of the first- and second-half transmission, respectively.

Based on these two FSMs, the sequential circuits using RTL
can be implemented for the memory controller as in Figure 3-
(b). For simplicity, we omitted the data flow in this illustration.
When implemented with RTL, the current states are maintained
with state register variables (i.e., stateF and stateS), because
the state is later used for determining the next state. Moreover,
a state transition is implemented with a multiplexer (i.e., mux),
because mux outputs an appropriate input according to the select
signal (i.e., the state transition condition in the FSM can be
represented with the select signal of mux).

The sequential circuit for the flash has 1-bit register, stateF,
where 1’b0 (i.e., the bit value 0) represents RF and 1’b1 (i.e., the
bit value 1) does BF, respectively. It is assumed that stateF is
first initialized with RF. When validF is asserted (represented
with 1 ), the mux MF0 forwards BF from the two inputs (i.e.,
stateF and BF). Next, MF1 forwards the output of MF0 , which
is BF ( 2 ), since the select signal of MF1 is RF. Then stateF is
updated with BF ( 3 ), completing the first clock cycle. In the
next clock cycle, the circuit is processed when stateF is BF,
updating stateF with RF in the end of the clock cycle.

The sequential circuit for the SDRAM has 2-bit register,
stateS, because it has three states to be represented: 2’b00 for
RF, 2’b01 for PS, and 2’b11 for BS. Thus, it has one extra mux
to implement an extra state transition, but it is largely similar
to the sequential circuit for the flash.
Vulnerability in the Memory Controller. This memory
controller has a vulnerability breaking the memory consistency,
which is related to the constraint that the memory controller

can only forward 8-bits (sent from either flash and SDRAM)
to CPU per cycle. If both flash and SDRAM completes the
8-bit transmission at the same clock cycle (i.e., reaching BF
and BS at the same clock cycle), the memory controller cannot
handle both. In other words, it can only forward one 8-bits
transmission, and should drop the reset transmission. As a
result, one of the data (transmitted by either flash or SDRAM)
will be lost, thus breaking the memory consistency.

This vulnerability cannot be captured with two individual
FSMs that we presented before (Figure 3-(a)), which assumes
that the flash and SDRAM operations are independent to each
other. However, since these two are in fact dependent with
respect to the memory controller, two individual FSMs should
be merged into a single FSM where its states are a product
of all states (Figure 3-(c)). As shown in the figure, once the
memory controller reaches the state (BF, BS), then data loss or
corruption occurs.

In order to fix this vulnerability, the memory controller
should handle only one of two transmissions during the
vulnerable clock cycle, and the other should be handled in the
next clock cycle. Thus, the developer should patch with an
extra state transition, from (BF, BS) to (RF, BS) or (BF, RS)
Limitation of Previous Fuzzing Approaches. In order to
identify this vulnerability, various approaches can be used, but
each approach has its own limitation.

Focusing the discussion on fuzzing techniques, RFuzz [14]
proposed the mux-coverage guided fuzzing technique. The
core idea behind this technique is that the mux’s select signal
leads to a state transition, so guiding the fuzzing based on the
mux’s select signal would lead to exploring more FSM states.
To be more specific, this technique runs the sequential circuit
while monitoring all the select signals of the muxes, identifying
which of those were toggled in the end of running. If any mux
were newly toggled, the provided input to the circuit (i.e., a
series of per-cycle validF and validS signals) is considered as
a valuable input and thus added to the corpus. This is because
such a new toggling indicates that the new state transition has
been explored by the input. If no muxes were newly toggled,
the provided input is simply thrown away.

We observe two critical limitations of RFuzz’s mux-coverage
technique. The first limitation is that since mux-coverage metric
is clock-insensitive, it cannot precisely capture FSM state
transitions. In other words, it does not recognize interplay and
inter-dependency between mux toggling events across clocks,
so semantically different mux toggling events are considered
as the same, failing to correctly identify state transitions.

For instance, Figure 4 illustrates two different cases of
running the memory controller, where the left case runs with
the benign input (i.e.,(RF, RS) to (BF, PS) and reaching (RF, BS))
and the right case runs with the vulnerability-triggering input
(i.e., the input leads to reaching the state, (BF,BS), at clk3). For
each case, all muxes’ select signals are shown per cycle, where
the mux toggling is highlighted with the red-colored box. In
the end of running, the coverage map is generated which sums
up all the observed toggling events. Then this coverage map
is used to identify if new mux toggling is triggered by the
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Fig. 4: The workflow of RFuzz’s mux coverage schemes for
benign (left) and bug triggering inputs (right)

provided input. However, although benign and vulnerability-
triggering cases are clearly reaching different states, coverage
maps of those are the same. This is because although the mux
toggling of MF0 and MF1 takes place at different clock cycles,
RFuzz’s mux-coverage metric cannot capture such differences.
As a result, RFuzz would not be able to properly guide the
fuzzing procedure towards exploring more states as its metric
collapses multiple states into one state.

The second limitation is related to instrumentation overhead
of monitoring all muxes’ select signal. From the implementation
perspective of the RFuzz’s mux-coverage approach, the required
resources (e.g, wires and registers) for instrumentation quadrat-
ically increases as the number of muxes increases, critically
limiting its runtime performance as well as scalability.
Our Approach: Register Coverage for RTL. In order to
overcome the limitation, DIFUZZRTL proposes the register-
coverage approach for RTL. While we provide details in §IV-C,
register coverage can be summarized with two key features.
First, it supports clock-sensitive coverage, so it can precisely
capture FSM state transitions. Second, its measurement is
based on control registers, not based on muxes’ control signals,
making it efficient and scalable. As we evaluate further in
§VI, DIFUZZRTL’s register-coverage has shown 40 times
better execution speed, and 6.4 times faster vulnerable state
exploration time compared to RFuzz’s mux-coverage. More
importantly, DIFUZZRTL was able to fuzz all three real-world

RTLs including out-of-order Boom Core, while RFuzz was not
able to fuzz the Boom Core due to the scalability issues.

B. Input Space for RTL Fuzzing

Limitations of CPU Testing using Entire SoC. As men-
tioned in §II-A, CPU designers have used SoC to simulate and
test the CPU RTL designs. Leveraging entire SoC enables the
comparison between ISA simulation and RTL simulation, i.e.,
end-to-end test, by making them take the same executable as
an input. In this sense, fuzzing entire SoC can simplify the
fuzzer by concerning only executable generation, but there are
some fundamental limitations.

First of all, the fuzzer cannot test the entire input space
of the CPU design. CPU RTL designs have several input
ports including ports for data transfer, interrupt and debug
interface. SoC wraps this interface by converting input from
outer world (e.g., executable) into a formatted input stimuli
the CPU can interpret. However, it also means limiting the
input space into the space that SoC can only generate. To test
various functioning of CPU such as responses to stressful cache
coherence transactions or arbitrary interrupts, the intended SoC
should be redesigned each time. In contrast, fuzzer which
directly channels the CPU input space can generate input
adaptively.

Furthermore, as the open source hardware [39] becomes
popular, it is no longer true that the CPU and SoC are designed
and implemented by a single vendor. The open sourced CPU
RTL design can be used in various SoC designs, e.g., using
Boom core in Rocket SoC [40, 41]. Thus, the CPU and SoC
should be verified separately and we need a unified platform
to test CPU designs only.

IV. DESIGN

Now we present the design of DIFUZZRTL. We first
introduce how DIFUZZRTL performs the mutation, which
generates a new CPU input format, SimInput (§IV-A). Then
we describe ISA simulation §IV-B, which accepts SimInput
as input. Next, we illustrate how DIFUZZRTL compiles RTL
designs to support register coverage (§IV-C), and then explain
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checks the both execution results’ after each run. The entire
workflow leverages the register-coverage guiding, so the RTL
simulation measures the register-coverage which is provided
for the mutator.

