ECH INFORMATION SECURITY CENTER

Safeguarding Digital Infomation Through Innovative Research and Education

Exploiting Unpatched iOS
Vulnerabilities for Fun and Profit

Yeongjin Jang, Tielei Wang,
Byoungyoung Lee, and Billy Lau

Geo rgialhstitute
’ ‘ o Techmnelogyy 1

Scope of this Presentation

* The process of getting unsigned code

executed as root, outside the sandbox, in iOS
7.1-7.1.2

e Does not cover iOS kernel vulnerabilities

Agenda

* |0S security to prevent rooting
— Why is rooting an iOS device hard?

* How were previous jailbreaks performed?
— General steps

— Steps in evasiOn7/

* How was evasiOn7 patched?
— Patch logs ini0S 7.1
— Which steps were fixed?

Agenda

* Analysis of patched/unpatched vulnerabilities
— What steps need to be re-exploited?

* Discovery of new vulnerabilities to replace
patched vulnerabilities

e Steps for Jailbreaking iOS 7.1.2

10S Security Overview

* Why is rooting an iOS device hard?
— Secure Boot Chain
— Mandatory Code Signing
— App Sandbox
— Privilege Isolation

I0S Security — Secure Boot Chain

* Encrypted firmware
— Encrypted with GID key of the device.

— Image is only decrypted on the device.
* GID key is not designed to be leaked.

* Chained code signing check
— Hard to inject and run unsigned code.

I0S Security — Mandatory Code Signing

* Code signing check

— Enforced by kernel (AMFI), handled by a user-
space daemon (amfid)

— Mandatory code signing
* RWX protection

— Disallows write and execute permissions on any
single memory page (except for dynamic-codesign
Entitlement holders)

I0S Security — App Sandbox

All third party apps residing at /var/mobile/
Applications/* will be contained by a built-in sandbox
profile named container

— Enforced by kernel.

For some built-in binaries, the sandbox is initiated by
invoking APIs in libsandbox.dylib.

— /Jusr/libexec/afcd, etc.

Running a third party app outside of the container will

trigger the “outside of container && !
i can has debugger” exception

Refer to “The Apple Sandbox” talk in BH DC 2011

I0S Security — Privilege Isolation

* UID of Apps

— mobile (501) is used for regular apps
* For all Developer, Enterprise, and App Store apps.

e A few daemons run as root
— syslogd, lockdownd.

Why is Rooting an iOS Device Hard?

Extremely restricted environment in sandbox
— Mandatory for user-written or App Store apps

Unable to run unsigned code

— One must bypass code signing checks to run
attack code

Privilege escalation is required
— All apps are running as mobile (uid=501) user

Cannot permanently modify kernel image
— Integrity checking is enforced

General Methods for Jailbreaking

* Bypass code sighing
— Exploit vulnerabilities in dyld during loading of
code.
* evasiOn/, Pangu
— Use R.O.P. or exploit the process with dynamic
code signing.
* MobileSafari

General Methods for Jailbreaking

* Escape the sandbox
— Exploit an un-sandboxed process.
— Exploit design flaw in sandbox implementation.

— Override sandbox functions in libsandbox.dylib.

* Run the sandboxed process without really invoking the
sandbox functions.

— For apps in the container, kernel patching is
required.

General Methods for Jailbreaking

* Root Privilege Escalation

— Exploit vulnerabilities in a root daemon.
* CrashHouseKeeping, etc.

General Methods for Jailbreaking

* Patch the kernel
— Disable code signing.
— Disable kernel-enforced sandbox.
— Enable RWX mapping.
— Enable kernel debugging (task for_pid 0).

General Methods for Jailbreaking

* Apply Permanent Changes

— Overwrite the root partition

* Remount with read/write permission (ver < iOS 7), or
use afcd (iOS 7.0.x).

— Do not modify critical parts that are involved in
the boot sequence

* Chained integrity check could block boot process.

evasiOn/

Exploited multiple vulnerabilities to bypass
code signhing checks, escape the sandbox, and
overwrite the root partition.

Exploited a kernel vulnerability to patch the
kernel.

