RAZZER: Finding Kernel Race Bugs through
Fuzzing

Dae R. Jeong’ Kyungtae Kim! Basavesh Shivakumar! Byoungyoung Lee!* Insik Shinf

t Computer Science, KAIST,
i Computer Science, Purdue University,
* Electrical and Computer Engineering, Seoul National University

Abstract—A data race in a Kernel is an important class of bugs,
critically impacting the reliability and security of the associated
system. As a result of a race, the kernel may become unresponsive.
Even worse, an attacker may launch a privilege escalation attack
to acquire root privileges.

In this paper, we propose RAZZER, a tool to find race bugs
in kernels. The core of RAZZER is in guiding fuzz testing
towards potential data race spots in the kernel. RAZZER employs
two techniques to find races efficiently: a static analysis and
a deterministic thread interleaving technique. Using a static
analysis, RAZZER identifies over-approximated potential data
race spots, guiding the fuzzer to search for data races in the
kernel more efficiently. Using the deterministic thread interleav-
ing technique implemented at the hypervisor, RAZZER tames
the non-deterministic behavior of the kernel such that it can
deterministically trigger a race. We implemented a prototype of
RAZZER and ran the latest Linux kernel (from v4.16-rc3 to v4.18-
rc3) using RAZZER. As a result, RAZZER discovered 30 new races
in the Kkernel, with 16 subsequently confirmed and accordingly
patched by kernel developers after they were reported.

I. INTRODUCTION

Data races are detrimental to the reliability and security
of the underlying system. Particularly for the kernel, data
races are the root cause of various harmful behaviors. If
a data race introduces circular lock behavior, the kernel
can become unresponsive due to the resulting deadlock. If
safety assertions residing in the kernel arise, the kernel would
reboot itself, resulting in a denial-of-service. Especially from
the perspective of security, data races may turn into critical
security attacks if they lead to traditional memory corruptions
in the kernel (e.g., traditional buffer overflows, use-after-
free, etc.), which may allow privilege escalation attacks, as
observed in kernel exploits abusing previously known data
races, such as CVE-2016-8655 [26], CVE-2017-2636 [28], and
CVE-2017-17712 [27].

In response to these issues associated with data races,
there have been extensive research efforts with regard to
avoiding, preventing, or detecting them. However, to the best
of out knowledge, each technique has certain limitations,
mainly due to the fact that a data race inherently stems from
the non-deterministic behavior of the kernel. More precisely,

Correspondence to: Byoungyoung Lee (byoungyoung@snu.ac.kr)

understanding the data race requires not only precise control-
flow and data-flow information but also precise concurrency
execution information, which is heavily impacted by many other
external factors of the underlying system (such as scheduling,
synchronization primitives, etc.).

In this paper, we propose RAZZER, a fuzzing based data
race detector. The key insight behind RAZZER is that it drives
the fuzz testing towards potential data race spots in the kernel.
To achieve this, RAZZER takes a hybrid approach, leveraging
both static and dynamic analyses, to amplify the advantages
of two techniques while complementing their disadvantages.
First, RAZZER carries out a static analysis to obtain over-
approximated, potential data race points. Based on information
on such potential data race points, RAZZER performs a two-
staged dynamic fuzz testing. The first stage involves a single-
thread fuzz testing, which focuses on finding a single-thread
input program that executes potential race points (without
considering whether the program indeed triggers the race). The
second stage is multi-thread fuzz testing. It constructs a multi-
thread program, which further leverages a tailored hypervisor
intentionally to stall its execution at potential data race points.
As such, RAZZER avoids any external factors to render the
race behavior deterministic, making it an efficient fuzzer for
data races.

We implemented RAZZER’s static analysis with an LLVM
pass to conduct a points-to analysis, and the hypervisor was
developed by modifying QEMU and KVM for x86-64. The
corresponding two-staged fuzzing framework is developed to
fuzz system call interfaces of the kernel, while leveraging
static analysis results as well as the tailored hypervisor. Once
RAZZER identifies a data race, it outputs not only the input
program to reproduce the race but also provides a detailed
report that facilitates an easy understanding of the root cause
of the race.