RTL simulation (§IV-D). This RTL simulation also accepts the
identical SimInput as the ISA simulation. Lastly, we describe
how DIFUZZRTL cross-checks the execution results from ISA
and RTL simulations to finally identify bugs (§IV-E).
Overall Workflow. The overall framework of DIFUZZRTL
is shown in Figure 5. First, mutator randomly generates input
( 1 ), and DIFUZZRTL runs both ISA simulation and RTL
simulation using the input ( 2 , 3 ). After the simulations end,
DIFUZZRTL takes a snapshot of the final memory states and
architectural registers of both designs to cross-check ( 4 ). Thus,
DIFUZZRTL finds a potential bug if execution results are
different. Above four steps make one fuzz iteration, and such
an iteration keeps repeated indefinitely while the input mutation
and selection is guided to increase register-coverage ( 5 ).

A. SimInput Mutation

In order to provide a consistent and identical input to both
SW and RTL designs, DIFUZZRTL defines a new input format
for CPU, SimInput. SimInput thoroughly includes all input
space that CPU takes, ranging from all address and value (both
code and data) to associated interrupt events. Figure 6 shows
a simple example of SimInput.

For a given SimInput, DIFUZZRTL randomly mutates it
with following two phases: 1) DIFUZZRTL enumerates all
instructions in SimInput and performs per-instruction mutation,
which determines opcode and operands of the instruction;
After mutating all instructions, DIFUZZRTL starts interpreting
instruction by instruction, which populates all remaining
information of SimInput (including an address of an instruction,
address and value of data, and a list of interrupts).

1 0x100 : (0130071b | addiw a4, zero, 0x13 INT.: 0000->0000)
2 0x104 : (01c0036f | jal t1, pc + 0x1c INT.: 0000->0100->0000)
3 0x120 : (02e32823 | sw t4, 0x30(t1) INT.: 0100->0100->0000)
4 0x300 : (3943648f | unknown INT.: 0000)
5 0x310 : (064ff13b | unknown INT.: 0000)

Fig. 6: Input generated by mutator. Each address is associated
with an instruction and a list of interrupt events

It is worth noting that, ISA and RTL simulation runs CPU
according to SimInput as follows: 1) The map of address and
value pair is used as an initial memory state for both SW
and RTL designs. 2) The associated interrupt event is also
accordingly raised when designs execute the corresponding
instruction. Since CPU is operating based on the initial memory
layout and interrupt events, SimInput ensures the deterministic
execution on both designs.
Per-Instruction Mutation. In general, DIFUZZRTL’s per-
instruction mutation is a grammar-aware and structured muta-
tion approach while allowing some randomness, such that a
mutated instruction is likely a valid instruction (but an invalid
instruction with a low probability). This ensures that when the
instruction is executed by SW or RTL design, it would not
always be rejected due to the invalid instruction format. More
specifically, per-instruction mutation determines following two
fields: opcode and operands. First, the opcode of the instruction
is determined at random from the list of valid opcodes in the
ISA specification.

Next, the operands (including register indices and imme-
diate/address values) are determined at random. Note that
DIFUZZRTL’s mutator keeps track of which register indices
and immediate/address values were assigned before, and
attempt to reuse such indices and values. Thus, this would
increase the data dependency between instructions, thereby
allowing DIFUZZRTL to stress test the design. (e.g., on a
corner implementation case of SW design or data/control hazard
detection or resolution logics in RTL design).

Regarding the space complexity, DIFUZZRTL requires two
pools of variables (i.e., used registers and immediates) per
mutation. Each pool can have variables up to the length of
generated instructions, thus the space complexity is O(N)
where N is the number of instructions. DIFUZZRTL requires
a predefined set of opcodes and register indices but they are
statically determined before the fuzzing.
Interrupt Mutation. After the instruction mutation, the
sequence of interrupts is mutated. As in the instruction case,
mutator randomly appends or deletes interrupts in the given
sequence. Then, the generated interrupt sequence is paired with
the instruction sequence. In the simulation, the paired interrupt
values are injected every execution of the corresponding
instructions.
Population through Instruction Interpretation. After mutat-
ing all instructions and interrupts, DIFUZZRTL populates all re-
maining information, i.e., map of initial address to instructions,
data and interrupts, to SimInput. However, directly placing all
the instructions sequentially in a defined memory region would



end in meaningless executions since the prepared instructions
will not be executed after control flow changes. Thus, the
population is performed through instruction interpretation, as
it necessarily requires to understand how the instruction would
be executed at runtime.

To be more specific, DIFUZZRTL first determines the
address of the first instruction to be a given entry symbol,
and interprets the instruction (i.e., executes the instruction).
During the interpretation, if the instruction attempts to load
the data from addr where addr is not specified in SimInput,
DIFUZZRTL provides a random value v while populating
SimInput with (addr, v). Note that, if the instruction attempts
to store data, DIFUZZRTL would not update SimInput as it
is not part of the input to the CPU. Moreover, an interrupt
event is pushed to the interrupt event list of the current PC.
Each interrupt event can be either None (i.e., the interrupt
signal should not be asserted) or the interrupt signal value (i.e.,
the interrupt signal should be asserted with the specified IRQ
number).

After finishing the interpretation of the first instruction,
the next PC value will be determined (i.e., a target address
if it is a branch instruction, or PC+4 otherwise). Then
DIFUZZRTL updates SimInput so that the next instruction
(i.e., a next mutated instruction) has the next PC address, and
start interpreting this new instruction.

B. ISA Simulation

DIFUZZRTL’s ISA simulator runs CPU SW design as
instructed by SimInput. To this end, DIFUZZRTL tailors how
CPU SW design takes input from other components including
a memory unit and an interrupt controller. In the case of
the memory unit, DIFUZZRTL populates the initial memory
layout by embedding SimInput in the base memory template.
Then, DIFUZZRTL loads the initial memory layout to the ISA
simulation.

In the case of the interrupt, DIFUZZRTL implements a
pseudo interrupt controller in the ISA simulator, which raises
an interrupt when CPU SW design executes a specific PC. More
specifically, the controller raises the interrupt value which is
paired to the instruction pointed by PC.

The simulation continues until the CPU SW design reaches
a specific address (i.e. the end of the execution) which
is embedded in the base memory template. The SimInput
population ensures that the control flow always converges to the
end of the execution. The base memory template also contains
instructions to save achitectural register-files to the specific
memory address so that DIFUZZRTL can take the snapshot
of programmer-visible states (i.e. memory and registers) by
reading specified memory addresses. The snapshot is later used
to cross-check with the RTL simulation generated one.

C. RTL Compilation with Register Coverage

As described in §III-A, a mux-coverage technique has two
limitations: 1) it is clock-insensitive, it cannot precisely capture
FSM state transitions; and 2) it imposes huge instrumentation

Algorithm 1 Algorithm of DIFUZZRTL’s control register
identification
Input: G = (V,E), graph of nodes (muxes, wires, registers, ports)

parsed from HDL source code
Output: C, set of all control registers

1: for each m : Mux ∈ V do
2: CM ← findSrcRegs(m,ϕ, ϕ)
3: C ← C ∪ CM

4: return C
5:
6: function FINDSRCREGS(m, S, T)
7: if m ∈ register then
8: S ← S ∪ {m}
9: else if m /∈ {port ∪ T} then

10: T ← T ∪ {m}
11: for each (m′,m) ∈ E do
12: S ← S ∪ findSrcRegs(m′, ϕ, T )

13: return S

costs, critically slowing down the runtime performance of
simulation as well as limiting its scalability.

In order to overcome such limitations, DIFUZZRTL pro-
poses a new coverage metric: register-coverage. DIFUZZRTL’s
register-coverage metric has two key features: 1) it is based
on control registers, not based on muxes’ control signals,
making it performance efficient and scalable; and 2) it is clock-
sensitive coverage (i.e., measures the coverage every clock
cycle), so it can precisely capture FSM state transitions. In the
following, we first describe how DIFUZZRTL identifies control
registers in RTL through a static analysis, and then describe
how DIFUZZRTL measures clock-sensitive register-coverage
at runtime.