Thanks to evad3rs for their jailbreak tool.
Thanks to geohot for his detailed write-up.

#1 Install an app
with crafted
Info.plist

v

#2 Get execution
of afcd

evasiOn7 Workflow

#3 Enable access to
/tmp for afcd

#4 Inject environment
variable with installd

#5 Bypass
Code signing

A\ A 4

#6 Inject dylib into

a non-sandboxed | €=——

process

#7 Get access to

the root partition

—

#8 Overwrite root

> #9 Launch a kernel

filesystem

exploit

#1 Install an app
with crafted
Info.plist

v

#2 Get execution
of afcd

evasiOn7 Workflow

#3 Enable access to
/tmp for afcd

#4 Inject environment
variable with installd

#5 Bypass
Code signing

A\ A 4

#6 Inject dylib into

a non-sandboxed | €=——

process

#7 Get access to

the root partition

—

#8 Overwrite root

> #9 Launch a kernel

filesystem

exploit

evasiOn7 — Vulnerability #1

* |nstall an app with crafted Info.plist

— Crafted Info.plist forces installd to install the app
outside of the container

e Using ../../../../../..[in CFBundleExecutable field
— Prepare the original executable in that folder

— Installation will succeed

11 <key>CFBundleExecutable</key>

12 <string>../../../../../../var/mobile/Media/Downloads/WWDC.app/WWDC</string>

#1 Install an app
with crafted
Info.plist

A 4

#2 Get execution
of afcd

evasiOn7 Workflow

#3 Enable access to
/tmp for afcd

#4 Inject environment
variable with installd

#5 Bypass
Code signing

A\ A 4

#6 Inject dylib into

a non-sandboxed | €=——

process

#7 Get access to

the root partition

—

#8 Overwrite root

> #9 Launch a kernel

filesystem

exploit

evasiOn7 — Vulnerability #2

e Gain execution of afcd

— Since afcd has access to the /var/mobile/Media/
Downloads/ directory, a PC can ask afcd to change
the content of an app executable to a hashbang

 #!/usr/libexec/afcd =S —d / -p 8888

* Clicking the app icon will trigger the execution
of “afcd” with forged arguments

Aug 6 09:37:38 Yeong-Jin-Jangs-iPhone afcd[437] <Error>: Got XPC error on listener connection: Connection invalid

Aug 6 09:37:38 Yeong-Jin-Jangs—-iPhone com.apple. launchd[1] (UIKitApplication:developer.apple.wwdc-Release[@x96bc][437]) <Error>:
(UIKitApplication:developer.apple.wwdc-Release [0x96bc]) Exited with code: 1

Aug 6 09:37:38 Yeong-Jin-Jangs-iPhone com.apple.launchd[1] (UIKitApplication:developer.apple.wwdc—Release[@x96bc]) <Notice>:
(UIKitApplication:developer.apple.wwdc-Release [@x96bc]) Throttling respawn: Will start in 2147483647 seconds

Aug 6 09:37:38 Yeong-Jin-Jangs—-iPhone backboardd[31] <Warning>: Application 'UIKitApplication:developer.apple.wwdc-Release[0x96bc]’
exited abnormally with exit status 1

#1 Install an app
with crafted
Info.plist

v

#2 Get execution
of afcd

evasiOn7 Workflow

#4 Inject environment
variable with installd

#5 Bypass
Code signing

A\ A 4

#6 Inject dylib into

a non-sandboxed | €=——

process

#7 Get access to

the root partition

—

#8 Overwrite root

> #9 Launch a kernel

filesystem

exploit

evasiOn7 — Vulnerability #3

* Enable access to /tmp for afcd
— Symlink bug in sandbox policy.

— Afcd creates a symlink to “../../../../../../tmp” at /
var/mobile/Media/Downloads/a/a/a/a/a/a

* Move the symlink to the upper directory

— Then afcd gains access to /tmp.

