
HexType: E�icient Detection of Type Confusion Errors for C++
Yuseok Jeon

Purdue University
jeon41@purdue.edu

Priyam Biswas
Purdue University

biswas12@purdue.edu

Scott Carr
Purdue University

carr27@purdue.edu

Byoungyoung Lee
Purdue University

byoungyoung@purdue.edu

Mathias Payer
Purdue University

mathias.payer@nebelwelt.net

ABSTRACT
Type confusion, often combined with use-after-free, is the main
attack vector to compromise modern C++ software like browsers or
virtual machines. Typecasting is a core principle that enables mod-
ularity in C++. For performance, most typecasts are only checked
statically, i.e., the check only tests if a cast is allowed for the given
type hierarchy, ignoring the actual runtime type of the object. Us-
ing an object of an incompatible base type instead of a derived
type results in type confusion. Attackers abuse such type confusion
issues to attack popular software products including Adobe Flash,
PHP, Google Chrome, or Firefox.

We propose to make all type checks explicit, replacing static
checks with full runtime type checks. To minimize the performance
impact of our mechanism HexType, we develop both low-overhead
data structures and compiler optimizations. To maximize detection
coverage, we handle speci�c object allocation patterns, e.g., place-
ment new or reinterpret_cast which are not handled by other
mechanisms.

Our prototype results show that, compared to prior work, Hex-
Type has at least 1.1 – 6 times higher coverage on Firefox bench-
marks. For SPEC CPU2006 benchmarks with overhead, we show a 2
– 33 times reduction in overhead. In addition, HexType discovered
4 new type confusion bugs in Qt and Apache Xerces-C++.

CCS CONCEPTS
• Security and privacy → Systems security; Software and ap-
plication security;

KEYWORDS
Type confusion; Bad casting; Type safety; Typecasting; Static_cast;
Dynamic_cast; Reinterpret_cast

1 INTRODUCTION
C++ is well suited for large software projects as it combines high
level modularity and abstraction with low level memory access and
performance. Common examples of C++ software include Google

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4946-8/17/10. . . $15.00
DOI: http://dx.doi.org/10.1145/3133956.3134062

Chrome, MySQL, the Oracle Java Virtual Machine, and Firefox, all
of which form the basis of daily computing uses for end-users.

The runtime performance e�ciency and backwards compatibil-
ity to C come at the price of safety: enforcing memory and type
safety is left to the programmer. This lack of safety leads to type
confusion vulnerabilities that can be abused to attack programs,
allowing the attacker to gain full privileges of these programs. Type
confusion vulnerabilities are a challenging mixture between lack
of type and memory safety.

Generally, type confusion vulnerabilities are, as the name im-
plies, vulnerabilities that occur when one data type is mistaken for
another due to unsafe typecasting, leading to a reinterpretation of
the underlying type representation in semantically mismatching
contexts.

For instance, a program may cast an instance of a parent class
to a descendant class, even though this is neither safe nor allowed
at the programming language level if the parent class lacks some
of the �elds or virtual functions of the descendant class. When the
program subsequently uses the �elds or functions, it may use data,
say, as a regular �eld in one context and as a virtual function table
(vtable) pointer in another. Such type confusion vulnerabilities are
not only wide-spread (e.g., many are found in a wide range of soft-
ware products, such as Google Chrome (CVE-2017-5023), Adobe
Flash (CVE-2017-2095), Webkit (CVE-2017-2415), Microsoft Internet
Explorer (CVE-2015-6184) and PHP (CVE-2016-3185)), but also se-
curity critical (e.g., many are demonstrated to be easily exploitable
due to deterministic runtime behaviors).

Previous research e�orts tried to address the problem through
runtime checks for static casts. Existing mechanisms can be catego-
rized into two types: (i) mechanisms that identify objects through ex-
isting �elds embedded in the objects (such as vtable pointers) [6, 14,
29, 38]; and (ii) mechanisms that leverage disjoint metadata [15, 21].
First, solutions that rely on the existing object format have the
advantage of avoiding expensive runtime object tracking to main-
tain disjoint metadata. Unfortunately, these solutions only support
polymorphic objects which have a speci�c form at runtime that
allows object identi�cation through their vtable pointer. As most
software mixes both polymorphic and non-polymorphic objects,
these solutions are limited in practice — either developers must
manually blacklist unsupported classes or programs end up having
unexpected crashes at runtime. Therefore, recent state-of-the-art
detectors leverage disjoint metadata for type information. Upon
object allocation, the runtime system records the true type of the
object in a disjoint metadata table. This approach indeed does not
su�er from non-polymorphic class issues, because type information
can be accessed without referring vtable pointers.

However, disjoint metadata schemes have to overcome two chal-
lenges: (i) due to C++’s low level nature it is hard to identify all
object allocations and (ii) the lookup through this disjoint meta-
data table results in prohibitive overhead. Existing approaches with
disjoint metadata precisely exhibit these drawbacks. Because it is
di�cult to handle all C++ language quirks imposed by developers,
they only protect a small fraction of typecasts in practice. Due to
the complexity of metadata tracking, existing approaches introduce
prohibitive overheads (TypeSan [15] has up to 71.2% overhead for
Firefox with a geometric mean of 30.8%; note that TypeSan already
improves performance over CaVer [21]). Control-Flow Integrity
(CFI) techniques [20, 34–36] verify all indirect control-�ow trans-
fers within a program to detect control-�ow hijacking. However,
these techniques address the type confusion problem only partially
if control �ow is hijacked, i.e., they detect usage of the corrupted
vtable pointer, ignoring any preceding data corruption. Similarly,
vtable protection schemes [14, 38] protect virtual calls from vtable
hijacking attacks but do not block type confusion attacks. Memory
safety mechanisms [24, 26, 32] protect against spatial and temporal
memory safety violations but incur prohibitively high overhead
in practice. Also, these mechanisms do not protect against type
confusion, e.g., they do not stop an int array of the correct size
from being used in place of an object. Control-�ow hijacking protec-
tion and memory safety are therefore orthogonal to type confusion
detection. Type confusion may be used to cause a memory safety
violation. Detecting type confusion allows earlier detection of se-
curity violations for these cases.

We propose HexType, a mechanism that protects C++ software
from type confusion by making all casts explicit. Each cast in the
source language (explicit or implicit, static or dynamic) is turned
into a dynamic runtime check. HexType records the type of each
object and speci�c casts are replaced with our instrumentation. We
fundamentally address the challenges of earlier work by (i) increas-
ing coverage of typecasting checks and (ii) drastically reducing
overhead.

Our prototype implementation of HexType vastly outperforms
state-of-the-art type confusion detectors, increasing coverage and
often lowering overhead. Our reduced overhead is the result of
novel optimization techniques and using an e�cient type metadata
structure. We leverage an analysis that identi�es types that are
used in typecasting, allowing us to remove tracing overhead for
any objects that are never cast. For the type metadata structure,
we design a two-layered data structure that combines a hash table
(fast-path) and red-black tree (slow-path) in order to reduce object
tracing overhead. Despite performance, our mapping scheme also
overcomes limitations of existing work such as relying on �xed
addresses for metadata which may run into compatibility issues if
applications try to reuse the same addresses

To address the low coverage of related work, we developed al-
location detectors that track reuse of pre-allocated memory space
cases for new objects (through placement new) and transferring ob-
jects through reinterpret_cast. Additionally, HexType increases
coverage for dynamic_cast and reinterpret_cast and goes be-
yond static_cast unlike all the previous works. In the case of

DOMNode

DomCharacter
Data

DomDocument
Type DOMElement

DOMElement
Impl

U
pcast

(Safe)D
ow
nc
as
t

(U
ns
af
e)

DOMText
Impl

Figure 1: Visualization of an example C++ type hierar-
chy, showing the directions of (safe) upcasting and (unsafe)
downcasting.

dynamic_cast, HexType replaces the existing ine�cient typecast-
ing veri�cation routine with a fast lookup using our metadata. Hex-
Type supports reinterpret_cast to increase object tracing coverage
and �nd additional bugs.

Due to our increased coverage, we discovered four new type
confusion vulnerabilities (which evaded previous approaches) in
two widely-used open source libraries (Qt Base library and Apache
Xerces-C++) during our evaluation. For the Firefox benchmarks,
HexType increases coverage by 1.1 – 6 times compared to TypeSan
with some increased performance overhead due to the vast increase
in coverage. For SPEC CPU2006 benchmarks with overhead, we
show a 2 – 33 times reduction in overhead.

Our major contributions can be summarized as:

(1) An open source type confusion detector with low overhead
and high coverage (outperforming state-of-the-art detectors);

(2) A novel optimization that greatly reduces the number of ob-
jects that need to be tracked (as much as 54% – 100% on SPEC
CPU2006), thus reducing overhead;

(3) Design of e�cient data structures that use a fast-path (O (1)
time complexity) for type information insertion and lookup
(with a hit rate of 94.09% and 99.99% on the SPEC CPU2006
and 98.76% and 95.20% for Firefox respectively);

(4) Robust allocation identi�cation implementation that greatly
increases coverage (1.1 - 6 times over TypeSan on Firefox)
combined with also covering alternate casting methods such
as placement new;

(5) Discovery of four new vulnerabilities in QT Base library and
Apache Xerces-C++;

2 BACKGROUND
In this section, we provide background information on C++’s type
system, various cast operations, and previous type confusion detec-
tion tools necessary to understand the design and implementation
of HexType.