Identifying Control Registers. DIFUZZRTL’s coverage mea-
surement focuses on monitoring value changes in a control
register—a register where its value is used as any muxes’
control signal. In other words, since value changes of control
registers would lead to the FSM state transition, it can also be
used to explore more FSM states for fuzzing. Since a single
control register is often connected to multiple muxes’ control
signals, the number of control registers is far less than the
number of wires connected to the mux’s control signals.

The problem arising here is that RTL design has a vast
number of registers, and only a small set of registers are control
registers. Hence, DIFUZZRTL performs a static analysis to
identify control registers. In particular, the analysis first builds
a graph representing the connections between all elements (e.g.,
registers, wires, and muxes) in the module. Then, we recursively
perform a backward data-flow analysis for each mux’s control
signal as shown in Algorithm 1. If the backward data-flow
tracing reaches a register, then we conclude such a register is
the control register. This is because this register’s value will
be directly or indirectly (i.e., through a combinational logic)
used to control the mux’s behavior. If the backward tracing
either goes beyond the module boundary or reaches the already
traced point (because a circuit is circular), the analysis stops.

In terms of analyzing the algorithmic complexity,
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DIFUZZRTL finds all the control registers with O(V 2 · E)
of time complexity where V is the number of elements and
E is the number of connections between them. The space
complexity is O(V · E) for managing the graph representing
the connections between all the elements.
Clock-Sensitive Register Coverage. DIFUZZRTL measures
the register-coverage every clock cycle. Note that this clock-
by-clock coverage measurement is nearly infeasible using mux-
coverage due to its performance and scalability issues. In the
case of DIFUZZRTL, however, such clock-by-clock measure-
ment became feasible with DIFUZZRTL’s register-coverage
technique, which we demonstrate more details in (§VI).

For each RTL module, DIFUZZRTL inserts three new
registers, regstate, covmap, and covsum (shown in Figure 7).
DIFUZZRTL instruments the module such that all the values
in control registers are hashed into regstate. In order to
implement the hash function, we used a series of XOR operations
while each control register’s value is left-shifted with a
deterministic random offset. We note that this hash function
design is inspired by AFL’s edge-coverage metric using XOR
operations [17]. Then the instrumented logic attempts to write
1 to the covmap’s slot, where the slot index is determined
by the value of regstate. This write operation marks that the
corresponding FSM state (i.e., a hash of control register values)
has been explored by the instrumented module.

When this write operation to covmap takes place,
DIFUZZRTL increments covsum only if the value in the
corresponding covmap slot was zero. If it were already 1, it
implies that the RTL module has already explored such an
FSM state in the previous clock cycles. If it were zero, it
implies that it has just explored the new FSM state during the
current clock cycle. Since such covmap and covsum updates are
carried out every clock cycle, DIFUZZRTL’s register-coverage
mechanism is clock-sensitive. Then this covsum is wired out to
the parent RTL module, which sums up covsum values from all
child RTL modules. This tree structure-like covsum summation
is performed until reaching the top level RTL module.

The covsum value in the top level RTL module is used
as a final coverage value throughout DIFUZZRTL’s fuzzing.
It is worth noting that the values in covmap and covsum are
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Fig. 8: The workflow of DIFUZZRTL’s clock-sensitive
register-coverage schemes for benign (left) and bug triggering
inputs (right).

maintained during the fuzz iterations, thus the states once
covered are not recognized as new in the later iterations.
Revisiting the Memory Controller Example. Using the
register-coverage, DIFUZZRTL can correctly distinguish states
in the memory controller example, which were not detected by
RFuzz’s mux coverage (previously shown in Figure 4). Figure 8
illustrates how DIFUZZRTL handles the same example case. In
each clock cycle, DIFUZZRTL computes the hash of all control
registers (i.e., stateF and stateS), which updates covmap every
clock cycle. Since the hash of control registers is computed
every clock cycle, DIFUZZRTL can correctly identify the state
difference between benign and bug-triggering cases, thereby
enabling DIFUZZRTL to correctly guide the fuzzing procedure
towards the buggy states.

D. RTL Simulation

DIFUZZRTL’s RTL simulator runs CPU RTL design as
specified by SimInput. While overall simulation mechanism is
similar to how DIFUZZRTL runs ISA simulator, DIFUZZRTL’s
RTL simulation has following two key differences. First, since
CPU RTL design takes input stimuli following the specific
protocol, DIFUZZRTL accordingly generates the input stimuli
after interpreting SimInput. Second, an interrupt processing
mechanism in RTL design is different from SW design for the
following two reasons: 1) RTL design runs at a CPU cycle
level while SW design runs at an instruction level; and 2) RTL
design may defer when to process an asynchronous interrupt
but SW design does not defer.
Stimuli Generation. In order to handle the first difference,
DIFUZZRTL generates formatted stimuli based on the protocol.
As in the ISA simulation, DIFUZZRTL runs as a pseudo
memory unit in RTL simulation, which is initialized with
the memory layout generated from SimInput. DIFUZZRTL
monitors the data bus interface of RTL design and generates
input stimuli which contains the data mapped to the requested
address.
Interrupt Generation. In order to generate an interrupt,
DIFUZZRTL designs a pseudo interrupt controller for RTL
design. According to SimInput, DIFUZZRTL monitors executed
PC every cycle so as to assert interrupt signal at a specific PC.
One challenging issue here is unlike in the case of ISA simu-
lation, it is difficult to control when the raised interrupt would
be processed by the RTL design. Specifically, a majority of



ISAs dictates that processing of an asynchronous interrupt can
be deferred [42, 43], meaning that each microarchitecture can
make their own decision on when to process the asynchronous
interrupt. Thus, even if DIFUZZRTL raises an interrupt when
RTL design’s PC has a specific address value, RTL design
may not process the interrupt when executing that address
value—it may process the interrupt much later. In order to
address this challenge, DIFUZZRTL exhaustively attempts to
find the correct cycle by re-running the RTL simulation while
advancing the interrupt assertion cycle one by one from the
cycle when corresponding PC is committed.

E. Checking Execution Results
Once the running of both ISA and RTL simulation for a

given SimInput ends, DIFUZZRTL starts the cross-checking
process. First, DIFUZZRTL checks if the control-flows of ISA
and RTL simulations are the same. If both simulations correctly
reach the end of execution, DIFUZZRTL reads programmer
visible states of RTL design as we have done for the ISA case,
and then compares it with ISA one’s. If the architectural states
do not match, DIFUZZRTL saves the corresponding SimInput
as a potential bug since both designs should be in the same
state after the same execution.

Note that the design of DIFUZZRTL relies on the ISA
simulator, which implies two functional limitations: 1) The
target CPU RTL design should have the ISA simulator; and 2)
While DIFUZZRTL can detect ISA level bugs, it cannot detect
non-ISA level bugs. The first limitation can be mitigated if
two different RTL designs implement the same ISA. In this
case, DIFUZZRTL can be extended to perform the differential
testing between those two (e.g., Rocket and Boom cores are
two different RTL designs implementing the same ISA). The
second issue can be partially addressed if the designer imple-
ments manual hardware assertions checking micro-architectural
contexts, which can be retrofitted by DIFUZZRTL to detect
non-ISA level bugs.

Then, if new register-coverage is discovered, the correspond-
ing SimInput is saved to the corpus so that it can get another
chance to be fuzzed later, thereby DIFUZZRTL’s fuzzing
procedure is register-coverage guided. DIFUZZRTL repeats
above steps while resetting the design every iteration.

V. IMPLEMENTATION

For DIFUZZRTL, we implemented both RTL compiler
pass for register-coverage instrumentation and CPU fuzzing
framework. DIFUZZRTL is open-source and available at
https://github.com/compsec-snu/difuzz-rtl.

A. RTL compiler pass for register-coverage Instrumentation
We modified two different HDL processing tools: 1)

Pyverilog, for codes written in Verilog [44]; and 2) FIRRTL
compiler, for FIRRTL codes which is the intermediate language
of Chisel [45]. These tools thus automatically find control reg-
isters, instrument register-coverage, then produce instrumented
Verilog code as a final output. Our implementation includes
1.5 k lines of python code (in Pyverilog) and 2 k lines of
Scala code (in FIRRTL compiler).