Our evaluation of RAZZER demonstrates that RAZZER is
truly a ready-to-be-deployed race detection tool. We applied
RAZZER to the latest versions of the Linux kernel (from
v4.16-rc3 to v4.18-rc3) at the time of writing this paper,
and RAZZER found 30 new data races in the kernel. We have
reported these; 16 races have been confirmed and patches
of 14 have been submitted thus far by the kernel developers.
Moreover, 13 races have been merged into various affected

kernel versions, including the mainline kernel as well.

To highlight the effectiveness of RAZZER in finding data
races, we performed a restricted comparison study (§III-C)
with other state-of-the-art tools, specifically Syzkaller [42]
(i.e., a kernel fuzzer developed by Google) and SKI [16] (i.e.,
an academic research prototype which randomizes the thread
interleaving to find races in the kernel). Summarizing this
comparison study, RAZZER significantly outperformed both
tools in identifying three race issues. Compared to Syzkaller,
RAZZER takes much less time to find a race, ranging from 23
to 85 times (at minimum). Compared to SKI, RAZZER was far
more effective in exploring thread interleaving cases to find a
race, ranging from 30 to 398 times.

Furthermore, our reporting experience with the kernel
developers suggests that RAZZER’s detailed analysis report
assists developers to fix a reported race easily. More specifically,
because RAZZER points out a specific race location (i.e., two
memory access instructions in the kernel incurring the race)
as well as the call stack when the race occurs, developers
were easily able to determine the root cause of the race and
develop a patch for it. As an extreme example, once we
reported newly discovered races through LKML [4], two of
our reported races were patched (within 20 minutes and in
2 hours by the respective kernel developers). In light of the
common knowledge about data races, particularly the difficulty
in determining the root causes, we believe that our reporting
experience suggests the strong potential to facilitate easy, low-
cost patching for data races.

This paper makes the following contributions:

o Race-Oriented Fuzzer. We present a new fuzz testing
mechanism which is specifically designed to detect races
in the kernel. It leverages both static and dynamic analysis
techniques to focus its fuzzing on potential race points.

« Robust Implementation: We implemented RAZZER based
on various industry-strength frameworks, ranging from
KVM/QEMU to LLVM. It requires no manual modification
of the target kernel to be analyzed. We believe its imple-
mentation is robust enough given that it can easily support
the latest Linux kernel without any manual intervention.

o Practical Impacts: We ran RAZZER on the Linux kernel,
and it found 30 races, where 16 races were already confirmed
and accordingly fixed by the respective kernel developers.
We will open source of RAZZER' such that kernel developers
and researchers can benefit from using RAZZER.

This paper is organized as follows. §II defines the problem
scope and identifies the design requirements of RAZZER. §III
presents the design detail of RAZZER, and §IV describes
its implementation. §V presents various evaluation results of
RAzzER. §VI discusses related work, and §VIII concludes the

paper.
II. PROBLEM SCOPE AND DESIGN REQUIREMENTS
In this section, we first define the data race, which is the main

focus of this paper. We then summarize existing approaches to

Thttps://github.com/compsec-snu/razzer

find race bugs in the target program. Lastly, we describe our
motivating example and briefly explain our approach.

A. Problem Scope and Terminology

This paper aims to identify data races in system software.
A data race is behavior in which the output is dependent on
the sequence or the timing of other non-deterministic events.
More specifically, a data race occurs when two memory access
instructions in a target program meet the following three
conditions: (i) they access the same memory location. (ii)
at least one is a write instruction. and (iii) they are executed
concurrently.

If all above three conditions above are met, the memory
accesses performed by the two memory instructions can be non-
deterministic, rendering computational result to vary depending
on the execution order. Throughout this paper, we use the
term RacePairg,,q to denote two memory access instructions
that may satisfy the three conditions described above (i.e., a
candidate race pair), and we use RacePairy,, for those that are
confirmed to meet the three conditions (i.e., a true race pair,
which is a subset of RacePair.,q).

Data races can be further classified into two groups: benign
and harmful. A benign race is an expected (or intentional)
data race by developers, tolerating a potential deviation in the
computational results. For example, it is common to allow
data races in maintaining performance counters, as doing so
can avoid sluggish data contentions on a performance counter
variable (while tolerating a small error of a counter value). We
use the term RacePairpenign to refer to two memory instructions
raising such a benign race.