#1 Install an app
with crafted
Info.plist

\ 4

#2 Get execution
of afcd

evasiOn7 Workflow

#3 Enable access to
/tmp for afcd

#5 Bypass
Code signing

A\ A 4

#7 Get access to
the root partition

—

#8 Overwrite root

#6 Inject dylib into

a non-sandboxed | €=——

process

> #9 Launch a kernel

filesystem

exploit

evasiOn7 — Vulnerability #4

* |nject an environment variable using installd

— During the installation of an app, installd will
create a temporary directory at /tmp/
install_staging. XXXXXX/foo_ extracted, and then
unzip the ipa file into that directory

— Exploit: Ask afcd to create a symlink at
foo_extracted

* The symlink links to /var/mobile/Library/Caches/
* Installd will drop files into /var/mobile/Library/Caches/

evasiOn7 — Vulnerability #4

* By overwriting com.apple.mobile_installation.plist
(in /var/mobile/Library/Caches/), evasiOn7 can
specify the DYLD_INSERT_LIBRARIES environment

variable for a target app

<key>EnvironmentVariab

<dict>
<key>CFFIXED_USER_HOME</key>
<string>/private/var/mobile/Applications/13117B80-(279-4222-80AC-6444FA9CF81D</string>
<key>DYLD_FORCE_FLAT_NAMESPACE</key>
<string></string>

<key>DYLD_INSERT_LIBRARIES</key>
<string>/private/var/mo@ile/Applications/13117880-C279—4222—80AC-6444FA9CF81D/Documents/1ibexit.dylib</string>
<key>HOME</key>

<string>/private/var/mobile/Applications/13117B80-(279-4222-80AC-6444FA9CF81D</string>

<key>TMPDIR</key>

<string>/private/var/mobile/Applications/13117B80-C279-4222-80AC-6444FA9CF81D/tmp</string>

#1 Install an app
with crafted
Info.plist

v

#2 Get execution
of afcd

evasiOn7 Workflow

#3 Enable access to
/tmp for afcd

#4 Inject environment
variable with installd

#5 Bypass
Code signing

A\ A 4

#6 Inject dylib into

a non-sandboxed | €=——

process

#7 Get access to

the root partition

—

#8 Overwrite root

> #9 Launch a kernel

filesystem

exploit

evasiOn7 — Vulnerability #5

* Inject an unsighed dylib and bypass code
signing (gameover.dylib)

sectname __text

segname __TEXT

— Size of the code section is 0 caar x000000000000000
offset 16384
 dyld will ignore this section and align 240 ()
nreloc 0

will not valid its signature Flags 0x80000500

reservedl 0
reserved2 0

— But some executable parts exist
— And can override some functions

@ _SANDBOX_CHECK_NO_REPORT 0000001B
=| _sandbox_check 0000003A
=| _sandbox_extension_consume 0000005B
=| _sandbox_extension_issue_file 0000007F
=| _sandbox_free_error 00000099
=| _sandbox_init 000000AD
=#| _sandbox_init_with_parameters 000000D1
=| _SANDBOX_CHECK_NO_REPORT 00000001
=#| _sandbox_init_with_parameters 00000002

L N T

#1 Install an app
with crafted
Info.plist

v

#2 Get execution
of afcd

evasiOn7 Workflow

#3 Enable access to
/tmp for afcd

#4 Inject environment
variable with installd

#5 Bypass
Code signing

A\ A 4

#6 Inject dylib into

a non-sandboxed €

process

#7 Get access to

the root partition

—

#8 Overwrite root

> #9 Launch a kernel

filesystem

exploit

evasiOn 7 — Vulnerability #6

* Clicking the app icon will trigger the execution
of “afcd” and load gameover.dylib.

* Since gameover.dylib nullifies the sandbox
functions, afcd now runs as mobile outside of

the sandbox.

#1 Install an app
with crafted
Info.plist

v

#2 Get execution
of afcd

evasiOn7 Workflow

#3 Enable access to
/tmp for afcd

#4 Inject environment
variable with installd

#5 Bypass
Code signing

A\ A 4

#6 Inject dylib into

a non-sandboxed | €=——

process

#7 Get access to

the root partition

—

#8 Overwrite root

> #9 Launch a kernel

filesystem

exploit

text:00002D80 loc_2D80

evasiOn7 — Vulnerability #7

e afcd running outside the sandbox now can create a symlink
anywhere.

