
Diagnosing Kernel Concurrency Failures with AITIA
Dae R. Jeong

KAIST
Minkyu Jung

KAIST
Yoochan Lee

Seoul National University

Byoungyoung Lee
Seoul National University

Insik Shin
KAIST

Youngjin Kwon
KAIST

Abstract
Kernel concurrency failures are notoriously difficult to iden-
tify and diagnose their fundamental reason, the root cause.
Kernel concurrency bugs frequently involve challenging pat-
terns such as multi-variable races, data races with asynchro-
nous kernel threads, and pervasive benign races. We per-
form an in-depth study of real-world kernel concurrency bugs
and elicit three requirements: comprehensiveness, pattern-
agnostic, and conciseness.

To fulfill the requirements, this paper defines the root cause
as a chained sequence of data races, called a causality chain.
A causality chain is presented as a comprehensive form to
explain how a failure eventually happens in the presence of
multi-variable races rather than simply pointing out a few
instructions related to the root cause. To build a causality
chain, this work proposes two practical approaches: Least
Interleaving First Search to reproduce a concurrency failure,
and Causality Analysis to identify the root cause. Causality
Analysis runs the kernel to confirm what data races contribute
to the failure among all detected data races. The approach is
pattern-agnostic because it dynamically tests data races with-
out counting on pre-defined patterns. While testing data races,
Causality Analysis rules out failure-irrelevant data races such
as benign races, producing a concise causality chain.

AITIA is a system implementing the two approaches. By
evaluating AITIA with 22 real-world concurrency failures, we
show that AITIA can successfully build their causality chain.
With AITIA, we found the root causes of six unfixed bugs;
three bugs were concurrently fixed, the root causes of three
bugs were confirmed by kernel developers.

CCS Concepts: • Software and its engineering → Software
testing and debugging; Concurrency control.

Keywords: Failure diagnosis, Operating system, Concurrency
bug, Debugging
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1 Introduction
Correcting concurrency bugs is a perennial task in operating
systems. Modern operating systems have employed a num-
ber of advanced concurrency techniques, such as read-copy-
update [63], the pervasive use of reference counting [14],
lock-free data structures [102], and deferred works [51] to
eschew scalability bottlenecks and make good use of multiple
cores. These techniques have played their own roles well in
improving performance, but when combined with complex
kernel concurrency patterns, they become a major source of
concurrency bugs. Concurrency bugs in operating systems
are notoriously difficult to fix due to their non-deterministic
nature and the tricky reasoning of their parallel executions.
Consequently, kernel developers sometimes write incorrect
fixes [76, 109] or leave reported bugs unfixed for a long
time [18, 32].

There have been many approaches to identify the root
causes of concurrency failures in user applications. They
determine the root cause using statistical correlation [7, 8,
34, 37, 38, 83, 84], by combining static and dynamic anal-
yses [58, 60, 100], and by comparing common instruction
sequences [117] from successful and failed executions of a
program. These approaches are meaningful in their relevant
domains, but applying them to the kernel is limited due to the
following requirements inherent to kernel concurrency bugs.
Comprehensive. Kernel concurrency failures often involve
data races of multiple variables, called a multi-variable race.
In the Linux kernel, multi-variable races exhibit complex in-
teractions. Often, a multi-variable race invokes a non-determin
istic control flow, called a race-steered control flow. A race-
steered control flow is a control flow that can be changed by
how preceding data-racing instructions are executed, and thus
previously un-executed code can be executed, which triggers
another data race, causing a failure eventually. We find that 16
bugs involve race-steered control flows out of 22 real-world
concurrency bugs. Therefore, to help developers in their rea-
soning about kernel concurrency bugs, a root cause diagnosis
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AITIA Kairux [117] MUVI [58]
Cooperative Bug Localization Failure Reproduction

Snorlax [38] Gist [37] CCI [34] REPT [16] RR [78]
Comprehensive (§2.1) ✓ - △ △ △ △ ✓ ✓

Pattern-agnostic (§2.2) ✓ ✓ - - - - ✓ ✓

Concise (§2.3) ✓ ✓ ✓ ✓ ✓ ✓ - -
Table 1. Three root cause diagnosis requirements and whether each work satisfies the requirements. ✓means satisfied, and – mean not satisfied
respectively. △ means a requirement is conditionally satisfied only when the root cause meets assumptions of each work.

tool must be able to consider the complex interactions of
multi-variable races involving race-steered control flows.
Pattern-agnostic. Previous systems rely on predefined bug
patterns to identify the root cause. However, it is challeng-
ing to express multi-variable races and race-steered control
flows as generic patterns due to their complex interactions.
Moreover, when they are combined with asynchronous events
(e.g., background kernel thread), the problem becomes worse.
Thus, a root cause diagnosis tool must not rely on predefined
patterns and must reflect the dynamic behaviors of the kernel.
Concise. The Linux kernel contains benign races which do
not contribute to a failure. Kernel developers intentionally
use benign races to improve performance (e.g., statistic coun-
ters) [107]. Existing kernel data race detectors such as Data-
Collider [21] are known to use a significant number of benign
races (104 data races out of 113 detected races were benign).
Such benign races are a major source of false positives in
root cause diagnosis systems, demanding significant manual
efforts from developers to rule out benign races. Therefore, a
root cause diagnosis tool must not contain failure-irrelevant
information such as benign races.

Unfortunately, existing systems have limitations with re-
gard to their ability to meet the three aforementioned goals,
as summarized in Table 1.

AITIA is a root cause diagnosis system for kernel concur-
rency bugs. AITIA satisfies the three requirements. To capture
comprehensive information, AITIA defines the root cause as
a chained sequence of data races, called a causality chain,
rather than a simple pattern [37, 38, 83]. A causality chain is
presented in a comprehensive form to explain how a failure
eventually occurs. Figure 1 shows an example of a failure (i.e.,
NULL pointer dereference) and its causality chain. Figure 1
shows multi-variable races involving two semantically corre-
lated variables, ptr_valid and ptr (i.e., a non-zero value
of ptr_valid indicates that ptr contains a valid pointer).
The code has a race-steered control flow introduced by the
pair A1 and B1. To be specific, if A1 ⇒1 B1, B2 ⇒ A2 would
lead to the NULL pointer dereference. However, if the exe-
cution order changes to B1 ⇒ A1, the control flow changes
as well—now thread B simply returns and it does not incur
a failure. As a result, the following data race at A2 and B2

does not occur. From the causality chain, developers know the
following: (1) two data races exist in the instructions of (A1;

1In this paper, X ⇒ Y denotes an execution order between two instructions
such that X is executed before Y .

A1   ptr_valid = 1;

A2   local = *ptr;

B1   if (ptr_valid == 0)
            return;
B2   ptr = NULL;

Thread A Thread B

(a) A buggy code example

NULL deref

A2B2

B1A1

(b) Causality chain

Initial value of  ptr_valid = 0

Figure 1. An abstract example of a concurrency failure.

B1) and (A2, B2); (2) the failure-causing instruction sequence;
(3) a race-steered control flow B2 ⇒ A2, which is induced by
A1 ⇒ B1; and (4) most importantly, how to fix the bug. The
causality chain explains, "If a fix does not allow one of the
interleaving orders in the chain, it does not incur a failure."
For example, if a developer patches the code so that it does
not execute A1 ⇒ B1, the failure will not occur. Likewise, a
developer can avoid the failure by not allowing B2 ⇒ A2.

To construct a causality chain, AITIA performs two steps:
Least Interleaving First Search (LIFS) and Causality Analysis.
From a bug-finding system, AITIA initially requires the in-
puts, system call traces, and failure information. LIFS aims to
reproduce a kernel concurrency failure from the input. LIFS
explores different interleavings of kernel instructions to find
the instruction sequence that causes the concurrency failure.
To reduce the search space, LIFS detects instructions access-
ing the same memory location (i.e., conflicting instructions),
a situation which may cause data races, and considers the
interleavings of the conflicting instructions. LIFS adapts the
idea of dynamic partial order reduction (DPOR) [22, 113] to
prune unnecessary search steps. At the end of the searches,
LIFS produces an instruction sequence that deterministically
causes a concurrency failure; e.g., A1 ⇒ B1 ⇒ B2 ⇒ A2 in
Figure 1.