A harmful race is a data race that negatively impacts a run-
time behavior of a program, and we use the term RacePairp,m,
for this case. Due to the non-deterministic computational result,
there can be various aftermaths of a harmful race, including
deadlocks, raising safety assertions in the kernel, and memory
safety violations (including stack/heap buffer overflows, use-
after-free, and double-free), etc. We note that these aftermaths
are critical to kernel’s reliability and security: deadlocks may
make the kernel unresponsive, violating safety assertions may
cause a reboot the kernel, and memory safety violations allow
a privilege escalation attack. We use the term RacePairp,y, to
refer to two memory instructions in this case.

Summarizing the terminology, RacePairc,, refers to two
memory access instructions that may cause a race, and
RacePairy,. refers to two instructions that are confirmed to
cause a race. RacePair,. can be further classified into two
groups: RacePairpenign and RacePairpgm.

Race Example: CVE-2017-2636. To clarify how a data race
occurs, we take the real-world example from the Linux kernel,
CVE-2017-2636 [28], as illustrated in Figure 1. This race can
be induced by an adversarial multi-threaded user program
which invokes a specific list of syscalls in a specific order.
The data race occurs while the kernel is processing such
syscalls, which in turn causes a double-free issue that allows
a privilege escalation attack. In particular, the key to trigger
the race consists of two system calls, ioct1(£fd, TCFLSH) and

| int fd = open(”/dev/ptmx”); I

ioctl(fd, TCFLSH);

User thread A User thread B
ioctl(fd, TCXONC); —
~ close(fd);

Post-race

AN

Pre-race

write(fd, “.....");

User

N\

J\

Kernel | Exec (7431. if (n_hdlc->tbuf) { ()
Flow 432: push_back(free_list,
n_hdlc->tbuf); :
215 thuf = n_hdlc-tbuf
©2P250: n_hdic>tbuf = NULL; :
441} 217: if (tbuf)
218: push_back(free_list
tbuf);

Kernel thread B

266: if (n_hdlc->flag & TCXONC)
267: while (list_empty(free_list)) {

268: buf = pop_front(free_list);
269: kfree(buf);
270: }

L Post-race (harmful) behavior)

Fig. 1: A simplified race example on CVE-2017-2636. As a user pro-
gram executes two syscalls concurrently, a data race on n_hdlc->tbuf
may occur depending on the execution order, which leads to a double-
free issue allowing an attacker to launch privilege escalation attack.

write(fd, ...), each of which is executed concurrently by
user thread A or B, respectively. In response, the kernel starts
executing the corresponding syscall handlers on an individual
kernel thread (i.e., kernel thread A or B). In order to trigger
the race, kernel thread A first checks if n_hdlc->tbuf (n_hdlc
is a structure allocated in the heap) is a null pointer (line 431
in Figure 1). If not, it pushes the pointer to the free list (line 432)
such that actual free operations will occur later. Then, two
memory instructions, n_hdlc->tbuf = null in kernel thread
A (i.e., RP® in line 440) and tbuf = n_hdlc->tbuf (i.e., RPP
in line 216) in kernel thread B, enter into data races. More
specifically, if the address of n_hdlc->tbuf is identical in
kernel threads A and B, the computational result will differ
depending on the execution orders of these instructions. That
is, if RP® is executed first and RPA is executed later, as
ordered in Figure 1, all of the subsequent instructions of kernel
thread B will see a non-null pointer stored in a local variable
tbuf despite the fact that it has already been pushed to the
free_list by the kernel thread A. Thus, tbuf will remain a
valid pointer (line 217); hence, n_hdlc->tbuf will be pushed
to the free_list (line 218) again by kernel thread B. Note
that if RPA is executed first, tbuf of B will hold a null pointer
and thus a redundant free list push would not arise.

To launch a security attack based on this race, proper
post-race harmful behaviors are necessary. In this example,
ioctl(£fd, TCXONC) from the user program should be invoked
to perform the actual free operation stored in the free list,
which eventually leads to the double-free.