* CrashHouseKeeping, running as root, will do the following:
— chmod (“/var/mobile/Library/Logs/AppleSupport”, 775)
— chown (“/var/mobile/Library/Logs/AppleSupport”, 501, 501)

text:00002D80
text:00002D84
text:00002D86
text:00002D8A
text:00002D8C
text:00002D8E

text:
text:
text:
text:
text:
text:

00002C90
00002C94
00002C98
00002C9C
00002C9E
00002CAO

; CODE XREF: sub_2AB0+2BE’j

MOVW RO, #(:lowerl6:(aPrivateVarMo_l - 0x2D90)) ; "/private/var/mobile/Library/Logs/ApplesS”...
MoV R1l, RS ; uid_t
MOVT.W RO, #(:upperl6:(aPrivateVarMo_l - 0x2D90)) ; "/private/var/mobile/Library/Logs/Apples”...
MOV R2, R¢ ; gid t
ADD RO, PC ; "/private/var/mobile/Library/Logs/AppleS"...
BLX _chown
MOVW RO, #(:lowerl6: (aLibraryLogsApp - 0x2CA2)) ; "/Library/Logs/AppleSupport”
MOVW R1, #0755 ; mode_t
MOVT.W RO, #(:upperlé6: (aLibraryLogsApp - 0x2CA2)) ; "/Library/Logs/AppleSupport"”
STR R6, [SP,#0xD8+var_ 48]
ADD RO, PC ; "/Library/Logs/AppleSupport”
BLX _chmod

32

evasiOn7 — Vulnerability #7

* Use afcd to create a symlink that points to
“.]..0..0..]..]..]..]../dev/rdiskOs1s1” at “/var/
mobile/Library/Logs/AppleSupport”

* With this symlink, CrashHouseKeeping will

change /dev/rdiskOs1s1 to be readable/
writable by the mobile user

#1 Install an app
with crafted
Info.plist

v

#2 Get execution
of afcd

evasiOn7 Workflow

#3 Enable access to
/tmp for afcd

#4 Inject environment
variable with installd

#5 Bypass
Code signing

A\ A 4

#6 Inject dylib into

a non-sandboxed | €=——

process

#7 Get access to

the root partition

—

#8 Overwrite root

> #9 Launch a kernel

filesystem

exploit

evasiOn7 — Vulnerability #8

e afcd, running outside of the sandbox, further
gains access to the block device

— With =S option in afcd, it can access special files
such as block device.

» #!/usr/libexec/afcd —S —d / -p 8888
— Using the AFC protocol, a PC can overwrite the
root partition
e Open /dev/rdiskOs1s1
* Traverse sub-directories
* Write files

evasiOn7 — Vulnerability #9

* A kernel vulnerability is used to patch the
kernel

— Disable code signing check
— Enable RWX page
— Enable task for_pid O (debugging kernel process)

— Enable PE_i_can_has_debugger flag

* Allow execve of unsigned binary outside of container
— e.g. executing unsigned /bin/sh

How was evasiOn7 Patched?

e Patch log fromiOS 7.1
— Patch for bypassing code signing

= dyld
Available for: iPhone 4 and later, iPod touch (5th generation) and later, iPad 2 and later
Impact: Code signing requirements may be bypassed

Description: Text relocation instructions in dynamic libraries may be loaded by dyld without code signature
validation. This issue was addressed by ignoring text relocation instructions.

CVE-ID

CVE-2014-1273 : evad3rs

37

How was evasiOn7 Patched?

e Patch log fromiOS 7.1
— Patch for escaping the file system sandbox

= Backup
Available for: iPhone 4 and later, iPod touch (5th generation) and later, iPad 2 and later
Impact: A maliciously crafted backup can alter the filesystem

Description: A symbolic link in a backup would be restored, allowing subsequent operations during the
restore to write to the rest of the filesystem. This issue was addressed by checking for symbolic links during
the restore process.