2.1 C++ Classes and Inheritance
C++ is an object-oriented programming language, with classes as
the primary abstraction. Classes allow the programmer to de�ne
new types. A class can inherit from multiple ancestor classes. The
descendent class has all the same members (methods and variables)
as its ancestor(s) and optionally additional members de�ned in the
descendent class de�nition.

2

In C++, a pointer of type A can be cast into a pointer of another
type, type B. This e�ectively tells the compiler to treat the pointed-
to object as being type B.

The crucial question is: when is a typecast safe? The answer
depends on the type of the pointed-to object and the destination
type (type B in the previous example). Focusing on casting between
class types, the security objective of this work, casting from de-
scendant class to ancestor class is always safe since the members
of the descendant class are a superset of the members of the an-
cestor class. This operation is called upcasting. For example, as
shown in Figure 1, if we visualize the type hierarchy with the an-
cestor class at the top and descendants at the bottom, moving up
the hierarchy (upcasting) is safe. On the other hand, downcasting,
casting from ancestor to descendant, may not be safe if the ances-
tor misses any member of the descendant class. This is depicted
in Figure 2. Such downcasting has been abused by attackers in
a wide-range of popular C++ programs, which lead to complete
compromises of an underlying system, as recently shown for, e.g.,
Google Chrome (CVE-2017-5023), Adobe Flash (CVE-2017-2095),
Webkit (CVE-2017-2415), Microsoft Internet Explorer (CVE-2015-
6184) or PHP (CVE-2016-3185).

2.2 C++ Cast Operations
The C++ syntax allows four di�erent types of casts to meet di�erent
requirements of the developer. Each casting type performs unique
casting operations, imposing non-trivial security implications. In
the following, we provide detailed information on each casting
type, particularly focusing on its security aspects in terms of type
confusion issues.

The example in Figure 1 shows a cast using static_cast, but
there are other cast in C++ and their details are important to this
work. The other cast types we are concerned with are dynamic_cast,
reinterpret_cast, and C-style typecasting.

s t a t i c _ c a s t < type >(e x p r e s s i o n)
dynamic_cast < type >(e x p r e s s i o n)
re in terpre t_cas t < type >(e x p r e s s i o n)
const_cast < type >(e x p r e s s i o n)

Static Cast. A static_cast casts an object of type A to an object
of type B. The check is executed purely at compile time and no
runtime check is performed. Due to the static nature of this check,
the runtime type of the object is not considered and the check is
limited to check if the two types are compatible, i.e., there is a path
in the type hierarchy from expression’s type and type that involves
upcasting and/or downcasting.

While not incurring any performance overhead, the safety guar-
antees of static casts are limited. Therefore, the programmer is
responsible that an object of the correct type is used, e.g., guar-
anteeing that the downcasted object is actually an object of the
derived type. In practice, since it is challenging to �gure out such
compatibility at compile time, this has led to the unfortunate fact
that type confusions are dominating vulnerabilities in modern C++
programs [23].
Dynamic Cast. A dynamic_cast can safely convert types be-
tween classes in the same class hierarchy. Whereas static_cast
only performs a compile time check, it performs an additional

runtime check using heavy-weight metadata, Run Time Type In-
formation (RTTI). As, in general, the dynamic runtime type of an
object cannot be determined statically, dynamic_cast must lever-
age runtime type information such as RTTI. RTTI encodes all type
related information, and a compiler generates this RTTI per type
such that each type has its dedicated RTTI entry in a compiled
binary. The RTTI entry essentially forms a recursive structure in
that each RTTI entry points to another RTTI entry to represent the
class hierarchy. A compiler further appends a reference to the RTTI
entry at the end of each virtual function table, so that the RTTI
entry can be retrieved at runtime using any virtual address point-
ing to an object. In other words, since the �rst �eld in an object is
typically �lled with a virtual function table pointer, dynamic_cast
can �nd the RTTI entry given an object address using the virtual
function table pointer. After locating the corresponding RTTI en-
try, dynamic_cast starts to recursively traverse RTTI to verify the
casting correctness (i.e., that the types are compatible). If there is
a path on the type hierarchy between expression’s type and the
target type, then the types are compatible. The types are compatible
whenever the type of expression is an descendant of type (upcast).
The types can also be compatible when type is the exact type of
the object pointed to by expression. If the casting is incorrect (i.e.,
the type of expression and type are incompatible), the cast fails in
one of two ways:

• If type is a pointer type, it returns NULL.
• If type is a reference type, it throws a pre-de�ned exception

(i.e., std::bad_cast).

Due to the design of dynamic_cast, its usage is strictly lim-
ited to polymorphic objects. As mentioned before, dynamic_cast
relies on a virtual function table to locate RTTI, but the virtual
function table is only present in polymorphic objects. Note that,
given these limitations, dynamic_cast can only be used for poly-
morphic types. Thus, compilers simply generate a compile-time
error if a dynamic_cast is used for a non-polymorphic type. Note
that runtime errors are still possible.
Reinterpret Cast. A reinterpret_cast converts between any
two (potentially incompatible) types. It instructs the compiler to
reinterpret the underlying bit pattern of the cast objects. Because
it does neither create a copy nor perform any runtime check, a
reinterpret_cast always incurs zero overhead. From the secu-
rity standpoint, programmers are responsible to ensure the cor-
rectness of reinterpret_cast similar to the case in static_cast.
Since reinterpret_cast only changes the object’s type, it simply
returns the same address. This behavior can cause problems for
polymorphic classes or classes with multiple inheritance. For poly-
morphic classes, reinterpret_cast returns a pointer to an object
with potentially the wrong vtable pointer as reinterpret_cast
does not change the memory of the object. If the object uses multi-
ple inheritance, then a pointer to a base class may have the wrong
value (not a pointer to the object itself) [5]. However, if the exact
source object type information is known then reinterpret_cast
can be used to: (1) e�ciently construct an object without executing
the constructor (reusing an old object of the same type) and (2)
restoring the actual type if a function returns a void* pointing to
an object.

3

c l a s s Ances to r { in t x ; } ;
c l a s s Descendant : Ances to r {

double y ;
} ;
Ances to r ∗A = new Ances to r () ;
Descendant ∗D ;
D = s t a t i c _ c a s t < Ances to r ∗ >(A) ;
D−>y ; / / e r r o r

Descendant::y

Access scope
 of *D

Access scope
 of *A

Figure 2: A code example and diagram of a type confusion problem where an ancestor class is incorrectly accessed using a
pointer to a descendent class. The static cast results in type confusion and accessing the �eld D->y results in a memory safety
violation.

class D : public B { …. };
……

trace_obj();
B *pB = new B;
……

verify_cast();
static_cast<D *>(pB)

-
- - -

- -

Per-entry
RB-tree

-
B

D B

B

D -

 Type
Relationship

Type Relationship
Information (§4.1)

Object Type
Tracing (§4.2)

HexObjTypeMap (§4.2)

Type Casting
Verification (§4.3)

Figure 3: A system overview of HexType. HexType consists
of several modules that analyze type relationship informa-
tion and insert object tracing and typecasting instrumenta-
tion to verify typecasting operation.

Const Cast. A const_cast drops cv-quali�er (i.e., const or volatil-
ity) from an object speci�ed in the expression. Unlike previously
mentioned static and dynamic casts, const_cast does not impact
type confusion issues because type hierarchies are not involved in
this case. const_cast still may introduce security issues (5.2.9/11
in ISO/IEC 14882 [19]) if it is used in the wrong context—a read-
only object has been accidentally const cast, and thus overwrites
such a write-protected object. These issues can be addressed using
other memory safety techniques [18, 18, 25, 25] through enforc-
ing per-object write protection. Protecting const casts is therefore
orthogonal to the scope of this paper.
C-style Typecast. Although C-style casts are discouraged in C++
programs, compilers allow them to keep backward compatibility.
More precisely, if C-style casting (5.4 in ISO/IEC 14882 [19]) is en-
countered, the compiler translates the cast into a sequence of casts:
(i) const_cast, (ii) static_cast, and (iii) reinterpret_cast. In
other words, compilers try to cast the objects using the sequence of
casts above and use the result of the �rst cast that succeeds without
a compilation error. This in fact implies that, from the standpoint of
detecting type confusion issues, it is no di�erent from handling the
above three cast types as C-style casting will �nally be translated
into one of them.

2.3 Defenses against type confusion
Type confusion is a pressing problem and several mechanisms have
been proposed to detect and protect against type confusion. As
mentioned earlier, the existing defenses can be grouped into two
categories: (i) those based on identifying objects based on existing
�elds embedded in the object themselves (such as vtable pointers) [6,
14, 29, 38]; and (ii) those based on disjoint metadata [15, 21].

CaVer [21] uses disjoint metadata for all allocated objects to
support non-polymorphic classes without blacklisting. CaVer is
the �rst typecasting detection tool (based on disjoint metadata)
that can verify type-casting for non-polymorphic objects. However,
CaVer su�ers from both security and performance issues — low
safety coverage on castings and high runtime overhead.