B. CPU fuzzing framework
CPU fuzzing framework of DIFUZZRTL runs as a testbench

for the CPU RTL designs while running SimInput mutation,
ISA simulation and bug checking. For SimInput mutation and
other functionalities outside the RTL simulation, DIFUZZRTL
consists of 4 k lines of Python, which include manually
determined opcodes and registers for instruction generation.
We also added 800 lines to the ISA simulator for instruction
emulation and a pseudo interrupt controller. The framework
also relies on gnu toolchains (i.e. gcc, nm) to generate
simulation inputs. Then, we implemented the prototype of
DIFUZZRTL on two different RTL testing environments, the
software simulation and the FPGA emulation.
Prototyping for Software Simulation. We used cocotb [46],
a python based test bench tool for RTL codes, to implement the
prototype on RTL software simulation. The designs are then
simulated using an RTL simulator (i.e., Verilator [47] or icarus
Verilog [48]). This prototype includes 1.5 k lines of python
codes for stimuli generation and monitoring the simulation.
Prototyping for FPGA emulation. In order to test
DIFUZZRTL using FPGA emulation, we incorporated the
fuzzing framework into FireSim, which is an FPGA-
accelerated simulation platform developed by BAR [49].
Thus, DIFUZZRTL’s implementation on FireSim automatically
instruments register-coverage when building an FPGA image,
thereby enabling the fuzzing framework. To this end, we
modified 200 lines of Scala and 500 lines of C++ codes in
FireSim.

VI. EVALUATION

This section evaluates DIFUZZRTL on various aspects. We
first describe the evaluation setup of DIFUZZRTL (§VI-A).
Then we evaluate the effectiveness of register-coverage with
synthetic RTL designs (§VI-B). Next, we analyze the perfor-
mance of DIFUZZRTL with real-world CPU designs in two
different testing environments: 1) software simulation (§VI-C);
and 2) FPGA emulation (§VI-D). Then we describe the list
of new bugs that DIFUZZRTL found (§VI-E), and introduce
case studies of finding real-world bugs through DIFUZZRTL
and other approaches (§VI-F).

A. Evaluation Setup
1) RTL Designs: In order to evaluate DIFUZZRTL, we

performed the fuzz testing with various RTL designs, from
synthetic RTL designs to real-world OpenRISC and RISC-V
CPU cores.
Synthetic RTL. In order to clearly understand DIFUZZRTL,
we developed a synthetic RTL design based on the code
example shown in Figure 22. We added one more register
variable from the example so that the bug is triggered when
the registers reach a specific state. We also tested synthetic
RTL design while varying the number of states by adding
more states per each register (i.e., adding more bits to each
register). In total, four different versions of RTL designs with
the different number of finite states were tested: 27 , 64 , 125,
and 216 states.

https://github.com/compsec-snu/difuzz-rtl


Real-World OpenRISC Mor1kx Cappuccino. This is a five
stage pipelined core which implements the OpenRISC ISA [43].
Modules such as MMU, cache, and FPU are included in this
design, building a full-fledged core. Thus, this core supports
basic and floating point instruction set in OpenRISC ISA and is
able to boot Linux. In order to perform the differential testing
while fuzzing, DIFUZZRTL used OpenRISC Or1ksim as a
golden model, which is an OpenRISC ISA simulator.
Real-World RISC-V Rocket Core. Rocket core is an in-order
pipelined core which is included in RISC-V Rocket Chip [41].
This core is supported by industry for the chip prototyping.
We note that Rocket core is extensively verified by the steering
research group. In order to perform the differential testing
while fuzzing the Rocket core, we used a RISC-V reference
ISA simulator, Spike, as a golden model. Spike is commonly
used to verify the correctness of new hardware designs.
Real-World RISC-V Boom Core. Boom Core is an out-
of-order superscalar core which can also be used in RISC-V
Rocket Chip SoC. Features for out-of-order cores such as issue
queue or ROB are implemented in Boom core thus its micro
architecture is much more complex than in-order cores. Boom
core is also able to boot linux and widely verified by the
steering research group. To perform the differential testing, we
used Spike as we have done for the Rocket core.

2) Fuzz Testing Environment: We evaluated DIFUZZRTL
in two different environments for testing RTL designs, i.e.
software simulation and FPGA emulation.
Software Simulation. All our experiments based on software
simulation were carried out on a machine of Intel Xeon Gold
6140 with 72 CPU cores and 512GB RAM, which runs Ubuntu
18.04 LTS. For synthetic RTL designs, we fuzzed each version
1,000 times and plotted a graph representing the distributions
so as to come up with a more robust statistical conclusion.
For real-world RTL designs, we fuzzed each RTL design with
the corresponding ISA simulator for three times and plotted
a graph showing an average value as well as minimum and
maximum values along with an error bar.
FPGA Emulation. We ran DIFUZZRTL using FPGA em-
ulation on an Amazon EC2 F1 instance [50], which offers
a customizable hardware acceleration feature through FPGA.
Similar to the case of the software simulation, we fuzzed
Rocket core and Boom core three times and plotted a graph
showing an average value and error bar.

3) Coverage Guiding Setup for Fuzzing: To compare the
effectiveness DIFUZZRTL’s register-coverage guided fuzzing,
we ran DIFUZZRTL while changing the coverage guiding
feature: 1) no-cov, which does not leverage any coverage-
guided feature; 2) mux-cov, which utilizes the mux-coverage
guided fuzzing as proposed by RFuzz [14]; and 3) reg-cov,
which utilizes the register-coverage guided fuzzing that we
propose with DIFUZZRTL.

B. Fuzzing Synthetic RTL

Static Instrumentation Overhead. To compare the effi-
ciency of DIFUZZRTL’s register-coverage and RFuzz’s mux-

Project Num. reg. (Bits) Num. muxes Verilog Overhead (%)

Total Control Total Original mux-cov reg-cov

Synthetic RTL (27) 6 (18) 3 (6) 9 123 118 24
Synthetic RTL (64) 6 (18) 3 (6) 12 145 121 20
Synthetic RTL (125) 6 (21) 3 (9) 15 167 121 17
Synthetic RTL (216) 6 (21) 3 (9) 18 187 121 15

Fig. 9: Coverage instrumentation overheads for synthetic RTL
designs
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Fig. 10: Efficiency of coverage guided fuzzing for synthetic
RTL designs

coverage scheme, we instrumented each coverage scheme on
the synthetic RTL designs. Figure 9 shows the statistics of
each synthetic RTL design and the overheads of coverage
instrumentations. The design has total six registers and 18
muxes, where only three registers are identified as control
registers by DIFUZZRTL. The number of muxes that mux-
coverage has to monitor linearly increases as the number of
states increases, but the bits in control registers that register
coverage should monitor marginally increases.
Runtime Instrumentation Overhead. In the case of runtime
overhead due to the instrumentation, simulation speeds were
not largely different by each other. More specifically, the
original performance before the coverage instrumentation
showed 2.36 MHz, and after the coverage instrumentation,
DIFUZZRTL’s register-coverage showed 2.29 MHz (i.e., 4.2%
slowdown) and RFuzz’s mux-coverage showed 2.02 MHz (i.e.,
15.4% slowdown). As we will show later with real-world RTL
designs, if the target RTL designs are complicated enough,
DIFUZZRTL’s performance improvement over RFuzz becomes
significant—up to 40 times for the RISC-V Rocket core.
Efficiency of Register Coverage-Guided Fuzzing. Coverage
metrics during the RTL fuzzing should efficiently guide an
input stimuli to unexplored states. To this end, we measured
the average cycles to reach the vulnerable state in each version
of synthetic RTL design with different coverage guidances. In
the evaluation, the fuzzer randomly generates input which is
defined as a concatenation of bit vectors fed to the design every
cycle. We use a simple random bit flip algorithm for mutation
so that the only difference is the coverage for input guidance,
i.e., 1) no-coverage guided, 2) mux-coverage guided, and 3)
register-coverage guided.

