
SpecDoctor: Differential Fuzz Testing to 
Find Transient Execution Vulnerabilities

Jaewon Hur, Suhwan Song, Sunwoo Kim*, Byoungyoung Lee

*

hurjaewon@snu.ac.kr

https://compsec.snu.ac.kr/people/jaewonhur/

mailto:hurjaewon@snu.ac.kr
https://compsec.snu.ac.kr/people/jaewonhur/


2



Importance of CPU Verification

3

CPU

CPUs cannot be fixed after they are released



Importance of CPU Verification

4

We should find bugs before releasing the chip

Verification



5

SpecDoctor: Differential Fuzz Testing to 
Find Transient Execution Vulnerabilities



SpecDoctor Found Real-world Vulnerabilities

6

10s of bugs in RISC-V Boom and NutShell



SpecDoctor

What Does SpecDoctor Do?

7

Given the CPU RTL (Blueprint of the CPU),

?

SpecDoctor outputs PoCs

triggering transient execution vulnerabilities



Transient Execution Vulnerability has countless attack vectors

Challenges of SpecDoctor

8

1. trigger a transient execution

In order to launch a Transient Execution Attack,

2. leak secret data in the transient execution

BPU, BTB, RAS, TLB, Store 
Buffer, Line Fill Buffer, etc.

Many ways to trigger a transient execution

I/D-Cache, BPU, TLB, FPU, 
Ex. Port, Replace logic, etc.

Many ways to leak secret data



Approaches of SpecDoctor

9

SpecDoctor

1. Find instructions triggering transient executions

2. Find instructions leaking secret data

SpecDoctor catches them ALL AT ONCE



1. Detecting Transient Executions

10

Transient Execution
Mispredicted execution inside a CPU,
which should be rollbacked later



1. Detecting Transient Executions

10

Transient Execution
Mispredicted execution inside a CPU,
which should be rollbacked later

Out-of-order CPU

Instruction order

add

mul

beq

ld

add

st

e.g.) Branch misprediction



1. Detecting Transient Executions

10

Transient Execution
Mispredicted execution inside a CPU,
which should be rollbacked later

Out-of-order CPU

Instruction order

add

mul

beq

ld

add

st

e.g.) Branch misprediction



1. Detecting Transient Executions

10

Transient Execution
Mispredicted execution inside a CPU,
which should be rollbacked later

Out-of-order CPU

Instruction order

add

mul

beq

ld

add

st

Instructions are 
speculatively executed

e.g.) Branch misprediction



1. Detecting Transient Executions

10

Transient Execution
Mispredicted execution inside a CPU,
which should be rollbacked later

Out-of-order CPU

Instruction order

add

mul

beq

ld

add

st

Instructions are 
speculatively executed

add

mul

beq

e.g.) Branch misprediction



1. Detecting Transient Executions

10

Transient Execution
Mispredicted execution inside a CPU,
which should be rollbacked later

Out-of-order CPU

Instruction order

add

mul

beq

ld

add

st

Instructions are 
speculatively executed

add

mul

beq

Result of the 
‘beq’ is predicted

e.g.) Branch misprediction



1. Detecting Transient Executions

10

Transient Execution
Mispredicted execution inside a CPU,
which should be rollbacked later

Out-of-order CPU

Instruction order

add

mul

beq

ld

add

st

Instructions are 
speculatively executed

add

mul

beq

ld

add

st

Result of the 
‘beq’ is predicted

e.g.) Branch misprediction



1. Detecting Transient Executions

10

Transient Execution
Mispredicted execution inside a CPU,
which should be rollbacked later

Out-of-order CPU

Instruction order

add

mul

beq

ld

add

st

add

mul

beq

ld

add

st

Misprediction!

beq

e.g.) Branch misprediction



ld

1. Detecting Transient Executions

10

Transient Execution
Mispredicted execution inside a CPU,
which should be rollbacked later

Out-of-order CPU

Instruction order

add

mul

beq

ld

add

st

add

mul

beq

ld

add

st

beq

ld

add

st Rollback

e.g.) Branch misprediction



ld

1. Detecting Transient Executions

10

Transient Execution
Mispredicted execution inside a CPU,
which should be rollbacked later

Out-of-order CPU

Instruction order

add

mul

beq

ld

add

st

add

mul

beq

ld

add

st

beq

ld

add

st Rollback

ld

add

st

Transient Instructions

e.g.) Branch misprediction



ROB

Rollback

1. Detecting Transient Executions

20

Transient Execution
Mispredicted execution inside a CPU,
which should be rollbacked later

Out-of-order CPU

Instruction order

add

mul

beq

ld

add

st

Transient Instructions

All transient execution should be rollbacked
(e.g., branch prediction, load-store bypass, TLB check, MDS)

Reorder Buffer (ROB) is a single handling point 
of all rollbacks

e.g.) Branch misprediction

Rollback

Observation



Observation 1. All transient execution should 
be rollbacked
(e.g., branch prediction, load-store bypass, TLB check, MDS)

Observation 2. Reorder Buffer (ROB) works as 
a single point for handling all the rollbacks

e.g.) Branch misprediction

ROB

Rollback

1. Detecting Transient Executions

21

Transient Execution
Mispredicted execution inside a CPU,
which should be rollbacked later