B. Design Requirements

In this subsection, we first identify desirable design re-
quirements to discover data races in the kernel. Then we

Guest
User

.s.\-,scall i—1(w,) ;;{scall 7
syscall | (x, ...) syscallj, , (2, ...)
-

User Thread B

mov -0x20(%rdi), %r8 \%
test %r8, %r8 @\%

() ®
mov $0x2400,%esi
%/ add $0x10,%rdi @ \%

Kernel Thread B

User Thread A

N

Guest
Kernel

Kernel Thread A

. : Syzkaller’s multi-thread execution
(O : SKI's randomized thread interleaving

Fig. 2: Race detection mechanisms of Syzkaller and SKI

revisit existing tools from the perspective of meeting such
requirements.

Design Requirements. One important design goal of RAZZER
is to avoid any false positives in during the race detection
process. Towards achieving this goal, we identify the following
two desirable design requirements in order to discover data
races in the kernel.

R1: Find an input program which executes RacePair g, .

More precisely, an analysis should discover a multi-threaded
user-land program, where each thread in the program executes
each instruction in RacePair.,q.

R2: Find a thread interleaving for the input program which
executes RacePair ,,; concurrently.

In other words, as R1 alone does not ensure that RacePair.,,q
can be executed concurrently to trigger data races, the analysis
should identify a specific thread interleaving case that executes
RacePair,,g concurrently.

We find that existing tools mostly focus on meeting only one
of the two requirements above, limiting the effectiveness of
discovering unknown races. Below, we present our analysis of
the requirements of two general techniques to identify race bugs,
namely fuzz testing and random thread interleaving, to discuss
how well they meet the two aforementioned requirements.

Requirement Study: Traditional Fuzz Testing. Traditional
fuzz testing (such as AFL to fuzz user-land programs and
Syzkaller [42] to fuzz the kernel) focuses on R1, attempting
to find inputs extending the kernel code coverage. Because
R2 is not considered at all, it is not effective to discover
data races. To better illustrate this limitation, the filled circles
in Figure 2 depict the execution flow of Syzkaller as it finds
race bugs. With regard to Syzkaller, the core of its fuzzing
to find races is linked to its execution of randomly generated
(or mutated) syscalls, where each syscall is again randomly
assigned either to user thread A or B. Although this indeed
interleaves the execution of syscalls into one of two kernel
threads (i.e., syscall; ;), its chance to trigger a race would be
very low. According to our evaluation in §V-D1, Syzkaller

failed to find races of three previously known race bugs given
10 hours. In contrast, RAZZER found all three races within
from 7 mins to 26 mins, meaning that RAZZER was faster than
Syzkaller 23 times to 85 times at least.

Requirement Study: Thread Interleaving Tools. Regarding
random thread interleaving tools (such as SKI [16] or the PCT
Algorithm [10]), their focus is in meeting R2, attempting to
explore all possible thread interleaving cases for a specific (and
static) input program. As they do not consider R1, they can only
run existing programs (such as benchmarks) and thus cannot
efficiently explore massive code spaces, leaving a majority part
of the kernel untested. Moreover, because thread interleaving
tools are based on random scheduling, their efficiency on R2
alone (i.e., simply searching all thread interleaving cases) is
also severely limited. More precisely, in the beginning SKI
randomly selects one kernel thread, and then executes it until
encountering any memory access instruction. After stopping at
the memory instruction, it randomly selects the kernel thread
again, and repeats this process. For example, the unfilled circles
in Figure 2 illustrate the execution flow of SKI. First, it selects
kernel thread B (D) randomly, and executes until the next
memory access instruction. It then randomly selects the kernel
thread A (Q)) again and repeats this process. This explores
all possible thread interleaving cases to identify race bugs
for a given program, but large search spaces of interleaving
cases would make it inefficient. According to our evaluation
in §V-D2, SKIgy, (i.e., an emulated version of SKI) requires
an exploration of interleaving cases from 6,435 to 27,132
to identify three previously known races. However, RAZZER
only requires the exploring of 23 to 56 interleaving cases (i.e.,
RAZZER is 30 to 398 times more efficient than SKIgmy).

ITI. DESIGN

In this section, we describe the design details of RAZZER.
The key idea behind RAZZER is in driving the analysis towards
potential data race points in the kernel. In particular, RAZZER
takes a hybrid approach, leveraging both static and dynamic
analysis. First, RAZZER performs a static analysis to obtain
over-approximated potential data race points. Next, RAZZER
conducts a two-staged dynamic analysis. The first stage is
single-thread fuzz testing, which focuses on identifying a
single-thread input program that executes potential race points
(attempting to meet R1). The second stage is multi-thread fuzz
testing. During this stage, a multi-thread program is constructed
with the help from the first stage, utilizing a custom hypervisor
to control the thread interleaving deterministically (attempting
to meet R2). Once a race is found, RAZZER outputs a concrete
user program (i.e., a program triggering the data race) as well
as the detailed root cause information (i.e., a report describing
where the data race occurred) such that kernel developers can
easily understand the root cause of the race and accordingly
patch it.