TypeSan [15] reduces the performance overhead by a factor of 3 –
6 compared to CaVer and increases detection coverage by including
C-style allocation (e.g., malloc). However, the overhead of both
disjoint metadata approaches is still high due to ine�cient meta-
data tracking, e.g., tracking most live objects. Also, while increasing
coverage compared to CaVer, TypeSan still has an overall low cov-
erage rate. Especially, TypeSan has 12 ∼ 45% coverage rate for
Firefox. These limitations motivated us to design HexType, which
overcomes the aforementioned limitations — namely reducing per-
cast check overhead, increasing coverage, and providing additional
features.

3 THREAT MODEL
Our threat model assumes that the underlying application is benign
but contains a type confusion error that an attacker can �nd and
exploit. The primary goal of our defense mechanism is to prevent
such type confusion attacks. Our defense mechanism automatically
detects such exploitation attempts, avoiding any negative security
rami�cations. We further assume that the attacker may read ar-
bitrary memory, and thus our detection mechanism is designed
not to rely on information hiding or randomization. Attacks not
based on type confusion, including control-�ow hijacking, integer
over�ow, and memory corruption, are out of scope and these can
be protected by other security hardening techniques. We assume
that our instrumentation cannot be removed by the attacker, i.e.,
our instrumented code is on a non-writable page. The underlying
operating system, program loader, and system libraries are in the
Trusted Computing Base (TCB).

4

4 HEXTYPE DESIGN AND IMPLEMENTATION
HexType is a Clang/LLVM-based type confusion detector for C++
programs. During compilation of a target program, HexType gen-
erates a HexType-hardened program. During runtime, if HexType
detects a type confusion error, the program is terminated with a
detailed bug report.

Figure 3 illustrates an overview of HexType. Given the source
code as input, HexType generates a type table containing all type
relationship information (§4.1) and, at runtime, information about
the true types of each allocated object is collected in the object
mapping table (§4.2). HexType veri�es the correctness of each cast
using both the type relationship information and object mapping
table (§4.3). HexType leverages a set of optimization techniques to
reduce performance overhead during the above processes (§4.4).

4.1 Type Relationship Information
In order to verify typecasting operations, HexType needs to know
a valid set of destination types that can be cast from a given source
type. Note that compilers keep this information readily available
during compilation to check the validity of casts statically, but
such checks are inherently limited as the true source type of an
object is only known at runtime. C++ applications generally do not
keep explicit information about the type hierarchy. This subsection
describes how HexType generates and maintains a hierarchical
type information for executables and shared libraries. We call this
information type table.

During compilation, HexType extracts all type relationship infor-
mation and prepares metadata for each type. For example, as shown
in Figure 1, for the type DOMElementImpl, HexType �rst collects all
types that are allowed to be cast (i.e., DOMElement and DOMNode), each
of which is basically a parent class of DOMElementImpl. Instead of
simply storing a type name in the type table, HexType stores a
string hash of the type name to avoid expensive string match op-
erations, enabling O(1) comparisons. HexType exports, per type,
a list of hash values as a global variable during the compilation,
allowing other libraries to reuse this information. These lists of
hash values are sorted to e�ciently search value from the target
list using binary search during runtime type casting veri�cation.
HexType generates one such global variable per type.

DOMElementImpl: H(DOMElement), H(DOMNode), ...

In order to provide compatibility, HexType allows and the type
table includes phantom classes. A phantom class is a parent-child
relationship where the data layout of the child is equivalent to the
data layout of the parent. HexType allows downcasts from such a
child to the parent as such phantom classes are frequently used in
practical environments to support interoperability between C and
C++.

To manage the type table e�ciently, HexType only records each
type’s relationship information once, following the one de�nition
rule (ODR) [19] of the C++ standard. According to this rule, the
type de�nition of each object must be identical (each object’s parent
information is always the same) among all source code which will
be merged. Therefore, each type will have a uniquely identical list
of hash values among all source codes except for phantom classes.
Since each object can have a derived class as a phantom class and
the set of the phantom classes cannot be determined when each

object type is de�ned (we also have to rely on information from
each object’s derived class de�ned site), HexType only needs to
update this phantom class information.

4.2 Object Type Tracing
In order to verify typecasting operations at runtime, HexType needs
to locate the type information based on the underlying object iden-
ti�ed by the source pointer address in the casting operation. Unlike
dynamic_cast, HexType does not utilize RTTI to retrieve type in-
formation due to the following limitations of RTTI: (i) RTTI only
provides type information for polymorphic objects (not support-
ing typecasting veri�cation of non-polymorphic objects); (ii) RTTI
incurs expensive typecasting veri�cation costs due to its recur-
sive structure; and (iii) RTTI signi�cantly blows up the size of the
compiled binary.

For these reasons, HexType designs a new set of techniques,
which aims at maximizing security coverage and minimizing per-
formance overhead. In the following, we �rst describe how HexType
captures the underlying memory semantics with respect to the type
information. HexType systematically identi�es all object allocation
sites, which signi�cantly elevates the coverage for typecasting op-
erations (§4.2.1). Next, we illustrate how HexType maintains such
memory semantics at runtime. In order to perform e�cient lookup
operations, HexType employs a new data structure, type table,
which supports both a fast-path for performance e�ciency and a
slow-path for completeness (§4.2.2).

4.2.1 Tracing Object Type Allocation. The C++ type system is
not strongly constrained and thus developers can easily change
the object type at runtime as required. This �exibility, though it
is one of the main reason of C++’s popularity, introduces several
challenges when tracking type information. More precisely, Hex-
Type must identify the correct type information imposed to certain
runtime memory objects, but dynamic type changes complicate the
identi�cation processes.

HexType comprehensively identi�es all the sites that assign
types, which can be generally categorized into the following two
cases depending on when the type assignment is performed—(1) at
the time of creating an object and (2) at the time of transferring an
object. The �rst case includes the well known new operator which
allocates object memory space through typical system memory
allocator (i.e., malloc()) and initializes the object by invoking its
associated constructor function. The �rst case also includes place-
ment new, which reuses speci�ed memory space and simply invokes
the constructor for initialization. For these type allocation sites at
object creation time, HexType registers the type of the object in
the type table by passing the type information and the base pointer
to the registration function. The runtime library function updates
the type table with this information We describe more details how
HexType maintains information in §4.2.2.

The second case of type assignments happen while hard-copying
objects that have already been constructed. In C++, it is common
to copy or move memory objects in memory space for, e.g., ob-
ject marshaling or when passing objects between allocation spaces.
Once the memory object is relocated in memory space, a developer
is responsible to reassign the type of underlying memory objects.

5

1 template<class T, std::size_t N>
2 class static_vector
3 {
4 // properly aligned uninitialized storage for N T’s
5 size_t Size = sizeof(T);
6 size_t Align = alignof(T);
7 typename std::aligned_storage<Size, Align>::type d[N];
8
9

10 public:
11 template<typename ...Args> void insert(Args&&... args)
12 {
13
14 // Create an object using placement new
15 new(d+m_size) T(std::forward<Args>(args)...);
16
17 }
18

19 const T& operator[](std::size_t pos) const
20 {
21 // Access an object using repinterpret_cast
22 return *reinterpret_cast<const T*>(d+pos);
23 }
24
25 };

Figure 4: Code example for std::aligned_storage using place-
ment new and reinterpret_cast to manage type allocation.

Developers can rely on move or copy operators in C++ if the un-
derlying object is a C++ class object constructed through new or
placement new operators. Alternatively, they can explicitly specify
the type of underlying memory objects using reinterpret_cast.
This second case is commonly used to work around system con-
straints. For example, when an object is marshaled and unmar-
shaled to pass it between di�erent components, reinterpret_cast
can e�ciently construct an object without explicitly executing the
class constructor again. To handle reinterpret_cast, HexType
instruments reinterpret_cast to call a runtime function with
two pieces of information: (i) destination type and (ii) source ad-
dress information. In the runtime library function, HexType inserts
this information into the type table only if there is no matching
entry with reinterpret_cast’s source address.

For example, Figure 4 shows how aligned_storage creates and
accesses objects. In the initial step, aligned_storage creates unini-
tialized memory blocks (line 5). In this uninitialized storage, the
objects are created using placement new (line 13). Then, we can
access the allocated objects using reinterpret_cast (line 20).

In fact, previous work including UBSan, CaVer, and TypeSan
all fail to generally handle type assignment sites. In the case of
UBSan, it cannot capture the type information of non-polymorphic
objects as it has to rely on RTTI, resulting in unexpected crashes
at runtime. In the case of CaVer and TypeSan, they only consider
new operator as type assignment sites and thus they miss all other
assignment sites mentioned above. As we will clearly demonstrate
in the evaluation section, HexType showed 1.1 – 6 times higher
coverage on Firefox benchmarks compared to TypeSan.

Fast-path Slot
Slow-

path Slot
(RB-tree

Ref)

Allocated
Object

Ref

Hashvalue
for Object

Name

Type
Relationship
Information

Ref

0x417000 2341234 0x51723D

0x41563C 1312321 0x51724D _

 0x41723D 7231234 0x51724D _

_ _ _ _

0x41563E 4232123 0x51623D

Per-entry
RB-tree

Figure 5: A snapshot example of object mapping table, show-
ing how it maps an object using a combination of fast-path
and slow-path slots. When HexType looks up type infor-
mation, an object address is used to obtain the reference to
the corresponding objectmapping table entry.HexType�rst
matches the fast-path slot. If not present in the fast-path
slot, HexType then searches the corresponding red-black
tree to �nd type information (slow-path) and updates the
fast-path accordingly.