Causality Analysis builds a causality chain from the output
of LIFS. The intuition is as follows: if an interleaving order
of a data race is flipped, one can test whether the data race
contributes to the failure or not. For example, in Figure 1, if A1

⇒ B1 is flipped to B1 ⇒ A1, a failure will not occur; therefore,
Causality Analysis inserts A1 ⇒ B1 into the causality chain.
For the same reason, B2 ⇒ A2 is inserted as well. Causality
Analysis systematically flips interleaving orders of data races
one at a time to identify all data races related to the failure. To
identify whether a data race contributes to the failure, AITIA
executes kernel following an instruction sequence where a
single data race is flipped and tests if kernel fails or not.
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AITIA dynamically tests data races by running the ker-
nel with different instruction sequences. AITIA does not rely
on predefined patterns of bugs (Pattern-agnostic). Instead,
AITIA relies on concrete evidence of the root cause—the run-
time behavior leading to a failure. While testing data races at
runtime, AITIA identifies the race-steered control flows and
relationships of multiple data races in the form of a causal-
ity chain (Comprehensive). AITIA tests all identified data
races to identify races that actually contribute to a failure,
thereby effectively excluding benign races from the root cause
(Concise).

AITIA is implemented by 6,705 lines of code (LoC) in
GO and 3,851 LoC in C in the KVM hypervisor and QEMU.
We applied AITIA to 22 real-world kernel concurrency bugs,
which were collected from the CVE vulnerability database [99]
since 2016 and to a well-known Linux kernel bug-finding sys-
tem, Syzkaller [26]. AITIA finds the root causes of six unfixed
kernel concurrency bugs. Patches for three of them were sub-
mitted by developers before we reported [50, 53, 54]. We
reported the root causes of the remaining three bugs, and they
were confirmed by Linux kernel developers.

2 Concurrency Bugs in the Kernel
We study real-world kernel concurrency bugs to motivate this
work. We find that it is challenging to identify the root causes
of kernel concurrency bugs due to the following three types
of races: 1) multi-variable races, 2) loosely correlated races,
and 3) benign data races. We perform an in-depth study about
how the three types of kernel concurrency bugs occur and
identify the following requirements for diagnosing their root
causes.
Comprehensiveness: In the presence of multi-variable races,

a diagnosis system should report all necessary information to
fix the bugs.
Pattern-agnostic: A diagnosis system should not rely on

the use of specific interleaving patterns or assumptions (e.g.,
correlations among memory objects).
Conciseness: The output should not contain failure-irrelevant

information such as benign races.
As shown in Table 1, previous studies only met part of these
requirements. To meet the three requirement, we define the
root causes as a causality chain and propose a system to build
a causality chain.

In this section, we describe how these requirements are de-
rived from real-world concurrency bugs and how the causality
chain satisfies these requirements while previous studies do
not. For clarity, we adapt the definitions of conflicting memory
accesses and data race specified in the Linux kernel mem-
ory model [49] throughput this paper; Conflicting memory
accesses refer to a case in which two operations access the
same memory location and at least one of them is a store op-
eration. A data race is defined as conflicting memory accesses
conducted on different CPUs (or in different threads), where
two memory accesses are executed concurrently.

A1    int fanout_add () {
A2        if (!po->running)
A3            return -EINVAL;
A4
A5        match = kmalloc();
            // Invariant: po->running != 0
A6        po->fanout = match;
A7
A8        fanout_link();
A9    }
A10
A11  void fanout_link() {
A12      list_add(sk, &global_list);
A13  }

B1    int packet_do_bind () {
B2        if (po->fanout)
B3            return -EINVAL;
B4
             // Invariant: po->fanout == 0
B5        unregister_hook();
B6 
B7        fanout_link();
B8    }
B9
B10  void unregister_hook() {
B11      po->running = 0;
B12      if (po->fanout)
B13          fanout_unlink(sk, po);
B14  }
B15 
B16  void fanout_unlink() {
B17      BUG_ON(
              !list_contains(sk, &global_list));
B18  }

Thread A (setsockopt) Thread B (bind)

Initial value:        po->fanout = NULL;        po->running = 1;

po, and sk point to
shared objects in both threads

Figure 2. Simplified code snippet of CVE-2017-15649. Dashed
lines represent function calls when the failure manifests. Data-racing
instructions: (A2, B11), (A6, B2), (A6, B12), (A12, B17). A failure-
causing instruction sequence: A2⇒ A5⇒ B2⇒ B11⇒ A6⇒ B12
⇒ B17 (BUG_ON()).

2.1 Challenge 1: Multi-variable Race
A multi-variable race is a race bug that multiple variables
are semantically correlated [58]. To illustrate, let’s consider
two correlated variables, a pointer variable (which points to a
string) and a length variable (which stores the length of the
string). When the pointer variable is updated, the length vari-
able must be updated accordingly. Such multi-variable races
involves combinations of data races eventually leading to a
failure. To understand the root cause of such multi-variable
concurrency bugs, a diagnosis system must represent compre-
hensive interactions of multiple data races.
Real-World Example. we study a real-world concurrency
bug, CVE-2017-15649 [69], as an example of a multi-variable
data race. This is shown in Figure 2. In this example, two
system calls, setsockopt and bind, communicate via two
memory-accessing variables, po->fanout and po->running.
The two variables are semantically correlated; po->fanout
can be updated only if po->running is 1, and po->running
can be set to 0 only if po->fanout is NULL. The correlation
is implicitly assumed by developers. If these two memory
variables are accessed in an atomic manner, a failure does
not occur. However, a failure occurs if a thread interleaves
between the time the two correlated variables are accessed,
leading to BUG_ON() (B17). Precisely, the failure occurs in
the following sequence.

First, thread A checks whether po->running is 0 at A2.
As an initial value of po->running is 1, thread A keeps exe-
cuting without returning an error at A3. Subsequently, thread
B checks whether po->fanout is NULL at B2. Because its ini-
tial value is NULL, it proceeds up to B11. Up to this point, the
execution order can be represented as follows: A2⇒ A5⇒ B2
⇒ B11. Then, thread A stores a value in po->fanout at A6,
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A2 ⇒ B11
∧

B2 ⇒ A6 
A6 ⇒ B12 B17 ⇒ A12 BUG_ON()

Figure 3. Causality chain of CVE-2017-15649.

violating the multi-variable semantic because po->running
= 0 at B11. However, a failure does not occur at this point.

The execution of A6 allows thread B to pass the check
at B12, which in turn calls fanout_unlink() at B13. This
fanout_unlink() attempts to remove sk from the global_-
list, but this violates the assumption behind fanout_unlin
k(), as fanout_unlink() assumes that the to-be-deleted sk
must be on the linked list global_list, but this specific ex-
ecution order causes sk not to be inserted before thread B
calls fanout_unlink(), causing BUG_ON() at B17. The in-
struction sequence A2⇒ A5⇒ B2⇒ B11⇒ A6⇒ B12⇒
B17 causes the failure.
Race-steered control flow. Note that if B12 were executed
before A6, the failure would not occur; because po->fanou
t would be NULL at B12, thread B would return without call-
ing fanout_unlink(). As such, the control flow of thread
B depends on the data race of A6 and B12, which we refer to
as a race-steered control flow caused by a multi-variable race.
Comprehensiveness. We tracked how kernel developers
fixed the bug. The developers discovered the root cause of the
failure is a multi-variable atomicity violation on po->runni
ng and po->fanout. They wrote a patch that makes po->runni
ng and po->fanout accessed atomically; i.e.„ the fix causes
B2 ⇒ A6 and A2 ⇒ B11 not to occur simultaneously. As
shown by this fix, developers must understand the complex
interactions of multiple data races. To help developers, a diag-
nosis technique should report the comprehensive interactions
of multiple data races caused by race-steered control flows.