In the following paragraphs, §III-A first describes how
RAZZER performs its static analysis to obtain potential data
race points. Then §III-B describes how RAZZER tailors the
hypervisor to trigger the race deterministically for its dynamic

analysis. Lastly, §$III-C illustrates dynamic fuzz testing by
RAZZER

A. Identifying Race Candidates

The goal of our static analysis is to identify all RacePairgyq
(i.e., a set of race candidate pairs) in the kernel, where each
RacePair.,,g consists of two memory access instructions and
may entail the potential to race at runtime. In general, a points-
to analysis would be a popular choice to collect RacePairc,yqg
since it reasons about where each memory instruction points
to. However, it is well known that the points-to analysis is
limited in terms of accuracy and performance. With regard
to accuracy, the points-to analysis is associated with high
false positive rates as precise (and concrete) control/data-flow
information can only be known at runtime. Even worse, it
is more challenging to handle race issues because it requires
not only precise control/data-flow information but also precise
concurrency information, which is heavily impacted by external
factors (such as scheduling or synchronization primitives).
Moreover, given the time complexity of a typical points-to
analysis (i.e., an Andersen analysis [6]) is O(n?), where n
denotes the size of the program to be analyzed, it would take
a very long time to analyze the entire kernel.

RAZZER addresses these issues with the following two
approaches. First, to address accuracy issues, RAZZER allows
the points-to analysis to over-approximate a RacePairgy,q set
(i.e., some RacePairc,q may not be RacePairyy,.), and it
resolves false positive issues through its dynamic fuzz testing,
as described later (§III-C). RAZZER’s points-to analysis is
context-insensitive and flow-insensitive but field-sensitive. Thus,
it over-approximates RacePairs.,,g While excluding pairs that
must not race (e.g., RAZZER determines that two instructions
must not race if accessing different member variables in the
structure).

Second, in order to mitigate performance issues, RAZZER
performs a tailored partition analysis of the kernel. It partitions
kernel objects according its module component, and performs
a pre-analysis for every module. Especially for the Linux
kernel, our point-to analysis partitions the kernel based on
the directory structure in the source code repository (e.g.,
kernel, mm, fs, drivers), as each subdirectory represents a
well-confined module. When performing a pre-analysis per
module, RAZZER always provides core kernel modules as
well, which remains necessary irrespective of the module
being analyzed. For example, RAZZER always includes fs
and net/core, as these two modules are used globally by
many other sub-modules.

It is worth noting that our static analysis does not consider
synchronization primitives in the kernel (e.g., read_lockQ),
br_read_lock(), spin_lock_irgsave(), up()). Leveraging
this information would reduce the false positive rate (as it
can help to determine memory pairs that must not race), and
we leave this as future work.

Single-Thread Fuzzing

Multi-Thread Fuzzing

Source code (n_hdlc.c) points-to P Generato; Generate Mutate |4
analysis / A P
flush_tx_queue
flush_tx_q () Generator mt EE
216: if (n_hdlc->tbuf) { @ User Thread A User Thread B
217: push_back(free_list, 4@ int fd = open(“...”);
n_hdlc->tbuf); R: if (n_hdlc->tbuf) 7Y hcall_order(vCPUO);
218: n_hdlc->tbuf = NULL; W: n_hdlc->tbuf = NULL P hcall_set_bp(vCPUO, hcall_set_bp(vCPU1,
219:) st A Feedbartk §f..95b9) ff...8351);
. - I RcProg ioctl(fd, TCLFLSH); write(fd, “...”);
//jothersyscalls Queue heall_check_race(); heall_check_race(); Feedback
n_hdlc_send_frames () Binding to int fd = open(“...”);
the kernel // other syscalls T
440: n_hdlc->tbuf = NULL; @ binary \| ioctl(fd, TCLFLSH); [———] . N I y,
: - | 1/ other syscalls —liAnnosa"’Of‘i Executor j ~ Report
P write(fd, “.."); [BPioctl: fff.95b9 | —
445: if (tbuf) I : fff... | -
446: push_back(free_list, // other syscalls | i 8351 | _
’ - _ RacePair — ~1 vcpuo vCPUL —
tbuf) A H p—
o mov 0x20(%rdi),%r8 [;:1L movg $0x0,0x20(%rbx) A
R: ffffffff817f95b9 i test %r8,%r8 callg ffffffff8111cbfo
mov 0x20(%rdi),%r8 If
W : FfFfff817f8351 Executor ! = |
movg SOx0,0m_ syscall write exec == f;f‘i‘f