As illustrated in Figure 10, register-coverage guided fuzzer
shows a remarkable improvement over other two coverage-
guiding methods thanks to the judicious guidance. On the
other hand, mux-coverage was even worse than the no-coverage
due to the limitations of the mux-coverage. This is because the



no-cov mux-cov reg-cov

no-cov N.A. - -
mux-cov 9.46e – 13 N.A. -
reg-cov 2.64e – 33 1.25e – 34 N.A.

Fig. 11: p-values of the Mann-Whitney U test between
distributions, where each distribution is populated with each
coverage-guiding method. Two distributions are considered
significantly different if p-value is less than 0.05 [51].

no-cov mux-cov reg-cov

no-cov N.A. - -
mux-cov no-cov N.A. -
reg-cov reg-cov reg-cov N.A.

Fig. 12: The results of Vargha Delaney’s A12 measure
between the distributions. The coverage-guiding method name
in a cell is the result of the VDA measure [52], which is
expected to show the higher performance between the
methods in the corresponding row and column (i.e., exploring
a more number of states in a given number of iterations).

mux-coverage guided fuzzer not only failed to recognize the
valid input but also mis-recognized the invalid input as a valid
one. As a result, it inserted such invalid inputs to the fuzzing
corpus and wasted the cycles to mutate the invalid inputs which
do not help to explore the new state space. This tendency
becomes clarified as the number of finite states increases,
meaning that the register-coverage becomes more efficient.
Compared to mux-coverage guided fuzzer, register-coverage
guided fuzzer reached the bug state almost 6.4 times faster.

In terms of the average number of reached states during
the fuzzing iterations, register-coverage has shown the best
performance—i.e., register-coverage guided fuzzer explored the
highest number of states as shown in Figure 10-(b). To come
up with a more robust statistical conclusion, we performed
two statistical testings, the Mann-Whitney U test [53] and the
Vargha Delaney’s A12 (VDA) measure [52], on the distributions
obtained from the number of reached states during 5,000
iterations.

According to the Mann-Whitney U test, p-value between
each distribution (i.e., a distribution populated with no-coverage,
mux-coverage, and register-coverage guiding method) was
always less than 0.05 as shown in Figure 11, suggesting that all
three distributions show clear statistical differences. The VDA
measure also demonstrated that the register-coverage always
showed higher improvement over the other two coverage-
guiding methods (shown in Figure 12)—the VDA score was
always larger than 0.71. One thing to note is that the mux-
coverage clearly decreased the performance even more than
the no-coverage case as we described before.

Project Num. reg (Bits) Num. muxes Verilog Overhead (%)

All Control Total Original mux-cov reg-cov

mor1kx 258 (780) 90 (106) 1.33 k 8.31 k ✗ 21
Rocket 1,3 k (15.3 k) 207 (661) 5.3 k 69.2 k 112 18
Boom 4.90 k (36.6 k) 330 (990) 21 k 168 k ✗ 15
✗ RFuzz failed to instrument Mor1kx cappuccino and Boom core

Fig. 13: Instrumentation overhead for real-world CPU RTLs

Project Simulation speed (Hz) Slowdown (%) Fuzzing speed* (Hz)

no-cov mux-cov reg-cov mux-cov reg-cov mux-cov reg-cov

mor1kx 2.94 k ✗ 2.76 k ✗ 6.1 ✗ 0.41
Rocket 2.44 k 56.5 2.27 k 97 6.9 0.006 0.23
Boom 1.71 k ✗ 1.60 k ✗ 6.4 ✗ 0.15

*Fuzzing speed is defined as the number of fuzzing iterations per second.
✗ RFuzz failed to instrument Mor1kx cappuccino and Boom core

Fig. 14: Runtime overheads of register-coverage and
mux-coverage for real-world CPU RTLs.

C. Fuzzing Real-World Designs (Software Simulation)

Static Instrumentation Overhead. Secondly, we evaluated
the efficiency of register-coverage on real world designs. The
statistics of designs and overhead of mux-coverage and register-
coverage instrumentations are shown in Figure 13. As in the
second column, the total number of registers ranges from
two hundreds to five thousands depending on the complexity
of a design. However, DIFUZZRTL classified a few hundred
of registers into control registers regardless of the design.
Approximately, 10% of registers were classified as control
registers, and the total bit width has decreased about 97%.

When it comes to the line of Verilog, register-coverage
instrumentation showed the minimal increase, which is about
17% as in the last column. Even with Boom core which has
almost 200, 000 Verilog code lines, the overhead was moderate
(14.8%) due to the efficient instrumentation. On the other hand,
mux-coverage instrumentation on Rocket core increased the
number of line almost twice because of the wiring cost of
monitoring per each mux. Moreover, RFuzz [14] was not able
to instrument Boom core due to the resource constraint.

Regarding the instrumentation detail, DIFUZZRTL allocates
more space for each variables (i..e, regstate, covmap and
covsum) as the number of control registers increases in a
module. While the maximum size of variables is a configurable
parameter, we set the maximum size of regstate to be 20-bits
for this evaluation, which covers up to 220 bits (i.e. 1 Mb). In the
case of Boom core, five out of 151 modules were instrumented
using the maximum size variables, and LSU was the module
which had the most control registers with 156 total bit width.
The regstate in such a large module can have hash collisions,
which is also an important factor for fuzzing, but we leave the
detailed result of hash collision in §XI due to the space limit.
Runtime Instrumentation Overhead. The run time over-
heads of the coverage instrumentations are shown in Figure 14.
As expected, the simulation speed has decreased as the
design complexity increases. Mor1kx is slow because it can
only be simulated using slow Icarus Verilog simulator [48].
The decreased simulation speed due to the register-coverage
instrumentation was about 7% thanks to the simple operation
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Fig. 15: Efficiency of register-coverage for real world RTL
designs
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Fig. 16: RTL simulation results on register-coverage guided
fuzzing and no-coverage guided fuzzing

of regstate hashing and covmap checking. However, instru-
menting mux-coverage extremely decreased the simulation
speed because it connects the select signals of all muxes to
the top level module and monitors the signal every cycle. In
§XI, we summarize further explanation on the fundamental
difference of register-coverage and mux-coverage. Overall,
register-coverage instrumented design runs almost 40 times
faster then mux-coverage instrumented design.
Efficiency of Register Coverage-Guided Fuzzing. To com-
pare the efficiencies of the coverage, we measure the register-
coverage and mux-coverage while running same inputs on the
instrumented designs. The inputs were collected while running
the fuzzer with only mux-coverage for 52 hours. The coverage
results are shown in Figure 15-(a) using the iteration number
as the x-axis to eliminate the effect of runtime overhead. Mux-
coverage quickly saturated as the iteration proceeds, but the
fuzzer using register-coverage continuously found new seeds
and increased the coverage. This is because register-coverage
captures fine-grained behaviors of the design by capturing the
state every cycle as illustrated in Figure 15-(b).
Fuzzing Performance. To evaluate the performance of fuzzer,
we compared random testing without coverage guiding (no-cov)
and DIFUZZRTL (reg-cov), where the random testing only
generates formatted instructions without guidance. The results
are illustrated in Figure 16. Looking at the results, DIFUZZRTL
reached higher coverage as the design complexity increases.
Especially in Boom core, the fuzzer achieves remarkable gain
over random testing.
Effectiveness of Interrupt Mutation. One of the reason
DIFUZZRTL has chosen to fuzz CPU directly is that large
input space leads to an extensive exploration. We wonder
how DIFUZZRTL can leverage such opportunity by generating
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Fig. 17: Frequency of registers bit values in Rocket core when
new coverage is explored

Project FPGA emulation (Hz) Fuzzing speed* (Hz)

mux-cov reg-cov mux-cov reg-cov

Rocket 5.73 M (90 M) 5.74 M (90 M) 4.13 4.13
Boom ✗ 5.73 M (90 M) ✗ 4.13

*Fuzzing speed is defined as the number of fuzzing iterations per second.
✗ RFuzz failed to instrument Boom core due to the out-of-resource issue.