4.2.2 Mapping Objects to type table. HexType maintains an
object mapping table, which maps runtime objects to its associated
type information in the type table. More speci�cally, a key in the
object mapping table is an object address and its mapped value is
an address pointing to the associated entry within the type table.
It is performance critical for HexType to e�ciently design this
object mapping table, because this mapping process through object
mapping table is performed every time HexType attempts to verify
the typecasting operations.

We found various object tracking methods in previous works [15,
21]. TypeSan [15] uses a memory shadowing scheme to track global,
heap, and stack objects. However, the TypeSan memory shadow-
ing scheme has three limitations: (i) TypeSan uses a �xed address
for the metadata table (to enable faster lookups) which may result
in compatibility problems if applications reuse the same address,
e.g., due to ASLR, which we observed in practice; (ii) TypeSan
only updates objects in the “object to type” mapping table when
objects are allocated (it does not delete information when an ob-
ject is deleted from memory). Therefore stale metadata can create
additional problems; (iii) TypeSan’s memory shadowing scheme
uses more memory resources compared to other non-memory shad-
owing schemes. CaVer [21] uses a red-black tree to keep track of
global and stack objects. However, overhead becomes prohibitive
for, e.g., stack objects, as stack objects incur frequent insertions
and deletions. Since a red-black tree generally shows O (loдN) time
complexity to delete, insert, and search.

Toward this end, HexType leverages a new data structure to
reduce performance overheads in mapping operations. The key
insight for object mapping table is that some objects are accessed
much more frequently than others. We therefore designed a data
structure that splits object lookup into a fast pass using a hash
table and a slow path using a red-black tree, see Figure 5. The
�rst level of our data structure is a hash table. We use the object’s
address and a simple hash function to locate the entry for a given

6

1 class Base1 { ... };
2 class Base2 { ... };
3

4 // multiple inheritence
5 class Derived: public Base1, public Base2 { ... };
6

7 Derived obj;
8 Derived* dp = &obj;
9

10 // indicates the Dervied’s Base2 object
11 Base2* b2p = dp;
12 // static_cast restores the original pointer value
13 Derived* dps = static_cast<Derived*>(b2p);
14 // reinterpret_cast perserves the new pointer value
15 Derived* dpr = reinterpret_cast<Derived*>(b2p);

Figure 6: An example of how reinterpret_cast results in a
type confusion problem.

object. Each hash table entry holds two slots: (1) the fast-path slot
for the least recently cast object, which holds the reference to the
object (to check if the object matches), the hash of the object’s
type, and the reference to object’s type relationship information
(collects all destination types that are allowed to be cast) and (2) the
slow-path slot, which holds a reference to a per-slot red-black tree
maintaining a complete set of objects that map to the hash table
entry. In other words, once HexType locates a hash table entry, it
simply reuses the value in the fast-path slot if the object’s address in
the fast-path slot matches. Otherwise, HexType walks through the
red-black tree pointed by the slow-path slot to address collisions.
Whenever a lookup in the red-black tree is performed, the fast-path
is updated with the most recent object. As a result, our mapping
scheme with object mapping table imposes O (1) time complexity
for fast-path accesses and O (loдN) for slow-path accesses (where
N is the number of values in the per-slot red-black tree). In the
SPEC CPU2006 C++ benchmarks, our approach uses the fast-path
99.68% of time to update metadata and 100% of the time to lookup
information from the type table. We demonstrate that these design
choices for the object mapping table are reasonable in the evaluation
section in §5.

4.3 Type Casting Veri�cation
We now describe the �nal step of HexType, typecasting veri�cation,
which checks the safety of casting. HexType instruments typecast-
ing operations with additional veri�cation code at compile time. At
runtime, this instrumentation locates the object’s true type infor-
mation in the type table and then compares the target type with
the expected type at the cast site to determine if the cast is legal.

HexType instruments all type casting operations related to type
confusion issues. As described in §2.2, these include static_cast
sites, where its casting operation performs downcasting. More pre-
cisely, HexType instruments additional code invoking a runtime
veri�cation function while passing necessary information with re-
spect to casting veri�cation (i.e., a base object pointer subjected to
casting and a hash value of a destination type).

Additionally, HexType also veri�es reinterpret_cast. As men-
tioned in §2.2, reinterpret_cast forces the casting operation by

copying the memory bits of a pointer value even though casting
types are not compatible. Thus, this operation is security critical if
misused. For example, as shown in Figure 6, since reinterpret_cast
simply returns the same unchanged address (line 15), a pointer to
a base class points to a semantically di�erent object, which re-
sults in access to an unexpected memory area. In other words,
reinterpret_cast does not properly adjust the pointer according
to the class hierarchy (line 5) as it simply hard-copies a to-be-cast
value, compared to static_cast which adjusts the pointer.

Once a runtime veri�cation function is invoked at runtime, Hex-
Type �rst locates the object mapping table. Given the base pointer
address of an object, HexType computes the hash index within
the object mapping table, which returns a reference to the corre-
sponding type table walking through either fast-path or slow-path
(§4.2). Using this type table as well as the provided destination type
information, HexType reasons about whether the underlying object
can be indeed a sub-object of the destination type such that the
casting itself is correct in the end. If HexType detects type confu-
sion at runtime, it displays a detailed report that includes allocated
object type, expected object type, and the type casting location.
This information allows the developer to triage the type casting
issue quickly.

4.4 Optimization
Type casting veri�cation supported by HexType may impose non-
negligible performance overhead as it involves additional computa-
tion. In order to make HexType a truly practical security tool, we
implement a set of performance optimization techniques, namely
only tracing unsafe objects, only verifying unsafe casting, and e�-
cient dynamic casting.
Only Tracing Unsafe Object. HexType only traces type infor-
mation on potentially unsafe objects and does not trace safe objects.
We de�ne T as a safe object type if and only if T is never subject to
typecasting. T is a potentially unsafe object type otherwise. Since
safe object types will never be used for casting at all, HexType does
not need to keep track of them to check casting validity. We assume
that the source pointer of a safe object always references an object
of the correct type as no casting operation in the program exists
that breaks this assumption. As illustrated in Figure 7, HexType
performs the following two steps to identify unsafe objects. First,
it identi�es a typecasting-related object set, which can be used for
typecasting operations. HexType identi�es all type information
both at the casting site and for the cast object. An object that is
cast can be of type X or any of the child classes of type X. The
type casting site therefore must accept all possible subtypes. Next,
when instrumenting object allocation sites, HexType selectively
instruments allocation only for typecasting-related objects.

While evaluating HexType, we found that tracking stack ob-
jects is the most critical performance bottleneck. Thus, considering
allocation characteristics of stack objects, we apply a special opti-
mization scheme to conservatively distinguish safe stack objects
from unsafe stack objects.

First, we apply CaVer’s optimization technique which is based on
the observation that the lifetime of a stack object can be relatively
well de�ned with respect to a set of functions the object is active —
a function (that the subjected stack object is declared) and all of its

7

Code
class D : public B { …. };
class F : public C { …. };
B *pB = new B;
C *pC = new C;

static_cast<D*>(pB);
static_cast<F*>(pC);

B, C, ...

(2) Initialize unsafe object type set (4) Extend unsafe object type set

A

B C

D E F
(1) Extract
 unsafe
 objects

Type hierarchy information

(3) Extract all children types

B, C, D, E, F, ...

Figure 7: An example of how HexType creates a potentially
unsafe object type set. In the example, we assume that ob-
jects of type B and C are typecast. HexType will identify
these potentially unsafe types and all its children types as
unsafe.

callee functions, if there are no out-going indirect calls. Thus, only if
there are no out-going indirect calls, we perform an escape analysis
for the set of those functions so as to ensure that any reference to
the stack object never leaves the analyzed functions. Further more,
if there are no typecasting operations within these clustered and
side-e�ect free functions, then the analyzed stack objects will never
be used for typecasting. In this case, it is truly a safe stack object
that does not need to be tracked at runtime.

We apply a more �ne-grained analysis for functions that did not
pass the previous check: (i) we check whether each stack object in
the function is a local variable using SafeStack which is a component
of CPI/CPS [20], since SafeStack supports local variables detection
and (ii) if these local stack objects are not used for any typecasting
operation within this function, we do not need to trace these stack
objects.
Only Verifying Unsafe Casting. Clearly HexType does not need
to perform runtime veri�cation for a casting operation if it can
be proven safe during compilation. We call such a provably safe
cast operation a safe casting, and unsafe casting otherwise. Since
HexType supports runtime casting veri�cation, we can leverage
an optimization that relies on an imprecise yet conservative static
analysis to distinguish these two categories. In other words, given
a casting operation, HexType determines if it is safe casting only
if HexType can be completely certain at compile time. If HexType
cannot determine it is safe in a compile time, HexType simply
considers it unsafe casting and falls back to a runtime check.

HexType leverages a conservative backward data�ow analysis
to identify safe casting. Starting from a casting site, HexType rea-
sons about type information of an underlying object, i.e., how the
underlying object has been allocated. To answer this question, we
perform an inter-procedural use-def chain analysis, where the use
point is de�ned as a casting site and the def point is de�ned as any
object allocation sites.