syscall ioctl exec == fﬁ@f){:817f95b9

f817f8351

7

If 0x20 + %rbx == 0x20%rdi
‘ Crash*

Fig. 3: Overall architecture of RAZZER

J

Guest
user

[ioctl(fd,TCFLSH)]] [%[write(fd, “..") |

User thread A User thread B

\

HI".

OExecute

 —)
N

OExecute

Breakpoint||® movq $0, 0x20(%rbx)

Guest test %r8, %r8
Kernel
AContinue @ Continue
L Kernel thread A Kernel thread B
Hypervisor rdi: ffff8801e704c000 C: rbx: ffff8801e704c000

® Check race

vCPUO vCPU1

€

Fig. 4: Workflow of RAZZER’s hypervisor

B. Per-Core Scheduler in Hypervisor

As discussed earlier in §II, a race condition rarely manifests
itself due to the non-deterministic and random nature of kernel’s
thread interleaving. Therefore, RAZZER runs the target kernel
on a tailored virtualized environment such that RAZZER avoids
non-deterministic behaviors from external events. In other
words, RAZZER runs a multi-thread program in the guest
user space, and this program attempts to trigger a race in
the guest kernel. Moreover, for complete control over guest
kernel’s behavior with regard to thread interleaving, RAZZER

modifies the hypervisor (i.e., a virtual machine monitor).

RAZZER’s modified hypervisor provides the following features
for the guest kernel: (i) setting up a breakpoint per CPU
core (more precisely, per virtual CPU core as they run on
a virtual machine) (§III-B1); (ii) resuming the execution of
kernel threads after the guest kernel hits breakpoints (§I1I-B2);
and (iii) checking whether a race truly occurred due to a
guest kernel (§11I-B3). In the following section, we describe
how RAZZER supports each of these three features, and we
describe later how these hypervisor-level support features will
be leveraged during the fuzzing (§11I-C2).

1) Setup Per-Core Breakpoint: RAZZER provides a new
hypercall interface, hcall_set_bp(), so that the guest kernel

can setup a per-core breakpoint as needed. In particular,
hcall_set_bp() is invoked by the guest kernel while using
two parameters: (1) vCPU_ID specifies a virtual CPU (vCPU)
on which RAZZER should install the breakpoint; and (2)
guest_addr specifies an address in guest OS’s address space
where a breakpoint is to be installed. Once receiving this
hypercall, the hypervisor installs the hardware breakpoint at
guest_addr, which is only effective on the specified vCPU.

There are two particular tasks involved here: (i) accurately
controlling the per-core execution behavior (more precisely, the
per vCPU execution behavior as the guest kernel is virtualized),
and (ii) determining whether a breakpoint is triggered by a
specific kernel thread while running a specific syscall.

In order to achieve the first task, RAZZER utilizes a hardware
breakpoint supported by a virtualized debug register, while
ensuring that the breakpoint event is always delivered to the
hypervisor first (instead of being delivered back to the guest
kernel). In the case of the x86 architecture, RAZZER stores
the guest address in a virtualized debug register. As this debug
register is virtualized and thus maintained for every vCPU,
RAZZER can ensure that the hardware breakpoint is triggered
only if a corresponding vCPU is executing it. Moreover, to
ensure that the hardware breakpoint event is delivered first to
the hypervisor, RAZZER leverages the Virtual Machine Control
Structure (VMCS) in Intel VT-x. VMCS contains an interrupt
bitmap, where each bit corresponds to a guest’s interrupt
number. When an interrupt is raised and the corresponding
interrupt bit is set in VMCS, the interrupt causes an immediate
VMEXIT event, which is delivered subsequently to the hypervisor.
Thus, RAZZER sets the bit in VMCS corresponding to the
hardware breakpoint interrupt such that RAZZER can firstly
monitor the hardware breakpoint.