Unfortunately, previous approaches have limitations to
identify the root cause of multi-variable races; they either
cannot capture the complex interactions of multiple data races
or can diagnose the root cause partially; a single data race that
the most strongly correlated interleaving pattern to the failure.
If Kairux [117] is applied to the example, it can point to at
most a single instruction (i.e., an inflection point) among the
multiple interleavings. Likewise, cooperative bug localization
techniques [7, 8, 34, 37, 38, 83, 84] infer the most strongly
correlated interleaving from numerous execution traces using
well-known bug patterns such as atomicity and order vio-
lations. In the example, cooperative bug localization (e.g.,
Snorlax [38], Gist [37]) will report an order violation in B17
⇒ A12 only. However, enforcing the order B17⇒ A12 is not
a correct fix. Even with such a fix, both threads still can exe-
cute fanout_link() concurrently (at A8 and B7), resulting
in the corruption of global_list due to the insertion of a
shared object twice.
Causality chain. To summarize, i) one should understand
how multiple data races cause race-steered control flows and

kworkerd
daemon

Syscall
thread A

Syscall
thread B

M1
M1

M2
M2

kworkerd
daemon

Syscall
thread A

M1
M1

RCU
callback

queue_work()

queue_work() call_rcu()

Syscall
thread A

Syscall
thread B

M1

M1
M2

M2

M3

M3

(a) (b) (c)
Figure 4. Complex concurrency bug patterns in the Linux kernel.
Solid arrows indicate data races, and dotted arrows indicate invo-
cations of kernel background threads. M1, M2 and M3 represent a
memory object.

how they eventually lead to a failure. ii) the root cause can-
not be precisely defined as a single data race or a single
instruction. Therefore, we claim that the root cause must be
described as a chain of execution orders involving multiple
data races. We call this form of root cause a causality chain.
Figure 3 shows a causality chain of the bug in Figure 2. The
chain presents the race-steered control flow of A6⇒ B12→
B17⇒ A12, and how the failure eventually occurs due to the
comprehensive interactions of data races. We emphasize that
the causality chain provides useful information for developers
to fix the failure; it explains, "If a fix does not allow one of the
execution orders in the chain, the BUG_ON() does not occur."
In the example, the kernel developers fixed the bug not to
allow the multi-variable race of (B2⇒ A6) ∧ (A2⇒ B11), as
described in the causality chain.

2.2 Challenge 2: Loosely correlated Objects
To identify multi-variable races, MUVI [58] identifies se-
mantic correlations by means of a statistical analysis. MUVI
makes the following key assumption: if two variables have
semantic correlation, most of the accesses to these variables
should be correlated. More specifically, if one of these two is
accessed, the other variable should be accessed with a high
probability.

We analyze the execution traces of kernel multi-variable
races accessing two objects and find that the two are not ac-
cessed together in most cases. We call such objects loosely
correlated. We observed the following two cases often intro-
duce loosely correlated objects in the Linux kernel: i) two
memory objects are often used independently; e.g., one sys-
tem call only accesses one object, but not the other object, and
ii) two memory objects exist in different kernel subsystems.
For example, in the CVE-2019-6974 [75], two data races
causes a failure: a data race in a file descriptor of a virtual
device object at the VFS layer and a data race in a virtual
machine object (i.e., kvm) at the KVM hypervisor layer. The
objects in which the two data races occur are loosely corre-
lated. Many system calls change the attributes of the virtual
device object through its file descriptor (VFS layer) without
accessing the kvm virtual machine object (KVM hypervisor
layer).
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Pattern-agnostic. Approaches such as MUVI and coopera-
tive bug localization have limitations when diagnosing kernel
concurrency bugs involving loosely correlated objects be-
cause the root cause of kernel concurrency bugs is out of
their predefined patterns or assumptions on which they rely.
As shown in Figure 4, kernel concurrency bugs often exhibit
complex interleaving patterns involving multiple variables
and threads. Pre-defining all possible interleaving patterns is
impractical. For this reason, state-of-the-art cooperative bug
localization approaches [37, 38] only focus on single-variable
concurrency bugs. In contrast, we propose a pattern-agnostic
approach. The intuition is if one can dynamically change the
execution order of only one pair of data-racing instructions
at runtime while the remaining orders remain unchanged, it
is possible to identify how the changed execution order con-
tributes to a failure. The approach does not count on specific
assumptions or predefined patterns. We refer to this technique
as a casualty analysis (§3.4).

2.3 Challenge 3: Benign Data Races
In the Linux kernel, complete race-free implementation is not
a coding practice. For performance, developers intentionally
leave data races in production code called benign races, such
as updating statistics counters which do not need to provide
accurate values, or modifying different bits of flag variables
that cause data races but do not incur a failure. According to a
recent study on detecting kernel race bugs, more than 50% of
newly found concurrency bugs are benign races [23, 107]. The
benign race is a major source of false positives [20, 21, 36, 80]
in root cause diagnosis systems. Differentiating benign data
races from harmful data races is time-consuming and difficult
because it requires a careful analysis of the documentation
and specific knowledge of the developer’s intentions [107].
Therefore, previous approaches use heuristics [107] or replay
analysis [80] to filter out benign data races. However, these
approaches often incorrectly classify harmful data races as
benign ones. According to [80], among the data races that are
identified as harmful, around 40% are incorrectly identified,
leaving manual inspections of benign race bugs to developers.
Conciseness. Filtering out failure-irrelevant information such
as benign races significantly helps developers by reducing
their debugging time. Therefore, providing concise informa-
tion to developers should be one of the important objectives of
root cause diagnosis techniques. In contrast, failure reproduc-
tion [16, 116] focuses on enabling developers to investigate
what transpired during the failed execution. However, identi-
fying the root cause of failed executions remains a tedious and
time-consuming task. As discussed in §2.2, we test whether a
data race contributes to a failure by dynamically controlling
the interleaving order of data races, allowing our approach
to exclude benign races effectively when building a causality
chain.

3 Causality Inspection for Concurrency Bugs
This section first introduces the key intuition (§3.1) and as-
sumptions (§3.2) behind our approach, after which it explains
the two steps needed to build a causality chain, i.e., Least In-
terleaving First Search (§3.3) and Causality Analysis (§3.4).

3.1 Approach Overview
The proposed system, AITIA, diagnoses the root causes of
kernel concurrency bugs. AITIA is not a bug-finding system.
AITIA helps developers to patch reported but unfixed kernel
concurrency bugs, which is difficult to reason about. We study
concurrency bugs in the Linux kernel, but high-level ideas
presented in AITIA are generally applicable to other operating
systems and user applications. Many previous failure diag-
nosis systems require an instruction sequence to reproduce a
failure as input [60, 61, 117], and AITIA’s causality inspec-
tion also requires a failure-causing instruction sequence.

The workflow of AITIA is as follows:
1. Input: System call traces and failure information
2. Least Interleaving First Search (LIFS): Reproducing

the failure (§ 3.3)
3. Causality Analysis: Pinpointing the root cause (§ 3.4)
4. Output: A causality chain

AITIA takes an input from a bug-finding system. With re-
gard to the input, AITIA has two phases: reproducing and
pinpointing. To reproduce the failure, AITIA runs a practical
algorithm, called Least Interleaving First Search (LIFS). For
LIFS, we adopt a well-known technique DPOR [22], but prac-
tically tailor it to work in the Linux kernel. LIFS produces a
totally ordered instruction sequence that causes a failure (e.g.,
A2⇒ A5⇒ B2⇒ B11⇒ A6⇒ B12⇒ B17 in Figure 2).

With this sequence, AITIA runs a novel algorithm, Causal-
ity Analysis, that systematically tests which data races con-
tribute to the failure, as sketched in § 2.2. From Causality
Analysis, AITIA constructs a causality chain—i.e., the root
cause.

To apply the two aforementioned algorithms, AITIA needs
instruction-level fine-grained controls over the kernel execu-
tion. To this end, the two algorithms are designed to specify
precise interleaving orders of conflicting instructions, and
AITIA mandates the kernel to execute code in such an or-
der using hardware breakpoints. Moreover, AITIA controls
various types of execution contexts including system calls,
software interrupt handlers (softirq for RCU), and kernel
background threads (kworkerd). The details of how AITIA
controls the kernel are described in § 4.

3.2 Assumptions in AITIA

AITIA assumes the following: First, a concurrency bug can
be observed (i.e. no latent bug). If AITIA cannot observe a
failure’s manifestation, AITIA cannot diagnose the root cause.
Second, a failure should be proximate in time to the root
cause. AITIA is inefficient (but not unable) to diagnose the
root causes of bugs that manifest after a long time. Third,
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Figure 5. A simplified example of a failure and its LIFS search tree: (a) shows a failure example. Thread A and thread B execute a system call.
Thread K is a kernel background thread (e.g. kworkerd). The circles of the same color access the same memory. (b) shows a search tree of
LIFS. The numbers below the search tree are the search orders of LIFS. Red paths indicate instruction sequences that cause a failure. Grey
paths are pruned by partial order reduction.