For example, as shown in Figure 8, if the source of typecasting
operation uses the address-of operator(&) or array name directly
to get the address of the object, HexType can easily determine the
source object type and verify the typecasting operation at compile
time. Also, we can predict the object type through the use-def chain

1 class T : public S { ... };
2

3 void safe_casting_ex() {
4 S test1;
5 S test2[1000];
6

7 // safe casting : always cast from class S
8 // (case 1)
9 static_cast<T*>(&test1);

10

11 // (case 2)
12 static_cast<T*>(test2);
13

14 // (case 3)
15 S *local_obj_ptr = &test1;
16 static_cast<T*>(local_obj_ptr);
17 }
18

19 void unsafe_casting_ex() {
20 // unsafe casting : type is hard to dertermine
21 S* obj_ptr = external_func();
22 static_cast<T*>(obj_ptr);
23 }

Figure 8: An example for safe and unsafe casting. The three
examples (line 9, 12, and 16) are all safe casting. For the �rst
two examples, each typecasting operation obtains the object
address using the address-of operator and the array name.
In the third example (line 14), we can simply determine the
object type using use-def chain analysis. The last example
(line 22) is an unsafe casting case when we cannot track the
object type (i.e., external function).

analysis. In these cases, we can remove HexType’s typecasting ver-
i�cation instrumentation and verify typecasting operations during
compile time. However, if we cannot determine the source type,
HexType will again fall back to a runtime check.
E�cient Dynamic Casting. Since HexType o�ers e�cient run-
time casting veri�cation, the existing dynamic_cast can be opti-
mized accordingly. HexType therefore replaces each dynamic_cast
with our fast lookup. In order to preserve the runtime semantics
of dynamic_cast as dictated by the C++ standard, HexType takes
additional steps in response to an incorrect casting detected in
runtime. As described in §2.2, HexType returns NULL for a pointer-
typed casting and throws an exception for a reference-typed casting.
This optimization can be especially useful if applications heavily
rely on dynamic casting.

4.5 Implementation
We have implemented HexType, as shown in Figure 10, based on
the LLVM Compiler infrastructure project [22] (version 3.9.0). The
HexType implementation consists of 4,677 lines of code that we
added to Clang, an LLVM Pass, and our compiler-rt runtime library.
HexType’s LLVM Pass (i) creates type relationship information, and
(ii) instruments allocations of unsafe objects to record allocated
object type information into our object mapping table. Also, we
modify Clang to (i) instrument all downcast sites (the pointer type
of casting operation is one of the parent objects of destination type),

8

1 Class T : public S { ... };
2

3 // (1) if type is a pointer and invalid downcast,
4 // it returns NULL
5 S *c_obj = new S;
6 T* d = dynamic_cast<T*>(c_obj);
7

8 if(!d) {
9 // invalid downcast

10 }
11

12 // (2) if type is a reference type and invalid downcast,
13 // it throws a exception
14 try
15 {
16 S b;
17 T& rd = dynamic_cast<T&>(b);
18 }
19 catch (std::bad_cast& bc)
20 {
21 // invalid downcast
22 }

Figure 9: An example of how to handle type confusion errors
using dynamic_cast. HexType will provide the same error
handling behaviors when HexType detects type confusion
errors.

Source
Code

* Typecasting verification
 instrumentation (§4.3).
* Dynamic_cast
 replacement (§4.4).

* Type relationship analysis (§4.1).
* Object tracing
 instrumentation (§4.2).

LLVM Compiler

HexType
harden binary

Figure 10: Overview of HexType’s implementation. Hex-
Type consists of several compiler passes in clang and LLVM
that insert object tracing and typecasting instrumentation
and a corresponding runtime library.

and (ii) handle dynamic_cast, reinterpret_cast, and placement
new. At runtime, the instrumentation invokes HexType’s runtime
library functions to update object allocation information into ob-
ject mapping table, and veri�es typecasting operation using type
relationship information and object mapping table.

5 EVALUATION
In this section, we evaluate HexType focusing on following aspects:
(i) the detection coverage (§5.1); (ii) newly discovered vulnerabilities
by HexType (§5.2); (iii) the e�ciency of object mapping table (§5.3);
and (iv) runtime overhead (§5.4).
Experimental Setting. All evaluations were performed on Ubuntu
16.04.2 LTS with a quad-core 3.60GHz CPU (Inter i7-4790), 250GB
SSD-based storage, 1TB HDD, and 16GB RAM.
Evaluation Target Programs. We have applied HexType to the
following programs: all seven C++ benchmarks from SPEC CPU2006 [7]

of
casting

Type
San

HexType
-no-opt HexType

% % × % ×

omnetpp 2,014m 100 100 0 100 0
xalancbmk 283m 89.5 99.8 1.1 99.8 1.1
dealII 3,596m 100 100 0 100 0
soplex 209k 100 100 0 100 0
�-octane 623m 12 73.3 6.1 56.5 4.7
�-drom-js 4,229m 23 80.1 3.4 59.4 2.5
�-drom-dom 10,786m 45 88.8 1.9 54.9 1.2

Table 1: The evaluation of typecasting veri�cation coverage
against SPEC CPU2006 and browser benchmarks. Columns
with % present a coverage ratio and columns with × present
a coverage improvement ratio (i.e., HexType’s coverage di-
vided by TypeSan’s coverage).

and Firefox [11]. For Firefox, we use Octane [13] and Dromaeo [10]
benchmark suites. Moreover, in order to compare HexType with
previous work, we applied TypeSan as well, and ran these programs
under the same con�guration. For CaVer, we use the numbers from
the paper since CaVer was developed almost three years ago and we
encountered compatibility issues with the current test environment
and software (i.e., Firefox).

5.1 Coverage on Typecasting
One of the primary goals of HexType is in increasing the type-
casting coverage such that HexType can ensure that all di�erent
typecasting operations are correctly performed. To evaluate type-
casting coverage, we counted how many typecasting operations
were veri�ed at runtime (shown in Table 1). We used two di�erent
versions of HexType in this experiment, where each version either
turned o� or on the optimization techniques presented in §4.4 (de-
noted as HexType-no-opt and HexType, respectively). For TypeSan,
we referred to the evaluation numbers presented in the paper [15].

For SPEC CPU2006, HexType veri�es almost all typecasting
operations — 100% for omnetpp, dealII, and soplex, and 99.8% for
xalancbmk. Compared to TypeSan, HexType improves the coverage
number on xalancbmk (i.e., improved from 89% to 99.8%). This is
because xalancbmk heavily uses placement new to allocate objects,
for which TypeSan looses information about the object at runtime.
Thus TypeSan fails to resolve type information associated with
such objects. However, as described in §4.2.1, HexType correctly
handles these new operator allocations, which signi�cantly raised
the coverage ratio.

For Firefox, depending on the benchmark suite, HexType success-
fully covers typecasting operations: ranging from 73% to 88% with
HexType-no-opt; and ranging from 54% to 59% with HexType. Dur-
ing our evaluation, we found that HexType’s coverage rate drops
after applying our optimizations due to interactions with Firefox’s
complex object allocation patterns and how our optimizations han-
dle and track allocations in LLVM/Clang. While we are investigating
and plan to �x this issue in the future, HexType with optimization
still shows better coverage rate than TypeSan. Most of the missing
type casts in xalancbmk and Firefox result from application-speci�c

9

allocation patterns. More speci�cally, Firefox creates a custom stor-
age pool (typed as an array of char), and manipulates the pool
using memcpy or direct object initialization (e.g., data.key = key;
data.index = index; ..). Xalancbmk also uses a special storage
pool (SerializeEngine) that manages objects directly without calling
memory allocation functions. As these allocation patterns cannot
be detected by HexType during the instrumentation phase, Hex-
Type cannot track runtime object types that are allocated through
these patterns. Handling these missing allocations is challenging. A
naive approach would trace the custom storage pool (allocated as
char array) and its low-level allocation patterns using memcpy or
direct object initialization. This would unfortunately result in high
overhead. Alternatively, we propose to modify the few locations in
Firefox and annotate the object allocation accordingly. Although
this coverage ratio in Firefox may not be as impressive as HexType’s
result of the SPEC CPU2006 benchmarks, we emphasize it is signif-
icantly improved from the state-of-the art tool, TypeSan. TypeSan
only covered 27.75% of Firefox’s typecasting on average, 52.98%
and 29.18% less than HexType-no-opt and HexType, respectively,
highlighting HexType’s advantage in identifying allocation sites
(§4.2.1).

5.2 Newly Discovered Vulnerabilities
During the course of evaluating HexType by running the set of
target programs, we discovered four new type confusion vulnerabil-
ities. In particular, HexType reported four vulnerable cases in the Qt
base library while evaluating Wireshark and Apache Xerces-C++,
all of which have been con�rmed and patched by the corresponding
developer communities. For Apache Xerces-C++, HexType found
two new vulnerabilities. These vulnerabilities occurred due to type
confusion issues between DOMNodeImpl (indicated by DOMNode type
pointer) and DOMTextImpl. Since the DOMNodeImpl object is al-
located using placement new from a pre-allocated memory pool
previous approaches cannot trace these objects. Therefore, these
vulnerabilities were not detected by previous schemes such as CaVer
or TypeSan.