CVE-ID
CVE-2013-5133 : evad3rs

38

How was evasiOn7 Patched?

e Patch log fromiOS 7.1
— Patch for the symlink bug in CrashHouseKeeping

= Crash Reporting
Available for: iPhone 4 and later, iPod touch (5th generation) and later, iPad 2 and later
Impact: A local user may be able to change permissions on arbitrary files

Description: CrashHouseKeeping followed symbolic links while changing permissions on files. This issue was
addressed by not following symbolic links when changing permissions on files.

CVE-ID

CVE-2014-1272 : evad3rs

39

How was evasiOn7 Patched?

e Patch log from iOS 7.1
— Patch for the kernel vulnerability

= Kernel
Available for: iPhone 4 and later, iPod touch (5th generation) and later, iPad 2 and later

Impact: A local user may be able to cause an unexpected system termination or arbitrary code execution in
the kernel

Description: An out of bounds memory access issue existed in the ARM ptmx_get_ioctl function. This issue
was addressed through improved bounds checking.

CVE-ID

CVE-2014-1278 : evad3rs

40

How was evasiOn7 Patched?

* Via binary analysis, the “=S” option for afcd
was removed

#1 Install an app
with crafted
Info.plist

Missing Pieces

v

#H3 E ss to

|

#2 Get execution
of afcd

#4 Inject environment
variable with installd

A\ A 4

#6 Inject dylib into
a non-sandboxed
process

#7

the

Our Work

e Attempt to reconstruct the chain of exploits:
— Find new exploit paths
— Discover new vulnerabilities

Using Developer Licenses to Enable #3 and #5

#1 Install an a
PP #3 Enable‘access to

with crafted It
) m
Info.pllst 4 P #5 Bypass
‘l' Code signing

#4 Inject environment

\ 4 variable with installd

#2 Get execution
of afcd #6 Inject dylib into
| » anon-sandboxed [€——
> process

H7
the

Use Developer Licenses to Enable #3 and #5

e #3: Third party apps have access to /tmp for
free

— Use app to access /tmp to create symlink on
exploit #6

* #5: Sign the code with Developer/Enterprise
License

— Load developer-signed dylib in exploit #6

Take a Short Break

#3 Enable‘access to
/tmp

#4 Inject environment
variable with installd

 What can we do with just these two
vulnerabilities?
— A malicious app can trick the user to install

another app. During this process, it can overwrite
many system configurations.

Modifying Configurations

* Restriction Settings

— In i0S, there exists
an option to disable
certain features
from the device.

— Using the
vulnerability in
installd, we could
overwrite those
settings.

eee00 T-Mobile 4G 4:36 PM
¢ General Restrictions

ALLOW:

Safari

e @

Camera
FaceTime

iTunes Store
Installing Apps
Deleting Apps
In-App Purchases

Siri

CECRPOIPICK!

AirDrop

) €

CarPlay

Before the attack

P - eeee0 T-Mobile 4G 4:41PM

¢ General Restrictions
ALLOW:

Safari

e e

Camera
FaceTime
iTunes Store
Installing Apps
Deleting Apps

In-App Purchases

@@ e e

Siri

AirDrop

) © C

CarPlay

After the attack

QU000 0000UL

Modifying Configurations

° Restri Cti on Sem ngs S "

Enter Passcode Cancel

— We can overwrite the
passcode for this
restriction settings. - - - -

— Since the passcode is
not known to the

1 2 3
user, the user cannot . - K
disable it. . 8 9

New Vulnerability for Permission Downgrading

#1 Install an a
PP #3 Enable‘access to

with crafted It
: m
Info.pllst 4 P #5 Bypass
‘l' Codesigning

#4 Inject environment

\ 4 variable with installd

#2 Get execution
of afcd #6 Inject dylib into
| » anon-sandboxed [€——
> process

#7 Get access to
the root partition

—

Syslogd Chown Symlink Bug

* grep —E ‘chmod|chown’ -r ./

— Find all programs that invoke chmod/chown in /
usr/libexec

* pPS -aux
— List all daemons running as root in i0S 7.0.6

We are lucky. Find a new one in syslogd in 5 mins

Syslogd Chown Symlink Bug

* chown(“/var/mobile/Library/Logs/
CrashReporter”, 501, 501)
— UID 501 is mobile

* chmod(“/var/mobile/Library/Logs/
CrashReporter”, 755)