AITIA assumes the sequential consistency memory model. If
there exists a failure-causing instruction sequence, it must
deterministically reproduce the failure.

3.3 Least Interleaving First Search
From bug finding tools (e.g., Syzkaller [26]), AITIA obtains
timestamped system call traces, the invocation of kernel back-
ground threads, and the failure information. Then AITIA se-
lects concurrent system calls and background threads (if in-
voked) as the input of LIFS. AITIA runs LIFS to reproduce
the reported failure. If the failure is not reproduced from the
input, AITIA runs LIFS with the next concurrent events.

To reproduce a failure, LIFS explores different interleav-
ings of instructions. Exploring all possible interleavings of all
instructions is nearly impossible due to the complexity of such
an exploration. This is because only conflicting instructions
are meaningful to reproduce the failure [23, 24]. Throughout
this paper, we denote A1(x)⇒ B1(x) as the execution (or
interleaving) order of two conflicting instructions, A1 and B1,
accessing the same address x. Also, a data race is presented
as such a form.
LIFS search strategies. LIFS has three strategies for explor-
ing possible interleavings of conflicting instructions. First,
LIFS searches the instruction sequences from the smallest
number of interleavings between threads to the largest. LIFS
is based on the observation that most concurrency failures
require only a small number of interleavings to manifest [23,
79]. Second, to prune the search space, LIFS adapts the idea
proposed by dynamic partial order reduction (DPOR) [22].
While exploring the search space, LIFS detects equivalent
instruction sequences, which generate the same result (e.g.,
no failure produces) and skips the instruction sequence. Third,
LIFS searches interleavings of conflicting instructions from
front to back. While exploring different interleavings, LIFS
dynamically identifies new memory-accessing instructions
due to race-steered control flow and checks data races be-
tween existing instructions and newly detected instructions.

While LIFS is inspired by well-known algorithms such as
PCT [11] and DPOR [22, 113], LIFS can be characterized in
terms of its practical approach to handle concurrency bugs
in large kernel code. In particular, kernel concurrency bugs
are often caused by complex, asynchronous interactions be-
tween system calls and a kernel background thread (shown
in Figure 4). For instance, a kernel background thread is asyn-
chronously invoked only when a race-steered control flow
occurs (Figure 4-(a)), and even a single system call can race
with kernel background threads resulting in a failure (Fig-
ure 4-(c)). In our evaluation, LIFS effectively reproduces all
bug patterns described in Figure 4.
LIFS search example. Given the failure presented in Fig-
ure 5-(a), Figure 5-(b) depicts how LIFS explores the search
space to reproduce. The interleaving count indicates how
many interleavings were performed in each search step. LIFS
begins the search from the interleaving count 0, continuing to
increase the count as it proceeds with the search. Interleaving
count 0. LIFS simply executes thread A and thread B without
interleaving (search order 1 and 2). During this step, LIFS
detects all memory-accessing instructions, but LIFS does not
know what data races exist. Search order 2 does not include
K1 due to the race-steered control flow. Interleaving count
1. LIFS preempts thread A or thread B exactly once while
performing the search. For example, during search order 4,
an interleaving occurs at A1(m1)⇒ B1(m1). After executing
threads B and K, LIFS executes the remaining instructions of
thread A, generating the following execution order: A1(m1)
⇒ B1(m1)⇒ B2(m2)⇒ K1(m3)⇒ A2(m2)⇒ A3(m3). In
search order 4, when performing a preemption at A1(m1),
LIFS monitors what instructions of thread B access the mem-
ory address, m1 that A1 accesses. Therefore, after threads A,
B, and K finish, LIFS can identify the data racing instruc-
tions with respect to A1 ({A1, B1} is identified). Likewise,
in search order 5 and 6, a preemption occurs at A2(m2)⇒
B1(m1), and LIFS detects data races with respect to A2 ({A2,
B2} is identified). In search order 4, LIFS reproduces the
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failures (the data race, K1(m3)⇒ A3(m3), causes the failure)
and terminates. LIFS outputs the failure-causing instruction
sequence at step 4, A1(m1)⇒ B1(m1)⇒ B2(m2)⇒ K1(m3)
⇒ A2(m2)⇒ A3(m3) (fails). After reproducing the failure,
LIFS identifies all data races in the failure-causing instruction
sequence, which is required for the next step.
Guarantees of LIFS. LIFS does not assume specific bug
patterns to reproduce. LIFS systematically searches for all
possible interleavings until it reproduces the failure. LIFS
dynamically executes kernel code with the execution order
specified by the search algorithm, identifying race-steered
control flow and adding these factors to the search space on
the fly.

3.4 Causality Analysis
LIFS produces a failure-causing instruction sequence. While
performing LIFS, AITIA detects data races in the instruction
sequence, but it does not know what data races contribute to
the failure. From the instruction sequence, Causality Analysis
performs two tests: i) testing causality to the failure so as to
identify the root cause and ii) testing causality to other data
races so as to build a causality chain.
Identifying the root cause. Initially, Causality Analysis
creates two sets; the test set and the root cause set.
The test set is initialized using a failure-causing instruction
sequence. Each element in the test set specifies a data race
with an interleaving order. For example, given that A1(x)
⇒ B1(y) ⇒ B2(x) ⇒ A2(y) is a failure-causing instruc-
tion sequence, the test set is initialized as {A1(x)⇒ B2(x),
B1(y)⇒ A2(y)}. Causality Analysis pops one element at a
time from the test set, and flips the popped interleaving or-
der while the remaining elements’ interleaving order remains
unchanged. The flipped interleaving order creates a new in-
struction sequence from the failure-causing execution order.
AITIA executes the kernel to follow the new instruction se-
quence and checks whether the kernel fails or not. If the result
is not failed, it means that the element (the data race) con-
tributes to the failure, Hence it is added to the root cause
set. If the kernel still fails, Causality Analysis identifies that
the data race is benign. This testing idea is consistent with the
formal definition of the root cause; “if removed (flipped in our
test), it would prevent a failure from occurring" [105]. Causal-
ity Analysis repeats this process until the test set becomes
empty.

Causality Analysis is designed to pop an element from
backward in the failure-causing instruction sequence (in the
example, B1(y)⇒ A2(y) is selected at first because A2(y)
is the last instruction). Testing from backward is convenient
because if Causality Analysis starts flipping from forward, a
flipped interleaving may cause a new (or known) race-steered
control flow, which does not affect the failure or which may
cause existing instructions disappear due to by a race-steered
control flow.

B2 → A2 → A6 → B11 → B12 → B17

B2 → A2 → A6 → B11 → B12 → A12 → B17

B2 → A2 → B11 → B12 → A6 

B2 → B11 → A2 → B12 

A2 → A6 → B2 

Input

Step 1

Step 2

Step 3

Step 4

B17 → A12 Failure

A6 → B12

A2 → B11

B2 → A6

B17

A6

B11

Instruction sequence Flipping Disappeared

A1    int fanout_add () {
A2        if (!po->running)
A3            return -EINVAL;
A4
A5        match = kmalloc();
            // Invariant: po->running != 0
A6        po->fanout = match;
A7
A8        fanout_link();
A9    }
A10
A11  void fanout_link() {
A12      list_add(sk, &global_list);
A13  }

B1    int packet_do_bind () {
B2        if (po->fanout)
B3            return -EINVAL;
B4
             // Invariant: po->fanout == 0
B5        unregister_hook();
B6 
B7        fanout_link();
B8    }
B9
B10  void unregister_hook() {
B11      po->running = 0;
B12      if (po->fanout)
B13          fanout_unlink(sk, po);
B14  }
B15 
B16  void fanout_unlink() {
B17      BUG_ON(
              !list_contains(sk, &global_list));
B18  }

Thread A (setsockopt) Thread B (bind)

(a) Details of each step of Causality Analysis.

A2 ⇒ B11
∧

B2 ⇒ A6 
A6 ⇒ B12 B17 ⇒ A12 BUG_ON()

Step 1Step 2Step 3 & 4

(b) The constructed causality chain. The corresponding step is written under
each arrow.
Figure 6. Causality Analysis steps to construct the causality chain
for CVE-2017-15649.