In addition, HexType found two new vulnerabilities in the Qt-
based library. The Qt team already patched our reported type con-
fusion bugs [30]. HexType reported type confusion issues when Qt
performs a casting from QMapNodeBase (base class) to QMapNode
(derived class). Since QMapNode is not a subobject of QMapNode-
Base, it violates C++ standard rules 5.2.9/11 [19] (down casting is
unde�ned if the object that the pointer to be cast points to is not a
subobject of down casting type) and causes unde�ned behavior.

These new vulnerabilities discovered by HexType clearly demon-
strate the security advantage of HexType, especially compared to
other previous work including TypeSan and CaVer. We would like
to further point out that these new type confusion vulnerabilities
were discovered only with basic benchmark workloads. In the fu-
ture, we plan to run HexType under a fuzzing framework such as
AFL [37]. to discover more security critical vulnerabilities related
to type confusions.

5.3 E�ciency of Object Tracing
Recall that the key runtime functions that HexType performs are
(1) keeping track of object types (at the time of object allocation)

allocated objects fast-path
hit ratio (%)

(update)

fast-path
hit ratio (%)

(lookup)stack heap global

omnetpp 1m 478m 601 99.999 100
xalancbmk 3,150m 45m 3,098 99.998 99.999
dealII 497m 283m 200 99.988 100
soplex 21m 639m 197m 99.691 100
�-octane 593m 7m 125k 98.820 98.649
�-drom-js 2,875m 11m 125k 99.645 98.426
�-drom-dom 34,900m 607m 125k 99.706 94.099

Table 2: The number of traced objects and its fast-path hit
ratio when HexType lookup/update these objects into our
the object mapping table.

of
object

safe
casting
related

object (%)

safe
stack

objects (%)

total
safe

objects
rate (%)

omnetpp 480m 54.76 0.107 54.767
xalancbmk 3,196m 99.42 3.50 99.42
dealII 781m 83.81 51.07 83.81
soplex 858m 97.75 0.76 97.87
povray 6,550m 100 0.18 100
astar 28m 100 1.31 100
namd 2m 100 0 100
�-octane 600m 42.69 1.96 44.11
�-drom-js 2,491m 39.99 1.42 40.26
�-drom-dom 37,538m 21.33 0.95 21.54

Table 3: The number of safe objects identi�ed by HexType’s
optimization algorithm. HexType does not keep track of
these safe objects.

and (2) looking up an object type (at the time of type casting). As
described in §4.2.2, we designed object mapping table to e�ciently
handle these operations leveraging both a fast-path and a slow-
path. Therefore, the performance e�ciency of object mapping table
clearly relies on the hit ratio of the fast-path (i.e., the number of
operations that only access the hash table) such that HexType does
not need to consult the slow-path (i.e., accessing not only the hash
table but also the corresponding red-black tree) in most cases.

Table 2 lists the fast-path hit ratios while running the set of eval-
uation target programs. Overall, most of operations showed high
fast-path hit ratios, ranging from 98.820% and 99.999% to update
object mapping table and from 94.099% and 100% to lookup object
mapping table. This high fast-path hit ratio was also maintained
when HexType was running large-scale programs such as Firefox,
which creates more than 32,000 million objects at runtime. This
result implies that the design decision of the object mapping table
is e�cient enough to support a wide range of programs, which in
turn signi�cantly helped HexType to reduce runtime impact.

10

CaVer Type
San HexType

% % % ×1 ×2
omnetpp NA 49.13 9.69 NA 5
xalancbmk 29.6 41.35 1.25 23 32
dealII NA 78.23 13.13 NA 5.9
soplex 20.0 1.16 -1.7 12 3
astar NA -0.36 0.34 NA 2
namd NA -0.37 -0.37 NA 0
povray NA 26.73 0.8 NA 33
�-octane 45 19.37 30.87 0.4 -0.5
�-drom-js 40 25.18 25.89 0.5 -0.03
�-drom-dom 55 97.15 126.03 -2.3 -0.3

Table 4: SPEC CPU2006 and browser benchmark perfor-
mance overhead for CaVer, TypeSan, and HexType. The ×1
column denotes the ratio between CaVer and HexType
and ×2 denotes between TypeSan and HexType.

5.4 Performance Overhead
In order to understand performance impacts imposed by HexType,
this subsection measures performance overhead in terms of run-
time speed. Table 4 shows the performance overhead on the SPEC
CPU2006 and Firefox, handling placement new and reinterpret_cast.
For all seven C++ benchmarks in SPEC CPU2006, HexType out-
performed previous work in all cases. This is largely because of
HexType’s optimization algorithms (§4.4) as well as object mapping
table designs (§4.2). To clearly understand these, Table 3 reports
how many objects HexType identi�ed as safe objects. With the help
of the optimization algorithm, HexType was able to dramatically
reduce the number of objects to be traced — reduced from 83%
to 100% of tracing for all cases except omnetpp. For omnetpp, the
number of casting related classes (unsafe objects) is higher than
other cases. However, we can reduce almost 54% object of the trac-
ing overhead. Interestingly, out of the seven SPEC CPU2006 C++
benchmarks that we ran, povray, astar, and namd do not perform
any typecasting operation that HexType has to verify at runtime.
This implicates that HexType will have zero overhead for these
cases since there are no object tracing and typecasting operation.
In comparison, TypeSan imposes 26.73% overhead for povray.

In the case of omnetpp and dealII, HexType has shown sig-
ni�cantly better performance due to HexType’s optimization on
replacing dynamic_cast (§4.4). This optimization technique can
show strong performance improvements, particularly for the ap-
plications heavily relying on dynamic_cast. We analyzed pro-
grams in our evaluation set, and found that two SPEC CPU2006
C++ benchmarks, dealII and omnetpp, perform a huge number of
dynamic_cast, 206 M and 47 M number, respectively. Therefore, we
replaced dynamic_cast in our veri�cation routines which reduced
the dealII’s performance overhead by 4%.

For Firefox, HexType showed similar or higher overhead than
TypeSan. Note that, when assessing performance, HexType vastly
extends coverage compared to TypeSan (past the di�erences in
coverage). Moreover, while HexType reduced object tracing by
nearly 52 – 100% in SPEC CPU2006, it only reduced the number of

traced objects by about 21 – 44% in Firefox. We also suspect this is
because of the Firefox’s runtime characteristic — almost all objects
in Firefox, as shown in Table 2, are allocated on the stack. We note
that TypeSan’s object mapping scheme comes with a security rist
as it never removes object type information. As a result, if the stack
location of a former properly allocated object is used in a casting
operating, it may be interpreted as a valid object. However, since
HexType properly deletes those information when the stack returns,
HexType does not su�er from these security issues.

6 DISCUSSION
Coverage. This paper extends the coverage of type confusion
detection, particularly in dynamic_cast and reinterpret_cast.
In the future, it is also possible to handle more subtle type confusion
issues such as const_cast’s unde�ned behavior or union’s type
confusion problem. In the case of const_cast, it is only safe if we
are casting a variable that was originally non-const. Otherwise,
a program may modify an object that should be non-mutable, as
const_cast removes type-based write protection imposed on const
objects. Union can also cause a type confusion problem when the
attribute value which indicates the type of union is misused. A
union data type is similar to a struct data type since it consists
of a number of members with di�erent names and types, each of
which can be referred to individually. However, unlike the struct
type, since union members all occupy the same location in memory,
developers should use them mutually exclusively. The existence
of these types therefore introduces the possibility of mistakenly
referring to a member of a union that is invalid. For example, this
problem can lead to an information leak [1].
Fuzzing for type violations. Since HexType can identify type
confusion issues at runtime, HexType can be utilized to �nd new
type confusion vulnerabilities with the help of fuzzing frameworks
such as AFL [37]. AFL is typically deployed with ASan [32], an
LLVM-based sanitizer that checks for (partial) memory safety viola-
tions, to increase fuzzing throughput and precision. Without ASan,
AFL detects only memory safety violations that result in a segmen-
tation fault and cannot detect silent corruption. As AFL already
supports ASan, integrating another sanitizer like HexType will
be straight-forward, thereby extending AFL to trigger and detect
dangerous type confusion vulnerabilities as well.

7 RELATEDWORK
In this section, we summarize previous research works on typecast
veri�cation. HexType focuses on type confusion attacks that vio-
late pointer semantics in typecasting operations. CaVer [21] �rst
addressed such exploits due to type casting veri�cation and iden-
ti�ed eleven security vulnerabilities due to bad typecasting. Next,
TypeSan [15] improved the performance and coverage over CaVer.
Similar to HexType, both CaVer and TypeSan are implemented on
top of the LLVM compiler framework, instrumenting code during
compile time. For metadata allocation both CaVer and TypeSan
use a disjoint metadata scheme. TypeSan uses a shadow memory
scheme for metadata and CaVer implements a per thread red-black
tree for stack objects and shadow memory for the heap. However,
these schemes inhibit the identi�cation of overall object allocation
and increase the overhead. HexType uses a global, whole address

11

space two layer object-to-type mapping scheme to reduce over-
head and supports additional object allocation patterns through
placement new and reinterpret_cast. Hence HexType vastly
increases coverage compared to the aforementioned approaches.
Performance is comparable despite the increased coverage.

UBSan [29], another typecast veri�cation framework, works
only for polymorphic classes. It relies on runtime type information
(RTTI) and instruments only static_cast and checks the casting
during runtime. Thus it can only handle polymorphic classes prob-
lem as well as requires manual source modi�cation. This makes it
di�cult to use in large projects.