Fig. 18: Runtime overheads of register-coverage and
mux-coverage for FPGA emulation. The numbers in the
brackets are timing constraints for the FPGA bitstream.

input stimuli which includes both memory values and interrupt
signals. Thus we designed an experiment to answer the question:
does raising interrupt signals lead to the exploration of an
unknown state.

To discriminate the impact of interrupt assertion, we repeated
running Rocket core with two SimInput which are only different
in that the latter one contains non-zero interrupt values. Thus
the latter SimInput explores the new states introduced by the
interrupt assertions. For each run, we collected the values
of control registers as a bit vector whenever a new state is
explored, which represents a control state of the module.

Then, we summarized the bit vectors as a histogram which is
shown in Figure 17, thereby each bar represents the frequency
of the bit when a new state is explored. Among the bars,
we found that only the bit in index three shows increased
frequency when the interrupt is used. After manually auditing
the source code, we confirm that the bit in index three was
belonging to the wb reg xcpt register in Rocket core, which
is used for exception handling. Therefore, we conclude that
raising interrupts enables DIFUZZRTL to explore unknown
states, which is otherwise not possible to be reached.

D. Fuzzing Real-World Designs (FPGA Emulation)

Since the performance of fuzzing is highly depending on
the speed of running each iteration, FPGA emulation can
significantly improve the performance of fuzzing—FPGA runs
on a synthesized hardware circuit. In this sense, we attempted
to evaluate DIFUZZRTL and RFuzz with the FPGA emulation,
particularly focusing on following two aspects: the runtime
instrumentation overheads and the fuzzing performance.
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Fig. 19: FPGA emulation results of register-coverage guided
fuzzing and no-coverage guided fuzzing

To shortly summarize the results, DIFUZZRTL successfully
instrumented both Rocket core and Boom core, and showed
improved runtime instrumentation overheads and fuzzing
performance as expected. In the case of RFuzz, it was able to
instrument Rocket core and showed the improved performance
as expected. However, it was not able to instrument Boom
core, because mux-coverage of RFuzz requires more resources
than available, leading to the instrumentation failure.
Runtime Instrumentation Overhead. As shown in Figure 18,
DIFUZZRTL instrumented and compiled both Rocket core and
Boom core at 90 MHz clock frequency using Vivado 2018.3.
In each iteration, the synthesized core runs at 5.73 MHz.
This clock slowdown is as expected because DIFUZZRTL
should perform following fuzzing operations: 1) monitoring
and scheduling the running instance; and 2) fuzzing manage-
ment. Also, operations outside FPGA (i.e., fuzzing corpus
management and SimInput mutation) becomes a bottleneck
since DIFUZZRTL alternatively runs the mutation and FPGA
emulation. This clock slowdown can be mitigated by employing
general optimization techniques, such as running the mutation
and FPGA emulation in parallel, but we leave those as future
work.

RFuzz was also able to run mux-coverage instrumented
Rocket core at 5.73 MHz with 90 MHz clock frequency.
However, RFuzz failed to build Boom core, so we were not
able to perform the evaluation for RFuzz’s case on Boom core.
Fuzzing Performance. The register-coverage guided fuzzer
using FPGA emulation showed much better performance
compared to the random testing without coverage guiding
as shown in Figure 19. Specifically, register-coverage guided
fuzzing reached the two times more number of register-coverage
than without coverage guiding after fuzzing 9 hours. It is worth
noting that, as we have shown before, the difference was only
about 20 % given the same 9 hours fuzzing time in software
simulation. This clear improvement compared to the software
simulation (i.e., from 20 % to 2 X for the given 9 hours) is
thanks to the fact that the FPGA emulation runs almost 30
times faster than the simulation.

E. Newly Discovered Bugs in Real-World RTL Designs

During the evaluation, DIFUZZRTL found 16 new bugs
in total (listed in Figure 20), all of which were confirmed
by the respective development communities or vendors and

some of those are already being patched. More importantly,
five of those were assigned with CVE numbers, signifying its
strong impacts to the security community. These discovered
bugs can be classified into four categories: atomic operation
related bugs, instruction decoding bugs, memory related bugs,
and performance bugs, demonstrating the wide coverage of
DIFUZZRTL with respect to bug types in CPU RTLs.

First, incorrect behaviors in atomic memory operations (load-
reserve store-conditional instructions) were frequently found.
According to the OpenRISC ISA [43], reservation set by load-
reserve instruction should be unset when the snooping hit
occurs. However, Mor1kx cappuccino did not follow the ISA,
causing memory consistency problems when the bug occurs
(CVE-2020-13455).

Similar to OpenRISC, RISC-V does not allow a load-reserve
instruction on a misaligned address to set the reservation. How-
ever, Boom core did not follow the specification, causing the
following store-conditional instruction to succeed. Especially
the bug was only triggered when the related address is cached
in the core, since the reservation signal reaches the cache line
before the exception signal abort the reservation (CVE-2020-
29561).

Bugs related to instruction decoding were found as
DIFUZZRTL randomly provides illegal opcode to RTLs. Espe-
cially in Boom core, floating point instructions with unallowed
rounding bits successfully updated the floating point registers.
This bug may incur an incorrect results of floating point
instructions, which is critical in a scientific computing, as
we have observed from the notorious Pentium FDIV bug [2]
(Issue #458). Mor1kx cappuccino also has a decoding bug
related to bit processing instructions (Issue #114).

DIFUZZRTL was also able to discover bugs related to
memory bus. Boom core was incorrectly setting the source field
in ProbeAckData which is used for cache coherence memory
protocol (CVE-2020-13251). However, the bug was not found
even with several verification including running large programs
on the chip. We assume the SoC used for Boom core test is
tolerant to the bug, but the results will be critical if the Boom
core is used with other intolerant (correctly designed) SoC.

Other bugs related to the performance were also found, such
as setting FS bits in mstatus register (Boom core), which is
used to decide whether save or not the floating point registers
during the context switching.

F. Case Study with Real-World Bugs

In order to clearly showcase the effectiveness of
DIFUZZRTL’s coverage guiding, we performed a case study
with two bugs which we discovered with DIFUZZRTL (i.e.,
Issue #492 and CVE-2020-29561 in Figure 20, both of
which were found on Boom core). In particular, we compare
the results of DIFUZZRTL with following two approaches:
1) riscv-torture [37], which randomly generates instructions
using a pool of handcrafted instruction sequences without any
coverage guided feature. This riscv-torture is widely used
to verify various RISC-V cores by the development commu-
nity; and 2) mux-coverage guided fuzzer, which generates



Project ISA Bug ID Description Confirmed Fixed

Mork1x OpenRISC CVE-2020-13455 Reservation is not cancelled when there is snooping hit between lwa and swa ✓ pending
CVE-2020-13454 Jump to link register does not assert illegal instruction exception ✓ pending
CVE-2020-13453 Misaligned swa raise exception when reservation is not set ✓ pending
Issue #114 l.fl1, l.ff1 instruction decoding bug ✓ ✓
Issue #99 eear register not saving instruction virtual address when illegal instruction exception ✓ ✓

Rocket chip RISCV Issue #2345 Instruction retired count not increased when ebreak ✓ pending

Boom RISCV CVE-2020-13251 Source field in ProbeAckData does not match the sink field of ProbeRequest ✓ ✓
Issue #458 Floating point instruction which has invalid rm field does not raise exception ✓ ✓
Issue #454 FS bits in mstatus register is set after fle.d instruction ✓ pending
Issue #492 When frm is set DYN, floating point instruction with DYN rm field should raise exception ✓ ✓
Issue #493 Rounding mode in fsqrt instruction does not work ✓ ✓
Issue #503 invalid operation flag is not set after invalid fdiv instruction ✓ ✓
CVE-2020-29561 Misaligned lr instruction on a cached line set the reservation ✓ ✓

Spike RISCV CVE-2020-13456 Misaligned lr.d should not set load reservation ✓ ✓
Issue #2390 Reading dpc register should raise exception in machine mode ✓ ✓
Issue #426 Faulting virtual address should not be written to mtval when ebreak ✓ ✓

Fig. 20: A list of newly discovered bugs by DIFUZZRTL. DIFUZZRTL identified 16 bugs in total, all of those were confirmed
by respective vendors. Five of those were assigned with CVE numbers.