Building a causality chain. The idea behind building a
causality chain is identical to identifying the root cause. If
A1(x)⇒ B2(x) has a causality to B1(y)⇒ A2(y), flipping
to B2(x)⇒ A1(x) will make the data race disappear mostly
due to a race-steered control flow (i.e., B1(y)⇒ A2(y) does
not occur). Following this intuition, AITIA pops an element
from the root cause set (say R1) and runs the kernel with a
flipped R1. While running, AITIA attempts to identify any R2
in the root cause set that meets the following two conditions:
i) R1 is present in the root cause set, and ii) R2 does not occur.
If both conditions are met, AITIA finds that R1 has a causality
to R2. Similar to the root cause identification, AITIA builds
the causality chains in the backward direction.
Causality chain of CVE-2017-15649. Figure 6 shows how
Causality Analysis builds a causality chain. The CVE is the
example discussed in § 2.1. LIFS generates B2⇒ A2⇒ A6
⇒ B11 ⇒ B12 ⇒ B17 as a failure-causing instruction se-
quence (denoted as input in Figure 6). In this example, there
are four data races in the test set:{B2⇒ A6, A2⇒ B11, A6
⇒ B12, B17 ⇒ A12}. At step 1, Causality Analysis starts
flipping B17 ⇒ A12 as it is the last data race. In this new
instruction sequence, thread A inserts sk into global_list

7



B1

Thread A Thread B
A1
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A2

Thread A Thread BThread A Thread B

Flipping A2 ⇒ B1

Flipping A1 ⇒ B2

M1
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M1

B1
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M2

B1

B2

M2

M1

A2
M2

A1
M1

(a) Failed (b) Not Failed (c) Not Failed

Figure 7. A1⇒ B2 surrounds A2⇒ B1 in (a).

at A12 before thread B executes BUG_ON() at B17. Therefore,
BUG_ON() does not trigger a failure, and Causality Analysis
adds B17⇒ A12 to the root cause set. At step 2, Causality
Analysis flips A6⇒ B12 to B12⇒ A6. When running the ker-
nel code, Causality Analysis observes that the kernel does not
execute B17 because it returns at B13 (a race-steered control
flow), such that a failure does not occur. Consequently, A6
⇒ B12 is added to the root cause set, and Causality Analysis
concludes that A6⇒ B12 has a causality to B17⇒ A12. At
step 3, Causality Analysis concludes that A2 ⇒ B11 has a
causality to A6⇒ B12 because B11⇒ A2 (flipped) does not
execute A6 (it returns at A3, and no failure occurs). Finally,
after analyzing the causality from B2 ⇒ A6 to A6 ⇒ B12,
Causality Analysis constructs the causality chain.
Properties of Causality Analysis. Causality Analysis tests
all data races in the failure-causing instruction sequence;
therefore, Causality Analysis does not cause false-negatives
(i.e., it never misses a data race that contributes to the fail-
ure). Also, Causality Analysis does not have false-positives;
it excludes all benign races during the testing process. In
addition, unlike previous statistical approaches, Causality
Analysis does not rely on well-known bug patterns, precisely
expressing the causalities of multi-variable data races.
Liveness. When Causality Analysis has to interleave a thread
holding a lock, Causality Analysis does not progress if the
other thread attempts to acquire the lock. To guarantee live-
ness, when Causality Analysis meets a critical section pro-
tected by a lock, Causality Analysis treats the entire critical
section as a single data race because the execution order of
critical sections may contribute to the failure [59]. Causality
Analysis flips the execution order of a critical section as a
unit instead of individual instructions in the critical section.
Ambiguity. However, Causality Analysis cannot always flip
a single data race. As shown in Figure 7, a data race may
surround another data race; A1 ⇒ B2 surrounds A2 ⇒ B1
in Figure 7-(a). We refer to a data race such as A2 ⇒ B1
a nested data race. B2 is the last instruction, but Causality
Analysis cannot flip A1 ⇒ B2 while preserving the A2 ⇒
B1 interleaving order. In this case, Causality Analysis flips
the nested data race first; flipping A2 ⇒ B1 (Figure 7-(b)).

Then, Causality Analysis flips the surrounding race, A1⇒ B2
(Figure 7-(c)).

An ambiguous case arises when both a nested and a sur-
rounding data race are in the root cause set. For example, in
Figure 7, a failure does not occur in (b) or (c). In this case,
Causality Analysis cannot determine whether the data race
A1⇒ B2 truly causes the failure; Causality Analysis cannot
determine whether a failure does not occur in (c) because A1
⇒ B2 is flipped or A2⇒ B1 is flipped. Therefore, Causality
Analysis reports A1⇒ B2 is ambiguous. Note that such an
ambiguous case does not arise if the nested data race is not
the root cause. If the failure still occurs in (b) and does not
occur in (c), we can clearly ascertain that A2⇒ B1 causes the
failure. In practice, ambiguous cases are not common. In our
18 Linux concurrency bug study, we observe only a single
ambiguous case.

4 AITIA
4.1 AITIA Overview
AITIA takes two inputs from a Linux kernel bug finder: times-
tamped system call traces from a failed execution, and failure
information such as a Linux coredump. The current imple-
mentation takes inputs from the well-known kernel fuzzing
system Syzkaller [26]. AITIA works through three stages:
modeling execution history (§4.2), reproducing stage (§4.3),
and diagnosing stage (§4.5).

The execution history contains the sequence of system calls
and invocation events of kernel background threads such as
the deferred work in Linux. They are timestamped to identify
concurrent events. After the execution history is modeled, the
reproducer produces a failure-causing instruction sequence
by LIFS. The execution history contains multiple groups of
threads2 that are executed concurrently, AITIA launches mul-
tiple instances of reproducers, each of which is in charge of
performing LIFS with a single group of threads. AITIA fully
parallelizes the reproducing stage by assigning reproducers
for each group. When a reproducer reports a failure-causing
instruction sequence, AITIA forwards the result to a diag-
noser. In the diagnosing stage, AITIA makes plans regarding
which data races are to be flipped according to Causality
Analysis. For each flipped data race, AITIA parallelizes the
diagnosing stage with multiple instances of diagnosers to run
Causality Analysis. Finally, AITIA cleans up the result of the
diagnosers and reports a causality chain with instruction-level
information, such as line numbers in the kernel.

4.2 Modeling Execution History
By analyzing a crash report, AITIA identifies the symptom
of the failure (e.g., kernel panic or watchdog report) and the
location of the failure. In the modeling stage, AITIA gener-
ates the execution history based on the system call traces
from the bug-finding system, which is obtained by enabling

2A thread refers to a system call or a kernel background thread.
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kernel-event tracing (e.g., ftrace [46] in Linux). More pre-
cisely, the execution history consists of i) executed system
calls with their parameters and ii) kernel events such as invo-
cations of kernel threads (e.g., RCU kernel thread) with the
source of the invocation (a system call, another background
thread, or a software interrupt). All entries in the history are
annotated with a fine-grained timestamp for AITIA to identify
concurrent events.

Consequently, AITIA splits the history into groups of con-
currently executed threads, called slice. AITIA builds a slice
without breaking semantics across system calls; for example,
if write() or read() is in a slice, AITIA adds open() and
close() of the same file descriptor by searching the history.
If a slice contains a concurrent event (e.g., two system calls
and a kernel background thread), the slice is further split into
smaller slices that contain up to three threads.3 AITIA creates
slices backward from the point of a failure because the root
cause is likely not far from the failure point, which is the
common wisdom in previous failure diagnosis work [16, 38].
A slice may not contain the root cause. If AITIA cannot repro-
duce the failure, AITIA selects the next slice until the failure
is reproduced.