Several Control-Flow Integrity (CFI) techniques [2, 3, 8, 12, 34,
40] ensure the integrity by checking any invalid control-�ow trans-
fer within the program. However, these techniques address the
type confusion problem only partially if control-�ow hijacking is
performed via type exploitation. Similarly, defenses [17, 31, 38, 39]
that protect virtual calls from vtable hijacking attacks considers
only the type of the virtual calls. These schemes do not address
the overall bad casting problems. Another control-�ow hijack mit-
igation technique is Code Pointer Integrity (CPI) [4, 20], which
guarantees the integrity of all the code pointers in a program. This
approach can prevent the accessibility of corrupted pointers, but
does not block type casting attacks.

Bad type casting can lead to memory corruption attacks where an
attacker can potentially get access to out-of-bounds memory of the
cast object. Such attacks can be identi�ed by existing mechanisms.
Defense techniques focusing on memory corruption [9, 16, 18, 25,
27, 28, 33] can detect exploits if a type confusion attack leads to
memory access past the cast object. These techniques e�ciently
detect such attacks, but unlike HexType they cannot address type
confusion issues. another kind of memory corruption

8 CONCLUSION
Type casting vulnerabilities are a prominent attack vector that al-
lows exploitation of large modern software written in C++. While
allowing encapsulation and abstraction, object oriented program-
ming as implemented in C++ does not enforce type safety. C++
o�ers several types of type casts and some are only checked stati-
cally and others not at all, at runtime an object of a di�erent type
can therefore incorrectly pass a type cast. To detect these illegal
type casts, defenses need to both track the true allocated type of
each object and replace all casts with an explicit check.

HexType tracks the true type of each object by supporting vari-
ous allocation patterns, several of which (such as placement new
and reinterpret_cast) were not handled in previous work. While
previous work focused only static_casts, HexType also covers
dynamic_cast and reinterpret_cast. To limit the overhead of
these online type checks, HexType both reduces the amount of
incurred checks by removing checks that can be proven correct
statically and limiting the overhead per check due to a set of opti-
mizations.

Our prototype results show that HexType has at least 1.1 – 6
times higher coverage on Firefox benchmarks. For SPEC CPU2006
benchmarks with overhead, we show a 2 – 33 times reduction in
overhead. In addition, HexType discovered 4 new type confusion

bugs in Qt and Apache Xerces-C++. The open-source version of
HexType is available at https://github.com/HexHive/HexType.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers, Nathan Burow,
and Scott Carr for their detailed and constructive comments. This
material is based in part upon work supported by the National
Science Foundation under awards CNS-1513783 and CNS-1657711,
by ONR award N00014-17-1-2513, and by Intel Corporation. Any
opinions, �ndings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
re�ect the views of our sponsors.

REFERENCES
[1] Online; accessed 17-May-2017. Webkit CSS Type Confusion. http://em386.

blogspot.com/2010/12/webkit-css-type-confusion.html. (Online; accessed 17-
May-2017).

[2] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-�ow
integrity. In CCS.

[3] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2018, preprint: https://arxiv.org/abs/1602.04056.
Control-Flow Integrity: Precision, Security, and Performance. Comput. Surveys
50, 1 (2018, preprint: https://arxiv.org/abs/1602.04056). DOI:https://doi.org/10.
1145/3054924

[4] Scott A. Carr and Mathias Payer. 2017. DataShield: Con�gurable Data Con�-
dentiality and Integrity. In AsiaCCS: ACM Symp. on InformAtion, Computer and
Communications Security. DOI:https://doi.org/10.1145/3052973.3052983

[5] CERT. Online; accessed 17-May-2017. the CERT C++ Coding Standard (5 The
Void section). https://www.securecoding.cert.org/con�uence/display/cplusplus/
5+The+Void/. (Online; accessed 17-May-2017).

[6] Clang. Online; accessed 17-May-2017. Clang 3.9 documentation - Control Flow In-
tegrity. http://clang.llvm.org/docs/ControlFlowIntegrity.html. (Online; accessed
17-May-2017).

[7] Standard Performance Evaluation Corporation. Online; accessed 17-May-2017.
SPEC CPU 2006. http://www.spec.org/cpu2006. (Online; accessed 17-May-2017).

[8] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Kernels. In Oakland:
IEEE Symp. on Security and Privacy.

[9] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. 2007. Se-
cure virtual architecture: A safe execution environment for commodity operating
systems. In ACM SIGOPS Operating Systems Review, Vol. 41. ACM, 351–366.

[10] The Mozilla Foundation. Online; accessed 17-May-2017. DROMAEO, JavaScript
Performance Testing. https://www.webkit.org/perf/sunspider/sunspider.html.
(Online; accessed 17-May-2017).

[11] The Mozilla Foundation. Online; accessed 17-May-2017. Mozilla Firefox. https:
//www.mozilla.org/�refox. (Online; accessed 17-May-2017).

[12] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-
Grained Control-Flow Integrity for Kernel Software. In EuroSP: IEEE European
Symp. on Security and Privacy.

[13] Google. Online; accessed 17-May-2017. Octane Benchmark. https://code.google.
com/p/octane-benchmark. (Online; accessed 17-May-2017).

[14] Istvan Haller, Enes Goktas, Elias Athanasopoulos, Georgios Portokalidis, and
Herbert Bos. 2015. ShrinkWrap: VTable protection without loose ends. InACSAC.

[15] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giu�rida, Herbert
Bos, and Erik van der Kouwe. 2016. TypeSan: Practical Type Confusion Detection.
In 23rd ACM SIGSAC Conference on Computer and Communications Security.

[16] Reed Hastings and Bob Joyce. 1991. Purify: Fast detection of memory leaks and
access errors. In In proc. of the winter 1992 usenix conference. Citeseer.

[17] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2014. SafeDispatch: Securing
C++ Virtual Calls from Memory Corruption Attacks.. In NDSS.

[18] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney,
and Yanling Wang. 2002. Cyclone: A Safe Dialect of C.. In USENIX Annual
Technical Conference, General Track. 275–288.

[19] JTC1/SC22/WG21. Online; accessed 17-May-2017. ISO/IEC 14882:2014 Program-
ming Language C++. http://www.iso.org/iso/catalogue_detail.htm?csnumber=
64029. (Online; accessed 17-May-2017).

[20] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-pointer Integrity. In OSDI.

[21] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. 2015. Type
Casting Veri�cation: Stopping an Emerging Attack Vector. In USENIX Secu-
rity. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/
presentation/lee

12

https://github.com/HexHive/HexType
http://em386.blogspot.com/2010/12/webkit-css-type-confusion.html
http://em386.blogspot.com/2010/12/webkit-css-type-confusion.html
https://arxiv.org/abs/1602.04056
https://arxiv.org/abs/1602.04056
https://doi.org/10.1145/3054924
https://doi.org/10.1145/3054924
https://doi.org/10.1145/3052973.3052983
https://www.securecoding.cert.org/confluence/display/cplusplus/5+The+Void/
https://www.securecoding.cert.org/confluence/display/cplusplus/5+The+Void/
http://clang.llvm.org/docs/ControlFlowIntegrity.html
http://www.spec.org/cpu2006
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.mozilla.org/firefox
https://www.mozilla.org/firefox
https://code.google.com/p/octane-benchmark
https://code.google.com/p/octane-benchmark
http://www.iso.org/iso/catalogue_detail.htm?csnumber=64029
http://www.iso.org/iso/catalogue_detail.htm?csnumber=64029
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee

[22] llvm. Online; accessed 17-May-2017. The LLVM Compiler Infrastructure Project.
http://llvm.org/. (Online; accessed 17-May-2017).

[23] Microsoft. Online; accessed 17-May-2017. Microsoft Security Intelligence Report.
https://www.microsoft.com/security/sir. (Online; accessed 17-May-2017).

[24] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2009. SoftBound: Highly compatible and complete spatial memory safety for C.
In ACM Sigplan Notices, Vol. 44. ACM, 245–258.

[25] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2009. SoftBound: Highly compatible and complete spatial memory safety for C.
ACM Sigplan Notices 44, 6 (2009), 245–258.

[26] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2010. CETS: compiler enforced temporal safety for C. In ACM Sigplan Notices,
Vol. 45. ACM, 31–40.

[27] George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and West-
ley Weimer. 2005. CCured: Type-safe retro�tting of legacy software. ACM
Transactions on Programming Languages and Systems (TOPLAS) 27, 3 (2005),
477–526.

[28] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In ACM Sigplan notices, Vol. 42. ACM,
89–100.

[29] Google Chromium Project. Online; accessed 17-May-2017. Unde�ned
Behavior Sanitizer. https://www.chromium.org/developers/testing/
unde�nedbehaviorsanitizer. (Online; accessed 17-May-2017).

[30] QT Code Review. Online; accessed 17-May-2017. Type confusion: From QMapN-
odeBase to QMapNode. https://codereview.qt-project.org/#/c/191188/. (Online;
accessed 17-May-2017).

[31] Pawel Sarbinowski, Vasileios P Kemerlis, Cristiano Giu�rida, and Elias Athana-
sopoulos. 2016. VTPin: practical VTable hijacking protection for binaries. In
Proceedings of the 32nd Annual Conference on Computer Security Applications.
ACM, 448–459.