Out-of-order CPU

Instruction order

add

mul

beq

ld

add

st

Transient Instructions

Monitoring RoB to Detect Transient Execution

Idea



Step 1. Finding Instructions Triggering Transient Execution

22

SpecDoctor
transient execution 

is detected

add s0, 123
bez s0, target
mul a0, s0, a1
lw s1, 4(a0)…

Generate

random instructions

Monitor

mul r0
add r1
…

Out-of-order CPU

CPU Input

add

mul

beq

ld

add

st

Save instructions 

triggering a 

transient execution

ROB



2. Detecting Secret Leakage

23

Micro-architectural Side Channel
Traces of transient execution in the 
CPU containing secret data



register

Cache

BPU

Internals of CPU

Instruction 
order

2. Detecting Secret Leakage

23

Micro-architectural Side Channel
Traces of transient execution in the 
CPU containing secret data



register

Cache

BPU

u-arch states change while the 
CPU executes instructions

Internals of CPU

Instruction 
order

2. Detecting Secret Leakage

23

Micro-architectural Side Channel
Traces of transient execution in the 
CPU containing secret data



register

Cache

BPU

u-arch states change while the 
CPU executes instructions

Internals of CPU

Instruction 
order

2. Detecting Secret Leakage

23

Micro-architectural Side Channel
Traces of transient execution in the 
CPU containing secret data



register

Cache

BPU

u-arch states change while the 
CPU executes instructions

Internals of CPU

Instruction 
order

2. Detecting Secret Leakage

23

Micro-architectural Side Channel
Traces of transient execution in the 
CPU containing secret data

Misprediction!



register

Cache

BPU

Internals of CPU

Instruction 
order

2. Detecting Secret Leakage

23

Micro-architectural Side Channel
Traces of transient execution in the 
CPU containing secret data

Rollback



register

Cache

BPU

The changed u-arch states 
remain after rollback

Internals of CPU

Instruction 
order

2. Detecting Secret Leakage

23

Micro-architectural Side Channel
Traces of transient execution in the 
CPU containing secret data

Rollback



register

Cache

BPU

Internals of CPU

Instruction 
order

2. Detecting Secret Leakage

23

Micro-architectural Side Channel
Traces of transient execution in the 
CPU containing secret data

Rollback
If the transient instructions 
touched secret

Transient 
instructions



register

Cache

BPU

Internals of CPU

Instruction 
order

2. Detecting Secret Leakage

23

Micro-architectural Side Channel
Traces of transient execution in the 
CPU containing secret data

Rollback
If the transient instructions 
touched secret

Transient 
instructions

1. u-arch states hold secret



register

Cache

BPU

Internals of CPU

Instruction 
order

2. Detecting Secret Leakage

23

Micro-architectural Side Channel
Traces of transient execution in the 
CPU containing secret data

Rollback
If the transient instructions 
touched secret

Transient 
instructions

1. u-arch states hold secret

2. Attackers can steal secret 
by inspecting u-arch states



Cache

BPU

register

Internals of CPU

Instruction 
order

2. Detecting Secret Leakage

33

Micro-architectural Side Channel
Traces of transient execution in the 
CPU containing secret data

Transient 
instructions

All secret are transferred through 
changed u-arch states
(e.g., cache, BPU, TLB, FPU side channels)

u-arch states should be different 
depending on the secret

Observation



Observation 2. u-arch states should 
be different depending on the secret

Observation 1. All secret are transferred 
through changed u-arch states
(e.g., cache, BPU, TLB, FPU side channels)

Cache

BPU

register

Internals of CPU

Instruction 
order

2. Detecting Secret Leakage

34

Micro-architectural Side Channel
Traces of transient execution in the 
CPU containing secret data

Transient 
instructions

Differential Testing on u-arch states to find secret leakages

Idea



Step 2. Finding Instructions Leaking Secret Data

35

SpecDoctor

</>
secret
banana

</>
secret
apple

bez s0, target
mul a0, s0, a1…

Instructions from 

step 1

Randomly replace 

transient instructions

Differential Testing

mul r0
add r1
…

Compile with 

different secret

xx

le

a

xx

na

b

Run on the CPU

Monitor

u-arch

u-arch state

u-arch state

areg0

xxreg1

lemem
0

breg0

xxreg1

leMem
0

Who’s 
different?

Monitor

u-arch

+

+

apple

banana



Overall Framework of SpecDoctor

36

1. Find instructions triggering 
transient execution

2. Find instructions leaking 
secret data

?

Out-of-order CPU

CPU input Seed corpus

for next step

ROB </>

</>

uarch-state

uarch-state

PoCCPU RTL

RTL Fuzzing Framework to Find Transient Execution Vulnerabilities



Practical Impact of SpecDoctor

First transient execution attack,
exploiting the implementation bug in the CPU

Project Transient execution Side channel

Boom

pmp/vm-fault d-cache, bim, tlb,…

bound check bypass i/d-cache, ras, faubtb,…

branch target corrupt i/d-cache, btb, tlb,…

load-store bypass i/d-cache, bim, btb, …

NutShell bound check bypass i/d-cache, bim, tlb, …

branch target corrupt i/d-cache, ras, rs, …



Conclusion

• SpecDoctor is an RTL fuzzing framework to find transient execution 
vulnerabilities in CPU.

• https://github.com/compsec-snu/specdoctor.git

https://github.com/compsec-snu/specdoctor.git


Thank you

39