4.3 Reproducing a Failure-Causing Instruction
Sequence

In the reproducing stage, AITIA assigns a slice for each re-
producer and makes it execute LIFS. To conduct LIFS, the
reproducer requires instruction-level controls of the kernel ex-
ecution to enforce the specified instruction sequence. AITIA
uses virtualization to take fine-grained control of the kernel
execution. AITIA invokes a guest virtual machine as a repro-
ducer. A reproducer consists of three components: the user
agent, guest operating system (OS), and the AITIA hypervi-
sor. The user agent running on a guest OS receives a slice
and runs the system calls specified in the slice. If the user
agent must execute two concurrent threads, it runs one of the
concurrent threads while the other thread is suspended. When
running the threads, the user agent collects the address of
memory-accessing instructions.
Identifying memory-accessing instructions. AITIA instru-
ments the kernel to obtain control flows of threads. Modern
OSes provide coverage testing tools such as kcov [48], which
detects basic blocks executed by a thread. These tools al-
low one to register a callback function triggered at an entry
point of all basic blocks, with the callback function then in-
forming the user agents of the basic block address. The user
agent has a map of the disassembled kernel code and searches
for memory-accessing instructions from the pertinent basic
block.

3We find that that kernel concurrency failures that occure due to more than
four contexts are rare.
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Figure 8. Workflow of AITIA’s components. Circles are memory-
accessing instructions.

Detecting data races. After identifying memory-accessing
instructions, the user agent detects data races while execut-
ing LIFS. Figure 8 shows the workflow. To detect a data
race with a memory-accessing instruction (B2 in Figure 8),
the user agent makes a hypercall (hcall_monitor) to let
the AITIA hypervisor install a breakpoint in the memory-
accessing instruction. The user agent starts executing thread
B while thread A is suspended. When thread B hits the in-
stalled breakpoint, the AITIA hypervisor takes control. The
AITIA hypervisor stores context information (e.g., program
counter, registers) in the hypervisor’s memory, and suspends
thread B by directing its program counter to the trampoline
code. The trampoline code continually yields its context in
a busy loop. The AITIA hypervisor disassembles the kernel
code of the memory-accessing instruction to identify the ad-
dress to which the instruction refers, installs a watchpoint at
the memory location, and notifies the user agent to resume
thread A. Then, the user agent calls a hypercall to resume
thread A (hcall_resume). In Figure 8, Thread A invokes a
kernel background thread. If an instruction (K2) in the ker-
nel thread accesses the memory address indicated by the
watchpoint (trapped for the AITIA hypervisor), the AITIA
hypervisor identifies the breakpointed instruction (B2), and
the instruction (K2) has a data race. The AITIA hypervisor
notifies the user agent that the pair of instructions has a data
race.
Generating a schedule. From the identified data races, the
user agent creates a reproduce schedule according to the
LIFS, a manifestation of an instruction sequence consisting
of i) a system call to be started initially and ii) scheduling
points. A scheduling point specifies an instruction address
and interleaving order (e.g., Thread A is interleaved to Thread
B at address 0x601020). The AITIA hypervisor enforces the
interleaving orders of the data races as manifested in the
reproduce schedule. After finishing a run of LIFS, the AITIA
hypervisor reverts the memory contents of the reproducer.
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4.4 Enforcing a Given Schedule
The reproducer and the diagnoser issue a hypercall to the
AITIA hypervisor to enforce a scheduling manifestation. In
response to the hypercall, the AITIA hypervisor holds the ex-
ecution of the concurrent threads by installing breakpoints at
their entry points. When both threads are ready, the AITIA hy-
pervisor informs the user agent to start the concurrent threads.
The AITIA hypervisor proceeds with only one thread speci-
fied in a schedule while the other thread is suspended.
Suspending a thread. The AITIA hypervisor modifies the
program counter of a suspended thread to execute the trampo-
line code. The trampoline code is a busy loop, yielding its con-
text to the kernel scheduler by calling the cond_resched()
function. This method is required to make the suspended
thread responsive to in-kernel notifications or hardware events.
For example, TLB shootdown sends inter-process interrupts
(IPIs) to all cores [6] expecting all cores to execute the TLB
shootdown handler. By locating suspended threads to the
trampoline, AITIA does not break the semantics of in-kernel
communications such as IPI and RCU invocations.
Performing interleavings. To interleave a running thread A
to a suspended thread B, the AITIA hypervisor installs break-
points on the thread A’s scheduling point (i.e., instruction
address). Once a running thread hits the scheduling point,
VM_EXIT occurs, and the AITIA hypervisor gains control of
the virtual CPU executing the thread. The AITIA hypervisor
stores the virtual CPU context information into AITIA hy-
pervisor’s memory and sets the program counter of thread A
to the trampoline code. Then, the AITIA hypervisor resumes
the suspended thread B by restoring the saved CPU context
information from AITIA hypervisor’s memory.

4.5 Testing Causality Between Data Race and Failure
After running the reproducing stage, AITIA receives a failure-
causing instruction sequence and the data races found by
the reproducer. Following Causality Analysis, AITIA assigns
the data races that are to be flipped to the user agent in a
diagnoser, and the user agent creates a diagnosis schedule. A
diagnosis schedule has the same form as a reproduce schedule,
which describes what thread starts initially and scheduling
points to enforce the interleavings of the data races. To start a
failure diagnosis, the user agent creates a hypercall and send
it to the AITIA hypervisor. The AITIA hypervisor enforces
the schedule manifested in the diagnosis schedule follwing
§4.4. AITIA monitors which diagnosers successfully finish
their tasks without causing a failure. Once AITIA detects alive
diagnosers, AITIA checks which data race is flipped for these
diagnosers and adds them to its root cause set. Because the di-
agnosing stage consists of independent tasks, AITIA launches
multiple virtual machines to perform Causality Analysis in
a parallel manner. As the final outcome, AITIA collects the
complete root cause set from alive diagnosers and builds a

causality chain to explain how the data races lead a kernel to
the failure point.

4.6 Implementation
AITIA is implemented in various software layers. The man-
ager, which orchestrates and manages multiple instances of a
virtual machine, is implemented in 2,889 lines4 of GO. The
user agent is implemented in 730 lines of C. Reproducer
and Diagnoser contains two parts: schedule generators and
the AITIA hypervisor. The reproducer’s schedule generator
and the diagnoser’s schedule generator are implemented with
2,765 lines and 1,051 lines of GO respectively. The AITIA
hypervisor is implemented in KVM hypervisor and QEMU-
3.0.0 with 10 and 3,004 lines of C respectively. The trampo-
line is implemented in 97 lines of a Linux kernel module.
Limitations. AITIA does not implement cases in which con-
currency bugs occur in hardware IRQ contexts, such as con-
currency bugs between a system call and a hardware interrupt
handler. However, we believe that AITIA is able to diagnose
such concurrent bugs if the AITIA hypervisor injects an IRQ
through the VT-x mechanism as is done for system calls. We
leave such cases as a future work.

5 Evaluation of AITIA
We evaluate AITIA in 22 real-world concurrency bugs found
in the Linux kernel. To verify AITIA’s correctness, we firstly
test AITIA on concurrency failures from the CVE database [99].
Their root causes are well-analyzed. After that, we connect
AITIA with an automated bug-finding tool to show how they
work together to fulfill the three requirements: comprehensive-
ness, pattern-agnostic, and conciseness. We choose Syzkall
er [26] because it is one of the most influential bug-finding
systems.

All of our evaluations are performed on an Intel(R) Xeon(R)
CPU E5-4655 v4 @ 2.50GHz (30MB cache) with 512GB
of RAM. We run Ubuntu 18.04.03 LTS with Linux 4.15.18
64-bit. We use an instrumented kernel with KASAN [47, 89].
We use Linux coredump and ftrace to collect a failure infor-
mation. For LIFS and Causality Analysis, we launch 32 VMs
with the AITIA hypervisor.

5.1 Diagnosing Concurrency Failures in Linux Kernel
To show how AITIA works with real-world failures, We col-
lect 10 concurrency failures from the CVE database since
2016 using keywords such that Linux, race, and concurrent.
Many of these failures and their root causes are well-studied
by the security community. For example, we can find the root
cause and a detailed explanation of CVE-2017-2636 [70] in
[5]. We use the cases to evaluate AITIA by comparing the
result of AITIA with reported root causes.

4We use scc [1] and sloccount [104] to measure the LoC of GO and C
respectively.
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Bug ID Subsystem LIFS Causality Analysis
Time(s) # of sched. Inter. Time(s) # of sched.