[32] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Pre-
sented as part of the 2012 USENIX Annual Technical Conference (USENIX ATC
12). USENIX, Boston, MA, 309–318. https://www.usenix.org/conference/atc12/
technical-sessions/presentation/serebryany

[33] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker.. In USENIX
Annual Technical Conference. 309–318.

[34] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geo� Pike. 2014. Enforcing Forward-edge Control-
�ow Integrity in GCC & LLVM. In USENIX Security. 15. http://dl.acm.org/citation.
cfm?id=2671225.2671285

[35] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giu�rida. 2015. Practical Context-
Sensitive CFI. In CCS.

[36] Victor van der Veen, Enes Goktas, Moritz Contag, Andre Pawlowski, Xi Chen,
Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giu�rida. 2016. A Tough Call: Mitigating Advanced Code-Reuse Attacks At The
Binary Level. In IEEE S&P.

[37] M. Zalewski. Online; accessed 17-May-2017. American Fuzzy Lop. http://lcamtuf.
coredump.cx/a�/. (Online; accessed 17-May-2017).

[38] Chao Zhang, Scott A Carr, Tongxin Li, Yu Ding, Chengyu Song, Mathias Payer,
and Dawn Song. 2016. VTrust: Regaining Trust on Virtual Calls. In NDSS.

[39] Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn
Song. 2015. VTint: Protecting Virtual Function Tables’ Integrity.. In NDSS.

[40] Mingwei Zhang and R Sekar. 2013. Control �ow integrity for COTS binaries. In
SEC: USENIX Security Symposium.

13

http://llvm.org/
https://www.microsoft.com/security/sir
https://www.chromium.org/developers/testing/undefinedbehaviorsanitizer
https://www.chromium.org/developers/testing/undefinedbehaviorsanitizer
https://codereview.qt-project.org/#/c/191188/
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
http://dl.acm.org/citation.cfm?id=2671225.2671285
http://dl.acm.org/citation.cfm?id=2671225.2671285
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

A PSEUDO CODE

1 # (1) Insert typecasting verification instrumentation (Clang)
2 def emitiHexTypeCastVerification():
3 for targetTypeCast in range(allTypeCastSet):
4 emitTypeCastVerifyInstrumenation(targetTypeCast):
5

6 # (2) Verify typecasting (runtime library)
7 def verifyTypecasting(src_addr, dst_addr, dstTyHashValue):
8 # Check parentset (safecast)
9 # if destination type is one of source object’s parent type,

10 # this is a SAFECAST.
11 srcType = getTypeInfoFromObjTypeMap(src_addr):
12 srcParentSet = srcType.ParentSetRef:
13 if srcParentSet.binarysearch(dstTyHashValue):
14 return SAFECAST:
15

16 # Check phantom (safecast)
17 # Although destination type is not of
18 # source object’s parent type,
19 # it would be phantom class.
20 dstPhantomSet = getPhantomObjSet(dstTyHashValue):
21 if dstPhantomSet.binarysearch(srcType.hashValue):
22 return SAFECAST:
23

24 return BADCAST:

Figure 11: Algorithm for verifying typecasting

1 # (1) Stack object tracing (LLVM pass)
2 def stackObjTracing():
3 for function in range(module):
4 for block in range(function):
5 for inst in range(block):
6 if isStackObjAllocaInst(inst):
7 addObjUpdateInstrumentation(getAllocTypeInfo(inst)):
8 # for stack object Remove
9 StackObjTracingSet.insert(getAllocTypeInfo(inst)):

10 # Call remove instrumentation handling function
11 stackObjRemove(function, stackObjTracingSet):
12

13 def stackObjRemove(function, stackObjTracingSet):
14 for targetObjInfo in range(stackObjTracingSet):
15 addObjRemoveInstrumentation(targetObjInfo):
16

17 # (2) Heap object tracing (LLVM pass)
18 def heapObjTracing():
19 for function in range(module):
20 for block in range(function):
21 for inst in range(block):
22 if isHeapAllocCall(inst):
23 addObjUpdateInstrumentation(getAllocTypeInfo(inst)):
24 if isFreeCall(inst):
25 addObjRemoveInstrumentation(getAllocTypeInfo(inst)):
26

27 # (3) Global object tracing (LLVM pass)
28 def globalObjTracing():
29 GlobalFun = FunctionCreate():
30 for targetObjInfo in range(getAllGlobalsObjInfo()):
31 addObjUpdateInstrumentation(targetObjInfo):
32 # Insert this function (which has object add instrumentation)
33 # into global constructor
34 appendToGlobalCtors(module, GlobalFun):
35

36 # (4) Update object alloc/remove information (runtime library)
37 # Add object allocation information
38 # into the HexObjTypeMap (two-level table)
39 def updateHexObjTypeMap(objAllocInfo):
40 index = getHashValue(objAllocInfo.addr):
41 # Use fast-path slot (when objTypeMap[index] is empty)
42 if objTypeMap[index].addr == NULL:
43 updateObjTypeMap(index, objAllocInfo):
44 # use slow-path slot (Red-black Tree)
45 else:
46 # Move collision object (old object) info into RB-Tree
47 # Then, insert new object into the objTypeMap
48 rbTreeInsert(ObjTypeMap[index]):
49 updateObjTypeMap(index, objAllocInfo):
50

51 # Remove object allocation information from
52 # the HexObjTypeMap (two-level table)
53 def removeHexObjTypeMap(objAddr):
54 index = getHashValue(objAddr):
55 # Use fast-path slot
56 if objTypeMap[index].addr == objAddr:
57 objTypeMap[index].addr = NULL:
58 # Use slow-path slot
59 else:
60 rbTreeRemove(ObjTypeMap[index]):

Figure 12: Algorithm for tracing objects at runtime

14

B NEW TYPE CONFUSION BUGS

1 // New Apache Xerces-C++ type confusion vulnerability
2 // (Code location) xercesc/dom/imple/DOMCasts.hpp, line 146
3 // (Description) p is pointing to the object allocated as
4 // DOMTextImpl, and it is casted into DOMElementImpl.
5 // Since DOMElementImpl is not a subobject (parent) of
6 // DOMTextImpl, it is violating C++ standard rules 5.2.9/11
7 // in [expr.static.cast] (down casting is undefined if
8 // the object that the pointer to be casted points to is
9 // not a suboject (parent) of down casting type) and

10 // causes undefined behaviors.
11 static inline DOMNodeImpl *castToNodeImpl(const DOMNode *p) {
12 DOMElementImpl *pE = (DOMElementImpl *) p;
13 return &(pE->fNode);
14 }
15

16 // HexType type confusion report
17 == Type confusion Report ==
18 FileName : xercesc/dom/impl/DOMCasts.hpp Line: 99
19 [From] (hashValue: 1670590304: DOMTextImpl)
20 [To] (hashValue: 2789966681: DOMElementImpl)
21

22 (Call Stack Info)
23 0x7f1206da5c92:
24 (xercesc_3_1::castToNodeImpl(xercesc_3_1::DOMNode const*)+0x42)
25 0x7f1206da643d:
26 (xercesc_3_1::DOMParentNode::
27 appendChildFast(xercesc_3_1::DOMNode*)+0x2d)
28
29 0x7f1203335830:
30 (__libc_start_main+0xf0)
31 0x4096e9:
32 (_start+0x29)

Figure 13: A type confusion bug in Apache Xerces-C++ dis-
covered by HexType

1 // New QT type confusion vulnerability
2 // (Code location) qt5/QtCore/qmap.h, line: 189
3 // (Description) Header(QMapNodeBase) is casted into QMapNode.
4 // However, since QMapNode is not a subobject of QMapNodeBase,
5 // it is violating C++ standard rules 5.2.9/11
6 // and causes undefined behaviors.
7 template <class Key, class T>
8 struct QMapData : public QMapDataBase
9 {

10 typedef QMapNode<Key, T> Node;
11
12 const Node *end() const {return static_cast<const Node *>(&header);}
13 Node *end() {return static_cast<Node *>(&header);}
14
15 }
16

17 // HexType type confusion report
18 == Type confusion Report ==
19 FileName : /usr/include/x86_64-linux-gnu/qt5/QtCore/qmap.h Line: 189
20 [From] (hashValue: 980699179: QMapNodeBase)
21 [To] (hashValue: 1458345177: QMapNode)
22

23 (Call Stack Info)
24 0x62fa7c:
25 (QMapData<double, QCPData>::end()+0x3c)
26
27 0x7fc274403830:
28 (__libc_start_main+0xf0)
29 0x47ed19:
30 (_start+0x29)

Figure 14: A type confusion bug in QT discovered by Hex-
Type

15

	Abstract
	1 Introduction
	2 Background
	2.1 C++ Classes and Inheritance
	2.2 C++ Cast Operations
	2.3 Defenses against type confusion

	3 Threat Model
	4 HexType Design and Implementation
	4.1 Type Relationship Information
	4.2 Object Type Tracing
	4.3 Type Casting Verification
	4.4 Optimization
	4.5 Implementation

	5 Evaluation
	5.1 Coverage on Typecasting
	5.2 Newly Discovered Vulnerabilities
	5.3 Efficiency of Object Tracing
	5.4 Performance Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Pseudo code
	B New type confusion bugs