— rwxr-xr-x mobile:mobile

text:0000BC1 OVW R4, #(:lowerl6:(avarMobileLib 0 - 0xBC32)) ; "/var/mobile/Library/Logs/CrashReporter”
text:0000BC22 OVW R1, #501 ; uid_t

ttttt 0000BC26 OVT. R4, #(:upperl6:(avVarMobileLib 0 - 0xBC32)) ; "/var/mobile/Library/Logs/CrashReporter”
text:0000BC2 MOVW R2, #501 ; gid t

text:0000BC2E ADD R4, PC "/var/mobile/Library/Logs/CrashReporter"”

ttttt 0000BC30 oV RO, R4 char *

ttttt 0000BC32 LX _chown

text:0000BC36 oV RO, R4 cha

text :0000BC38 OVW R1, #0755 ; mod

ttttt 0000BC3 LX _chmod

Overwriting the Root Partition with
Injected dylib

#1 Install an app

with crafted #3 Enable‘access to

. tm
Info.pllst / 4 P #5 Bypass
‘l' Codesigning

#4 Inject environment

\ 4 variable with installd

#2 Get execution
of afcd #6 Inject dylib into
| » anon-sandboxed [€——
> process

#7 Get access to
the root partition

—

#8 Overwrite root HO L ernel
! >
filesystem

Overwriting the Root Partition with
Injected dylib
* By injecting our dylib into afcd running out of

the sandbox, the dylib gains access to /dev/
rdiskOs1s1

— Direct read/write to the block device is possible!

Use lockdownd to obtain root
(replaces kernel patching)

#1 Install an app
with crafted
Info.plist

v

#3 Enable‘access to
/tmp

{

#2 Get execution
of afcd

#4 Inject environment
variable with installd

#5 Bypass
Code signing

A\ A 4

#6 Inject dylib into

a non-sandboxed | €=——

process

H#7 Get access to

the root partition

—

#8 Overwrite root

filesystem

> #9 Getting the root
with lockdownd

Unprotected lockdownd Plist

* Plist files in LaunchDaemons are embedded in
dyld cache file.
* Services.plist in lockdownd is unprotected

— lockdownd can also launch new services/apps
with root privileges.

* Modify Services.plist to run target executables
under our control as root.

Modified Steps for Jailbreaking 7.1.2

* #3 Accessing /tmp
— Install a developer signhed app
— Create symlink as same as evasiOn7 did with afcd

Modified Steps for Jailbreaking 7.1.2

* #5: Forge a dylib to have a constructor, then
sign with a developer license
— Similar to .ctors in ELF it siensinger
— Constructor is called when the dylib is loaded

* This is before afcd initiates its own sandbox.
* Injected dylib will be executed outside of sandbox.

Modified Steps for Jailbreaking 7.1.2

e #7: Dump root partition using syslogd exploit,
then modify it
— Download it to PC through AFC

Yeong's-Macbook-Pro:
Device Identifier:
Device Node:

Part of Whole:
Device / Media Name:

Volume Name:

Mounted:
Mount Point:

File System Personality:
Type (Bundle):

Name (User Visible):
Journal:

[N

Content (IOContent):
0S Can Be Installed:

Media Type:
Protocol:
SMART Status:
Volume UUID:

Total Size:

Volume Free Space:
Device Block Size:
Allocation Block Size:

Read-Only Media:
Read-Only Volume:
Ejectable:

Whole:

Internal:

0S 9 Drivers:
Low Level Format:

0SSymlink/disks/ar 1.1 blue9057$ diskutil info /dev/disk2

disk2

/dev/disk2

disk2

Apple read/write Media

SUSochi11D201.N510S

Yes
/Volumes/SUSochi11D201.N510S

Case-sensitive Journaled HFS+

hfs

Mac 0S Extended (Case-sensitive, Journaled)
Journal size 8192 KB at offset 0x22000
Disabled