CVE-2019-11486 [74] TTY 44.7 225 1 497.6 130

CVE-2019-6974 [75] KVM 103.8 664 1 1183.8 688

CVE-2018-12232 [73] SockFS 37.8 536 1 511.4 680

CVE-2017-15649 [69] Packet socket 88 1052 2 337.9 257

CVE-2017-10661 [68] Timer fd 32.8 99 1 336.1 266

CVE-2017-7533 [72] Inotify 64.5 1056 1 1846.7 1578

CVE-2017-2671 [71] IPV4 33.2 130 1 195.3 159

CVE-2017-2636 [70] TTY 34.3 197 1 270 215

CVE-2016-10200 [66] L2TP 32.8 112 1 184.9 159

CVE-2016-8655 [67] Packet socket 47.8 213 1 184 135

Table 2. CVEs caused by a concurrency failure in Linux. # of sched.
indicates the total number of interleavings executed by LIFS and
Causality Analysis. Inter. indicates the interleaving count of LIFS.

Correctness. Table 2 shows the kernel concurrency bugs with
which we test AITIA. All failures from the CVE database are
caused by a race condition between two system calls. For 9
out of 10 failures, AITIA successfully builds their causality
chain. As those failures are found in major parts of the Linux
kernel, AITIA can identify the root cause of concurrency bugs
in various kernel subsystems. We manually compare the de-
velopers’ patch in the CVE reports with the results of AITIA.
We confirm that AITIA identifies the root causes of the 9
failures; developers fixed the failures by eliminating the spe-
cific execution order(s) of data races represented in AITIA’s
causality chains. CVE-2016-10200 [66] is an exception that
AITIA encounters an ambiguity case described in §3.4.
Performance. As shown in Table 2, AITIA reproduces a
failure within up to 2 minutes and pinpoints the root cause
within up to 30 minutes. AITIA completes the diagnosis with
at most thousands interleavings (# of schedules performed).
Causality Analysis takes a longer time compared to LIFS
because most of interleavings executed by Causality Analysis
cause a failure. When a failure occurs, AITIA has to reboot the
virtual machine. We observe that the number of interleavings
required to reproduce the failure is small. AITIA reproduces
most of the failures with one or two interleaving(s) even
for multi-variable concurrency failures; 6 out of 10 failures
involve multiple variables.

5.2 Cooperation with an automated bug-finding system
Bug selection criteria. Because we do not know the root
cause of reported failures in Syzkaller, we randomly se-
lect reported failures according to the following three criteria:
i) A reported fix if exists, includes keywords of “race” or
“lock”. ii) A crash report contains multiple contexts (e.g.,
two system calls, a system call, and a kernel thread). iii) we
exclude the cases related to hardware IRQ (it is our limita-
tion). With selected failures, we enable tracing ftrace events
when generating coredumps, so AITIA uses the coredumps
as an input to extract kernel traces and failure information.
To identify root causes of unfixed bugs, we run Syzkaller

with enabling tracing ftrace events before starting fuzzing,
and extract coredumps when failures are detected.

Table 3 shows concurrency failures that we use to evaluate
AITIA. Six failures are collected from the open failure data-
base of Syzkaller provided by Google, and the remaining
six unfixed failures (bold entries in Table 3) are collected by
running the modified Syzkaller in our testing environment.
Among 12 failures, eight failures are caused by concurrent
execution between two system calls and the rest of the failures
are caused by system calls and a kernel background thread.
Comprehensiveness. We first confirm that a causality chain
contains comprehensive information to fix each bug. The
most intuitive way is to compare the root cause with the
causality chain reported by AITIA. However, unlike failures
used in §5.1, the root causes of all failures are not well-
documented. Therefore, for bugs already fixed, we manually
compare causality chains generated by AITIA with submitted
kernel patches to fix the bugs. We verify that race conditions
reported by the reported causality chains disappear if the
patches are applied. For the six unfixed bugs, two of them
were reported by us and confirmed by Linux kernel develop-
ers. One of them is still in the progress of confirmation (we
are waiting for developers’ response). AITIA also detects the
root cause of the rest of the three bugs (#7, #8, #9), but their
patches were submitted before we reported the root cause. So,
we compare the patches with AITIA’s results.

AITIA successfully reproduces and diagnoses all the fail-
ures in Table 3. For all failures, their fixes and our submitted
fixes do not allow the specific execution order of data races in
the causality chain; all fixes make the causality chain cut by
removing interleaving(s) in the chain, preventing the failure.
We confirm that AITIA does not encounter an ambiguity case
for all failures in Table 3; whenever a data race surrounds a
nested data race, developers regulate the nested one. In total,
only for one among 22 failures (i.e., CVE-2016-10200 as de-
scribed in §5.1), developers fix the failure out of the causality
chain.

Through the result, we re-emphasize that reporting all nec-
essary information is crucial in kernel concurrency bugs con-
sidering they are usually caused by a combination of multiple
data races. Otherwise, developers have to invest their effort
into missing information with a part of the root cause.
Pattern-agnostic. We further categorize the concurrency
bugs according to the number of racing variables involved.
Six out of total 12 concurrency bugs have multi-variable races,
and three bugs among them involve loosely-correlated racing
variables, emphasizing that a practical diagnosis tool must
consider such multi-variable concurrency bugs.

As AITIA is designed without relying on specific assump-
tions on interleaving patterns, AITIA can diagnose all fail-
ures regardless of the number of variables in which data
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Bug ID Subsystem Bug type Multi
variables?

Least Interleaving First Search Causality Analysis
Time (s) # of schedules Interleaving(s) Time (s) # of schedules # of races in chain

#1 [90] L2TP Slab-out-of-bound access Yes∗ 165.7 751 1 251.3 236 2

#2 [95] Packet socket Assertion violation No 318 133 1 1152 471 4

#3 [92] L2TP Use-after-free access Yes 65.8 178 1 1035.6 773 2

#4 [91] KVM Use-after-free access Yes∗ 152.1 503 1 189.6 138 2

#5 [93] RxRPC Use-after-free access No 45.7 2 1 930.4 405 1

#6 [94] BPF General protection fault Yes 755 176 1 988 388 4

#7 [96] Block device Use-after-free access No 872.7 231 1 1575 523 4

#8 [98] CAN Use-after-free access Yes 2818.8 1044 2 3286 1469 5

#9 [97] Seccomp Memory leak Yes∗ 1526.4 628 1 1452.6 848 2

#10 [45] Software RAID Assertion violation No 70.8 101 1 2365.1 1032 4

#11 [52] Floppy Assertion violation No 72.4 15 1 1692.9 627 2

#12 [55] Bluetooth Use-after-free access No 740.1 272 1 2032 843 4

Table 3. Concurrency bugs to evaluate the AITIA’s efficiency. For failures involving multi-variable races, asterisks (∗) mean that the variables
are loosely correlated. Bug IDs in bold were not fixed at the time of evaluation. Interleaving(s) presents the number of interleavings.

Syscall A Syscall B

irqfd = list_find (list)

irqfd->data = data

kworkerd
kfree(irqfd)

queue_work()

list_add (irqfd, list)A1

A2

B1
B2

K1

A1 ⇒ B1 K1 ⇒ A2 failure

(a) A buggy execution scenario (b) Causality chain

Figure 9. A buggy scenario of #4 and its causality chain

races occur or the relationship between memory objects. Un-
like AITIA, previous approaches relying on specific assump-
tions have limited diagnosis capability. For example, coop-
erative bug localization approaches (e.g., Snorlax [38] and
Gist [37]) cannot diagnose the half of bugs because it assumes
a small set of single-variable interleaving patterns (i.e., single-
variable atomicity violation and order violation), and three
out of six multi-variable races do not hold the MUVI [58]’s
assumption describing the relationship between variables.
Conciseness. To show how much a causality chain can re-
duce the developers’ effort, we count the number of memory
accessing instructions and total data races from failed execu-
tions of each failure. Then, we measure the number of data
races in causality chains built from the failed executions.