Bug ID Elapsed time (h)

riscv-torture mux-cov reg-cov

Issue #492 118 ✗ 20.3
CVE-2020-29561 ✗ ✗ 31.7
✗Not able to reproduce bug

Fig. 21: Average time to find real-world bugs using each
approach.

instructions on DIFUZZRTL fuzzing framework with RFuzz’s
mux-coverage guiding. Since RFuzz compiler pass was not
able to instrument all the muxes in Boom core due to the
resource constraints, we modified the pass to randomly and
selectively instrument muxes.
Case Study on Issue #492. The Issue #492 bug (i.e.,
dynamic rm bug) can be found with the following three steps:
1) Starting from the initial state, the FS bit in mstatus register
should be set; 2) frm bits in fcsr register should be set with
a specific value; and 3) A floating point instruction with a
DYN-enabled rm field should be executed [54].

For each fuzzing iteration, we configured each approach
to generate (or mutate) a sequence of instructions and tested
designs. The first row of Figure 21 shows an average elapsed
time to find the bug using each approach. DIFUZZRTL with
register-coverage guidance was almost 6 times faster than riscv-
torture in finding the bug since it captures each step above
as a new coverage and guides input efficiently. However, the
fuzzer which used mux-coverage was not able to find the bug
due to the slow fuzzing speed and inefficient guidance.
Case Study on CVE-2020-29561. The CVE-2020-29561 bug
(i.e., misaligned lr bug) can be found with the following
three steps: 1) A special memory instruction which fetches
the accessed cache line (e.g., amoand) should be executed;
2) Load-reserve instruction (i.e., lr) should be executed on
the same cache line but with a misaligned address. Such an
instruction raises a misaligned load exception, and the program
counter jumps to the address of exception vector [54]; and
3) After exception, additional store-conditional instruction (i.e.,
sc) which accesses the same cache line should be performed,
but this time, with a correct address alignment.

Due to the complex nature of the bug, it took approximately
30 hours for DIFUZZRTL to find the bug as shown in Figure 21.
Meanwhile, none of other techniques were able to find the bug
even after running ten times of elapsed time for DIFUZZRTL
(i.e., 300 hours). When reasoning about the bug reproducing,
the first step (i.e., fetching a specific cache line) does not have
any architectural effect on the second step (i.e., loading and
reserving the same cache line). However, DIFUZZRTL captures
the new coherency state of the cache line explored by the two
steps, and successfully guides inputs to the next step.

VII. LIMITATIONS

Confirming the Semantic Bugs. Since DIFUZZRTL detects
semantic bugs by comparing the execution results of ISA
and RTL simulation, the system alone cannot confirm which
one is responsible for the found bug. Thus DIFUZZRTL
requires manual inspection of the specification to confirm
the bug. DIFUZZRTL may leverage the results of different
implementations of the same specification (e.g. Rocket and
Boom core) to at least confine the suspicious design as proposed
in [36]. While these are an interesting research direction, we
leave them as future work.
Applying Register Coverage on General RTL Designs. The
design of DIFUZZRTL has several design points that can only
be used for the RTL designs that have golden models. However,
DIFUZZRTL’s idea on register coverage is generic enough such
that it can be applied to various RTL designs in the future, such
as cache, ALU, rob, etc. It is also possible to run a targeted
fuzzing on a module such as D-cache while simulating entire
CPU because DIFUZZRTL leverages the module by module
approach.
Identifying Side-Channel CPU Bugs. Since DIFUZZRTL
relies on differential testing to discover bugs, DIFUZZRTL
alone cannot identify side-channel CPU issues such as Spectre,
Meltdown, Foreshadow, MDS. In order to discover these bugs,
DIFUZZRTL’s compilation framework can be extended to
monitor the microarchitectural states of modules to check the
state changes depending on a secret value.



VIII. RELATED WORK

Dynamic RTL Verification. Dynamic RTL verification is
an old verification methodology which is still widely used.
In [55], authors introduce pseudo random test generation for
verifying DECchip and challenges for defining coverage and
test generation. Shai et al. [56] designs a neural network
to generate input stimuli using coverage but they require
deep knowledge on the design. MicroGP [57] is similar to
DIFUZZRTL in that it verifies a processor using coverage for
input generation. However, the work requires external tools for
coverage evaluation thus increasing manual work.

Recently, various open-source tools for CPU verifica-
tion [37, 58] have been introduced with the rise of RISC-V,
which randomly generate instructions to test the processors.
While random instruction generation is efficient for testing a
wide range of processor functionalities, such tools do not have
a coverage-guiding feature to rigorously test the processors.
DIFUZZRTL, on the other hand, employs the coverage-guiding
with carefully designed coverage metrics to further verify the
processors in deeper aspects.

Other CPU fuzzing works [59, 60] aim at finding hardware
flaws as well as undocumented instructions through exhaus-
tively searching the instruction space of the x86 architecture.
Instead of testing a sequence of instructions, these works focus
on generating a single potentially harmful instruction opcode
because the x86 architecture has a huge instruction space with
a variable instruction length. While DIFUZZRTL is designed
for testing a sequence of instructions, DIFUZZRTL can also
help these approaches if the RTL source code is available—i.e.,
DIFUZZRTL can provide the coverage metric for the instruction
decode unit.
Coverage Definition. On the other hand, researchers have
continued to find good coverage definition. Coverage metrics
are classified into code coverage and functional coverage, where
code coverage relies on the analysis of the code while functional
coverage relies on design specific information [61]. Code
coverages including statement, or toggle coverage are easy
to obtain but insufficient to guide input. Functional coverage
requires designers manual setup.

Moudanos et al. [10] introduce state coverage and transition
coverage which are directly defined on the FSM. However,
the metrics is not scalable because of the state explosion
problem. HYBRO [62] tries to reach hard to reach states
while maximizing branch coverage. As mentioned, branch
coverage on RTL code has fundamental limitation. Recently,
RFUZZ [14], proposes mux coverage which can be synthesized
into FPGA accelerated simulation. Nevertheless, the most
widely used coverage is the functional coverage which is
manually defined by the designers [14].
Static RTL Verification. Along with dynamic verification,
methods to verify RTL using static analysis have been devel-
oped. Symbolic execution mathematically verifies all the design
space of the RTL code. STAR [13] employs hybrid approach,
using random input generation and symbolic execution but the
method has limitations on the sequential depth of a variable.

Zhang et al. [63] introduces backward symbolic execution to
reach assertion violation.
Coverage-guided Fuzzing. Many recent studies leverage
coverage-guided fuzzing approach and try to achieve higher
coverage and vulnerabilities in user programs and kernels
[18–32]. For example, taint-analysis [20, 24] and symbolic
execution [21, 23] techniques have been proposed to overcome
the limitations of coverage-guided fuzzing such as magic bytes
and nested branches.
Differential Fuzzing. Differential fuzzing is designed to
discover semantic bugs by observing inconsistent behaviors
across similar applications. For example, [64, 65] leverages
differential fuzzing to find the inconsistent behaviors across
Java Virtual Machines (JVMs). Nezha [35] defined the notion of
δ-diversity, which represents the asymmetric behaviors between
testing programs, to guide the fuzzer to disclose semantic bugs
in softwares such as SSL/TLS libraries and PDF viewers.