None

No

Generic

Disk Image

Not Supported
BE27C121-1819-34F9-A4D6-9B4168C143A5

2.6 GB (2583273472 Bytes) (exactly 5045456 512-Byte-Units)
671.0 MB (670978048 Bytes) (exactly 1310504 512-Byte-Units)

512 Bytes
4096 Bytes

No
No
Yes

Yes

No

No

Not supported

2 B m 1o % v

Favorites Name

E Al My Files

& iCloud Drive
@ AirDrop

7 Applications
] Desktop

@ Documents

0 Downloads

e

Devices

Q Remote Disc

Tags

| SUSochi11D201.N510S

of
o
ol

v

of
ol
ol

etc
Library
private
sbin
M fsck
» fsck_hfs
» fsck_msdos
M fstyp
M fstyp_hfs
M launchd
mount
» mount_hfs
» mount_msdos
» newfs_hfs
» newfs_msdos
M pfctl
System
Library
AccessibilityBundles
AccessoryUpdaterBundles

Date Modified

Mar 29, 2014, 6:55 PM
Mar 29, 2014, 6:55 PM
Apr 23, 2014, 4:51 AM
Mar 29, 2014, 6:56 PM
Mar 29, 2014, 6:55 PM
Mar 29, 2014, 6:55 PM
Mar 29, 2014, 6:56 PM
Mar 29, 2014, 6:55 PM
Mar 29, 2014, 6:55 PM
Mar 29, 2014, 6:55 PM
Mar 29, 2014, 6:55 PM
Mar 29, 2014, 6:55 PM
Mar 29, 2014, 6:56 PM
Mar 29, 2014, 6:55 PM
Mar 29, 2014, 6:56 PM
Mar 29, 2014, 6:54 PM
Apr 23, 2014, 9:10 AM
Apr 23, 2014, 9:11 AM
Mar 29, 2014, 6:52 PM
Mar 29, 2014, 6:52 PM

Modified Steps for Jailbreaking 7.1.2

 #8: Override libmis.dylib

— Build dylibs to return O for all sandbox functions

int MISValidateSignature(char *a, char *b)

{
syslog(0Q, "#### Nullifying Codesign: MISValidateSignature is called");
return 0;
}
int MISValidateSignatureAndCopyInfo(char *a, char xb) No previ
¢ -
syslog(0Q, "#### Nullifying Codesign: MISValidateSignatureAndCopyInfo is called");
return 0;
}

— If injected, code signing check will be disabled.

59

Modified Steps for Jailbreaking 7.1.2

 #8: Override libmis.dylib
— Inject into /usr/lib

— Touch /System/Library/Caches/com.apple.dyld/
enable-dylibs-to-override-cache

// check for file that enables dyld shared cache dylibs to be overridden
struct stat enableStatBuf;
sDylibsOverrideCache = (::stat(IPHONE_DYLD SHARED CACHE_DIR , &enableStatBuf) == 0);

Sourcecode of dyld, from opensource.apple.com

Modified Steps for Jailbreaking 7.1.2

 #8: Override libmis.dylib

— If we make iOS to load /usr/lib/libmis.dylib, it will
fail to boot
* Injected libmis.dylib is signed by developer license
 amfid must be started to allow developer license

— Otherwise, provisioning profiles will not be loaded.

* A chicken-and-egg problem

Modified Steps for Jailbreaking 7.1.2

 #8: Override libmis.dylib

* Create symlink enable-dylibs-to-override-cache
pointing to /tmp/bypass_codesign
* At boot time, since tmpfs is a kind of ramdisk, it is
empty
 dyld will not load /usr/lib/libmis.dylib
— dyld checks existence with stat(), not Istat()

// check for file that enables dyld shared cache dylibs to be overridden
struct stat enableStatBuf;
sDylibsOverrideCache = (::stat(IPHONE_DYLD SHARED_ CACHE_DIR , &enableStatBuf) == 0);

Modified Steps for Jailbreaking 7.1.2

e #9: Kill amfid & installd

— We create /tmp/bypass_codesign after the boot
process

 amfid & installd are already loaded with stock
libmis.dylib

— Then we kill and reload the daemons

* Killing amfid requires root permissions.