On average, there are 9592.8 memory accessing instruc-
tions in failed executions, ranging from 189 to 20090. From
the memory accessing instructions, we measure the number of
individual data races which is 108.4 on average, ranging from
5 to 322. Therefore, simply detecting or reproducing concur-
rency failures [16, 25, 78] leaves a huge amount of effects to
developers to identify the root cause. In contrast, Causality
Analysis builds a causality chain with 3.0 data races in aver-
age, indicating that causality chains can significantly reduce
debugging efforts. We also manually confirm that causality
chains do not contain any benign data race.
Case study. We find that a concurrency bug (#4 [91]) shows
an interesting case to explain why correctly fixing a kernel
concurrency bug is difficult. Figure 9 shows a simplified view

of the concurrency bug. In this example, two instructions (i.e.,
A1 and A2) in syscall A are a part of an initialization of a
memory object, therefore, need to be executed atomically. In
a buggy execution scenario, syscall A adds irqfd into list
(A1). Then syscall B retrieves irqfd from list (B1) and
invokes a kernel thread with it (B2). While syscall A still is in
the middle of the initialization, the kernel thread frees irqfd
(K1), causing a use-after-free failure (A2). This bug is particu-
larly difficult to diagnose because an outcome of an data race
(A1⇒ B1) affects another thread. Even after developers find
out this is a use-after-free bug and its direct reason (i.e., the
failed instruction (A2) and the instruction freed irqfd (K1)),
they still need to figure out asynchronous events, the invo-
cation of the kernel thread (B2) and the freeing instruction
(K1), are caused by the race-steered control flow by another
data race that occurred in a different thread (syscall B). This
example shows how AITIA satisfies comprehensiveness and
pattern-agnostic requirements and why it can help developers:
1) the causality chain contains all data races needed to fix
the failure, and 2) AITIA can infer the causality of data races
even across the thread boundary.
Performance. To measure how quickly AITIA can reproduce
bugs and diagnose the root cause, we measure the elapsed
times and the number of executed interleaving of LIFS and
Causality Analysis respectively. On average, reproducing
takes 633.6 seconds, and diagnosing takes 1412.5 seconds,
suggesting AITIA is feasible to aid developers to diagnose
concurrency bugs during the development phase. The reason
for the short diagnosis time comes from two aspects: 1) many
instructions do not access global memory objects, and 2) a
small interleaving count is enough to reproduce a failure.

5.3 Comparison to Prior Approaches
In this section, we compare AITIA to various root cause di-
agnosis techniques in the perspective of comprehensiveness,
pattern-agnostic, and conciseness requirements described in
§2,
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Kairux [117]. It defines the root cause of a failure as an
inflection point, which is an instructions that resides in a failed
run and deviates from all non-failed runs. As the definition of
the root cause differs between AITIA and Kairux, AITIA has
a notable difference from Kairux.

Since Kairux represents the root cause of all failures as a
single instruction, more manual effort is required to fully
understand a concurrency failure even after an inflection
point is found. Thus, Kairux does not satisfy the compre-
hensive requirement. In Figure 9, an inflection point might
be K1 since in a failed run A1⇒ B1⇒ K1⇒ A2, K1 is an
instruction that firstly deviates from non-failed runs (e.g.,
A1⇒ B1⇒ A2⇒ K1). Even with the inflection point, devel-
opers still need to investigate further across multiple threads.
The inflection point does not explain that K1 is executed be-
cause of the control flow steered by a data race A1⇒ B1. As
shown in Figure 9, understanding this race-steered control
flow is also important to properly mitigate the failure. We
believe a causality chain can aid developers in understanding
how such complex concurrency failures occur.
Cooperative Bug Localization [7, 8, 34, 37, 38]. Almost
all cooperative bug localization techniques consists of two
steps. They first predefine a set of interleaving-related pat-
terns that frequently cause a concurrency bug. And then, they
find out a pattern that have the strongest statistical correlation
to a concurrency failure. Because AITIA and cooperative bug
localization have different methodologies, AITIA has signifi-
cant differences from them in two aspects. First, cooperative
bug localization techniques cannot reason concurrency bugs
that their root causes do not fall into a predefined set of pat-
terns. For example, a few state-of-the-art cooperative bug
localization techniques [37, 38] cannot diagnose all multi-
variable concurrency bugs in Table 3, indicating their method-
ology is limited in satisfying the pattern-agnostic requirement.
Second, Cooperative bug localization techniques rely on a
statistical method, and do not attest how a suspicious pattern
drives a program into a failure during the runtime. Thus, they
may point out a failure-irrelevent pattern as a root cause. In
contrast, AITIA verifies the causality of each data race to a
failure by observing how execution is changed according to
an interleaving order of each data race.
MUVI [58]. Although MUVI is not specifically designed to
diagnose concurrency failures, its idea can be applied to diag-
nose concurrency failures. MUVI reasons how multi-variable
concurrency failures occur based on the assumption that mul-
tiple variables usually have an access correlation. In other
words, multiple variables are usually correlated and need to
be accessed together with their correlated peers in a consistent
manner. MUVI statically analyzes a program to point out in-
structions that improperly access multiple variables that have
access correlations. Although the assumption is held for many
cases and MUVI successfully reasons many multi-variable

concurrency failures, MUVI is limited in reasoning single-
variable concurrency failures and loosely-correlated multi-
variable concurrency failures, and thus its approach suffering
from satisfying the pattern-agnostic requirement. In Table 3,
only 3 out of 12 failures satisfy the assumption of MUVI and
can be explained by the MUVI’s approach. Whereas, 6 out
of them are single-variable concurrency failures, and 3 are
loosely-correlated multi-variable concurrency failures. AITIA
can diagnose all 12 failures described in Table 3, indicating
AITIA has the strong the diagnosis capability.

6 Related Work
Automatic root cause diagnosis. A huge number of prior
works fall into the same category called cooperative bug
localization [7, 8, 13, 34, 35, 37, 38, 43, 56, 108]. These
approaches figure out one that has the strongest statistical
correlation to a failure among predefined patterns such as
well-known interleaving patterns (e.g., atomicity violation
and order violation [37, 38]) or interleaving-related predi-
cates (e.g., concurrent execution of the same function [34]).
While they are useful for bugs that the root cause falls into
the predefined set, they suffer from reasoning complex inter-
leaving patterns which are hard to be specified as pre-defined
predicates. On the other hand, Kairux [117] adopts a differ-
ent strategy. It locates a single instruction as the root cause
based on a simple and powerful intuition called inflection
point hypothesis. In the context of kernel concurrency fail-
ures, the root cause of complex concurrency failures may not
be a single instruction but multiple data races on multiple
variables.
Failure reproduction. Record & replay [19, 27–29, 39, 41,
57, 62, 64, 77, 81, 82, 85–87, 103] promises to determinis-
tically reproduce a failure with a cost of the high runtime
overhead. To overcome the high runtime overhead, recent
approaches reconstruct a partial failing execution through an-
alyzing by-products such as logs [110, 116, 118, 119] and/or a
coredump [111]. Another promising technique to reproduce a
failure is to recover a program’s state by reverting executed in-
structions [2–4, 10, 15, 16, 31, 65, 78, 101, 106, 112]. While
they can reconstruct the exact memory state of a failed exe-
cution, figuring out the root cause is still an error-prone task,
and developers often misunderstand the root cause [109]. In
this sense, AITIA complements these approaches by drawing
developers’ attention to the root cause.
Concurrency bug detection. By adopting the idea of con-
trolling an interleaving at runtime [11, 23], plentiful tools [12,
32, 33, 42, 107] are proposed to expose concurrency failures.
While these tools successfully find many concurrency bugs in
complex system softwares including the Linux kernel, they
concentrate on mostly how to diversify interleaving to in-
crease the chance of finding bugs. In contrast, AITIA controls
the interleaving to identify the causal effect between data
races and the failure. Another major research direction is to

13



detect data races [40, 44, 88, 114, 115]. Despite their use-
fulness, they cannot filter out benign data races [36]. They
also cannot inspect the unintended execution order of critical
sections; it is well known that the unintended order of critical
sections may cause a concurrency failure [18]. There are also
significant attempts to detect concurrency failures through
static analysis [9, 17, 30, 58]. They have advantages of being
able to find concurrency bugs without running a program, but
they are fragile to false positives and hard to scale to complex
system softwares.

7 Conclusion
We perform in-depth studies of Linux kernel concurrency
bugs and drive three requirements: comprehensiveness, pattern-
agnostic, and conciseness. This work proposes AITIA to sat-
isfy the three requirements. AITIA fully automates the process
of identifying the root cause of kernel concurrency bugs re-
ported from existing bug-finding systems and analyzes the
root cause as a form of a causality chain. We evaluate AITIA
on 22 real-world concurrency bugs and successfully diagnose
six unfixed bugs using AITIA.
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