IX. CONCLUSION

This paper proposed DIFUZZRTL, an RTL fuzzer to dis-
cover CPU bugs in RTL designs. The key design features
of DIFUZZRTL includes register-coverage guided fuzzing
techniques, which can be used as a drop-in-replacement
fuzzer to test various CPU RTLs. DIFUZZRTL is implemented
to perform the fuzz testing for three open-source CPUs,
OpenRISC Mor1kx Cappuccino, RISC-V Rocket Core, and
RISC-V Boom Core. During the evaluation, DIFUZZRTL
identified 16 new bugs from these CPUs, demonstrating its
strong practical prospects.
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XI. APPENDIX

This appendix section provides supplementary information
regarding this paper.
Listing of Motivation Example. Figure 24 shows the
appended Verilog code to the original code (shown in Figure 22)
for the instrumentation. Only stateS and stateF registers are
used because they are wired into the mux control signal. The
registers are hashed into regstate through random offset ({ })
and xor operation (ˆ). Then, the logic for covmap and covsum
is instrumented.
Calculation on Collision Probability. Since DIFUZZRTL
hashes control register value into the regstate, collision could
happen where different control register values are hashed into
the same regstate value. To this end, DIFUZZRTL allocates
more space for each variables (i.e. regstate, covmap and
covsum) as the number of control registers increases. However,
the collision is unavoidable if the total bit width of control
registers is larger than the maximum size of regstate.

In order to understand the collision probability, we measured
the register-coverage instrumentation details. While the maxi-
mum size of variables is a configurable parameter, we set the

1 module mem_ctrl(
2 input clock,
3

4 input sdram_valid,
5 input [3:0] sdram_data_i,
6 input flash_valid,
7 input [7:0] flash_data_i,
8

9 output sdram_ready,
10 output flash_ready,
11

12 output out_valid,
13 output [7:0] out_data
14 );
15

16 reg[1:0] state_sdram; // READY, RECEIVING, BUSY
17 reg state_flash; // READY, BUSY
18

19 reg[7:0] data_sdram;
20 reg[7:0] data_flash;
21

22 /********** combinational **********/
23

24 assign sdram_ready = (state_sdram != ‘BUSY_S);
25 assign flash_ready = (state_flash != ‘BUSY_F);
26

27 assign out_valid = (state_sdram == ‘BUSY_S) ||
28 (state_flash == ‘BUSY_F);
29 assign out_data = (state_sdram == ‘BUSY_S) ?
30 data_sdram : data_flash;
31

32 /********** sequential **********/
33

34 always @(posedge clock) begin
35 if (state_sdram == ‘READY_S) begin
36 if (sdram_valid) begin
37 state_sdram <= ‘PENDING_S;
38 data_sdram <= {4’b0000, sdram_data_i};
39 end
40 end else if (state_sdram == ‘PENDING_S) begin
41 if (sdram_valid) begin
42 state_sdram <= ‘BUSY_S;
43 data_sdram <= {sdram_data_i, 4’b0000} | data_sdram;
44 end
45 end else if (state_sdram == ‘BUSY_S) begin
46 state_sdram <= ‘PENDING_S;
47 end
48

49 if (state_flash == ‘READY_F) begin
50 if (flash_valid) begin
51 state_flash <= ‘BUSY_F;
52 data_flash <= flash_data_i;
53 end
54 end else if (state_flash == ‘BUSY_F) begin
55 state_flash <= ‘READY_F;
56 end
57 end
58 endmodule

Fig. 22: Verilog code example of a simple memory controller
which connects sdram and flash memory to the outer world.
Bug is triggered when both stateS and stateF at BUSY.

maximum size of regstate to be 20-bits for this evaluation,
which covers up to 220 bits (i.e. 1 Mb). In the case of Boom core,
five out of 151 modules were instrumented using the maximum
size variables, and LSU was the module which had the most
control registers. The total bit width of control registers in LSU
was 156 bits. When all the control registers are hashed into 20
bits regstate, the collision probability becomes 1−(1−p)kC2

where p is a probability of two different states being hashed
to the same regstate value and k is the number of simulated
cycles. Thus, the total collision probability converges to 1
as the simulated cycle increases, reaching 99.9 % at 5,384
simulated cycles. Since the number of collisions follows a
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1 /********** patch **********/
2

3 end else if (state_flash == ‘FLASH_BUSY) begin
4 if (state_sdram != ‘SDRAM_BUSY) begin
5 state_flash <= ‘FLASH_BUSY;
6 end
7 end

Fig. 23: Bug fix for Figure 22. stateF waits until stateS is
not busy

1 /********** instrumented **********/
2

3 reg[2:0] reg_state;
4 reg[2:0] covsum;
5 reg covmap[8:0];
6

7 always @(posedge clock) begin
8 reg_state <= { state_sdram, 1’h0 } ˆ { 2’h0, state_flash };
9 covmap[reg_state] <= 1;

10

11 if (!covmap[reg_state]) begin
12 covsum <= covsum + 1;
13 end
14 end

Fig. 24: Instrumented result of Figure 22; Only stateS and
stateF registers are instrumented.

Poisson distribution, we conclude that average 6 collisions
occur in one iteration [66].

While this collision probability suggests that the collision
is unavoidable given the large state space of RTL modules,
we believe a loss would be minimal. This is because an input
which discovers a new state further reaches multiple new states
in one iteration, and DIFUZZRTL will save the input as a new
seed if at least one new non-colliding state is discovered. Also,
a carefully designed hashing algorithm for coverage-guided
fuzzing would be able to reduce the collision probability as
proposed by collAFL [26].
Fundamental Differences between Register-coverage and
Mux-coverage. To shortly summarize, register-coverage
of DIFUZZRTL has three fundamental differences from mux-
coverage of RFuzz [14], making DIFUZZRTL’s simulation
more efficient. First, instrumenting control registers is more ef-
ficient than instrumenting all the muxes. Second, DIFUZZRTL
summarizes the coverage in each module and wires only the
sum of coverage until the top level module, but RFuzz needs to
propagate all the mux control signals upto the top level module.
Third, DIFUZZRTL employs simple hashing for the coverage
computation while RFuzz requires a saturating counter for each
mux.

As a result, assuming the number of modules in a design
is M and the number of elements (i.e., control registers
for DIFUZZRTL, muxes for RFuzz) in a module is N ,
DIFUZZRTL requires O(M ·N+M) of computation resources
for hashing control registers and connecting the sum of
coverage to the top level module. On the other hand, RFuzz
requires O(M2 ·N +M ·N) resources for connecting all the
mux control signals to the top level module and attaching a
saturating monitor for each mux.
Potential Security Impacts of Hardware Flaws. Abnormal
behaviors of the processors failing to follow the ISA could

result in critical security damages. DIFUZZRTL found several
hardware flaws that can be potentially destructive, thus assigned
with CVE reference numbers.

Among those, CVE-2020-13455, CVE-2020-13453, CVE-
2020-13251, and CVE-2020-29561 directly harm the memory
consistency of the processors, thus can result in potential race
bugs. It is widely known that the race bugs are harmful to
the security of the entire system and the attackers can abuse
such bugs to compromise the system. More critically, it would
take long time to identify that the root causes of such bugs
are hardware flaws since the race bugs are already too subtle
and non-deterministic to be detected.

CVE-2020-13454 and CVE-2020-13453 can be abused by
the attackers to bypass ROP defense schemes. Conventional
defense tools against ROP attacks would not assume those
instructions as a potential gadgets because the instructions
should result in an exception in correct semantics. However,
attackers with the knowledge of these hardware flaws could
rely on the fact that the victim instructions do not trap, avoiding
the expected exceptions and thus completing the ROP attacks.


	Introduction
	Background
	CPU Development and Testing
	Fuzzing

	Motivation
	Coverage Definition for RTL fuzzing
	Input Space for RTL Fuzzing

	Design
	SimInput Mutation
	ISA Simulation
	RTL Compilation with Register Coverage
	RTL Simulation
	Checking Execution Results

	Implementation
	RTL compiler pass for register-coverage Instrumentation
	CPU fuzzing framework

	Evaluation
	Evaluation Setup
	RTL Designs
	Fuzz Testing Environment
	Coverage Guiding Setup for Fuzzing

	Fuzzing Synthetic RTL
	Fuzzing Real-World Designs (Software Simulation)
	Fuzzing Real-World Designs (FPGA Emulation)
	Newly Discovered Bugs in Real-World RTL Designs
	Case Study with Real-World Bugs

	Limitations
	Related work
	Conclusion
	Acknowledgment
	Appendix