Modified Steps for Jailbreaking 7.1.2

* #9: Edit /System/Library/Lockdown/
Services.plist

<key>com.apple.killamfid</key>

- <key>com.apple.killinstalld</key>
<dict>

<key>AllowUnactivatedService</key>
<true/>

<key>Label</key>
<string>com.apple.killamfid</string>
<key>ProgramArguments</key>

<array>
<string>/bin/launchctl</string>

<string>stop</string>
<string>com.apple.MobileFileIntegrity</string>
</array>
<key>UserName</key>
<string>root</string>

</dict>

Script for killing amfid

<dict>
<key>AllowUnactivatedService</key>
<true/>
<key>Label</key>
<string>com.apple.killinstalld</string>
<key>ProgramArguments</key>

<array>
<string>/bin/launchctl</string>

<string>stop</string>
<string>com.apple.mobile.installd</string>
</array>
<key>UserName</key>
<string>root</string>
</dict>

Script for killing installd

Modified Steps for Jailbreaking 7.1.2

* Writeback root partition, then reboot
— Upload diskimage with AFC
— open(/dev/rdiskOs1s1);
— Write modified data...

Modified Steps for Jailbreaking 7.1.2

e #9: Kill daemons with lockdownd

— lockdownd is a service that processes commands
from USB connections.

e Can be called by a USB connection
* Can be called by connecting to 127.0.0.1:62078

AMDeviceConnect(device);

assert(AMDevicelsPaired(device));

assert(AMDeviceValidatePairing(device) == 0);

assert(AMDeviceStartSession(device) == 0);

printf("APP PATH: %s\n", app_path);

CFStringRef path = CFStringCreateWithCString(NULL, app_path, kCFStringEncodingASCII);

CFURLRef relative_url = CFURLCreateWithFileSystemPath(NULL, path, kCFURLPOSIXPathStyle, false);
CFURLRef url = CFURLCopyAbsoluteURL(relative_url);

CFRelease(relative_url);

// read file

int afcFd;

assert(AMDeviceStartService(device, CFSTR(“com.apple.Eillinstalld"), &afcFd, NULL) == 0);
assert(AMDeviceStopSession(device) == 0);

assert(AMDeviceDisconnect(device) == 0);

Demo Video

Jailbreak Complete

e Attacker can execute code outside of the
sandbox

— A dylib injected into afcd already does this

* Attacker can execute unsigned code

— Newly started amfid & installd will load modified
libmis.dylib
* Attacker can install & run unsigned binaries
e Attacker has a privileged root process

— Via hooking daemons running as root

Limitations

* Our exploit does not use a kernel vulnerability
— We cannot patch the kernel

* We cannot:
— Execve a non-container binary
e Can be replaced with fork() & dlopen()
— Disable sandbox of container binary

* Can be delegated to a sandbox-free process

— Debug the kernel

Lessons

* Jailbreak usually requires multiple
vulnerabilities to achieve.

* Fixing some of vulnerabilities on the chain
may block the current jailbreak attack.

* Incompletely patching the disclosed

vulnerabilities still leaves the door for other
attacks.

W N e

® N O WU

References

https://github.com/comex/datautilsO/blob/master/make kernel patchfile.c

http://geohot.com/e7writeup.html

http://theiphonewiki.com/wiki/EvasiOn7 (will be updated per each write-ups)

https://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-
%20Pod2g,%20Planetbeing, %20Musclenerd%20and%20Pimskeks%20aka

%20Evad3rs%20-%20Swiping%20Through%20Modern%20Security

%20Features.pdf

http://theiphonewiki.com/wiki//System/Library/Lockdown/Services.plist
http://support.apple.com/kb/HT6162

http://support.apple.com/kb/HT6208
http://securitylearn.net/wp-content/uploads/i0S%20Resources/Apple%20i0S

%204%20Security%20Evaluation%20WP.pdf
http://www.semantiscope.com/research/BHDC2011/BHDC2011-Slides.pdf

71

Than
Than

Than

Questions?

< you for your attention!
ks to evad3rs for their jailbreak tool.

ks to geohot for his detailed write-up.