The second task is related to the fact that while our hypervi-
sor understands the vCPU context, it does not understand the
kernel thread context. In other words, while the guest kernel
is running a given user program, it may also run other user
programs (e.g., Xorg and sshd) or kernel tasks (e.g.,kworker
and ksoftirqgd) that are not related to the given user program.

In this case, if we simply install per vCPU breakpoint, the
breakpoint can be triggered by such unrelated programs or
kernel tasks as well. Because these breakpoint trigger events
occur irrespective of the given user program, RAZZER carries
out virtual machine introspection (VMI) to determine the kernel
thread context of the guest kernel. Specifically, RAZZER’s
hypervisor retrieves the kernel thread id assigned by the guest
kernel using VMI. For example, the current version of RAZZER
running on Linux first retrieves the thread_info structure, as
it is always located at the top of the kernel stack. RAZZER
then obtains the kernel thread id stored in task_struct by

following the reference to task_struct stored in thread_info.

Therefore, RAZZER’s hypervisor can determine whether or not
the breakpoint is fired by the destined kernel thread.

2) Resume Per-Core Execution: After two guest kernel
threads are stopped at their respective breakpoint address (i.e.,
RacePairc,q), RAZZER resumes the execution of both vCPUs
such that both threads execute RacePairc,g concurrently.
One important decision for RAZZER to make here is: which
kernel thread should be resumed first? This is important
for identifying data races because some race bugs are only
exhibited on a specific execution order. For example, as shown
in CVE-2017-2636 (§1I-A), a race occurs only if kernel thread
B proceeds first after stopping at RacePairc,,g. For this reason,
our hypervisor provides an interface, hcall_set_order(), to
control the execution order—i.e., a specified vCPU ID in
hcall_set_order() is executed first, followed by the other.

The workflow of an execution resume is shown in Figure 4.

First, it is assumed that two kernel threads are stopped at their
respective breakpoints (i.e., @ and @), and hcall_set_order()
(vCPUO®) has been invoked. To resume, RAZZER picks vCPU
as specified by hcall_set_order() (i.e., vCPU® in Figure 4)
and conducts a single-step on that vCPU immediately to
stop after executing a single instruction (€)). This single-step
ensures that vCPU® proceeds before vCPU1, as commanded by
hcall_set_order(). Lastly, RAZZER resumes the execution
of both vCPU® and vCPUL (@).

3) Check Race Results: Our hypervisor checks whether a
given RacePair,,q actually results in a race (which we call a
true race) when both breakpoints are hit concurrently. More
specifically, when both memory instructions in RacePaircag
hit breakpoints, our hypervisor conducts an introspection of the
destined addresses to be accessed by these instructions. If these
addresses are identical, RAZZER then concludes that a given

RacePair,yq truly races, promoting such a pair to RacePairy.

More technically, our hypervisor computes the destined address
value by disassembling the instruction at each RacePaircsg
location and obtaining the concrete register values stored in
each vCPU. For example, as illustrated in @ (Figure 4),
RAZZER determines whether a given RacePair,,qg truly races
considering that both threads access the same memory location,
0xf£ff8801e704c020 (i.e., %rdi + 0x20 == %rbx + 0x20).

C. Two Phased Fuzzing to Discover Races

Here, we describe how RAZZER discovers race bugs
through fuzzing. RAZZER’s fuzzing is performed in two

phases (as shown in Figure 3). (i) the single-thread fuzzing
phase (§III-C1) finds a single-thread user program that
triggers any RacePairc,,q; and (ii) the multi-thread fuzzing
phase (§III-C2) finally finds a multi-thread user program that
triggers a harm race based on the result of the single-thread
phase. Each fuzzing phase consists of two components, the
generator and the executor, where the generator creates a user
program and the executor then runs the program.

1) Single-Thread Fuzzing: In this phase, the single-thread
generator initially generates Py, a single-thread program with a
sequence of random syscalls. Next, the single-thread executor
runs each Py, while testing whether each execution of Py
covers any RacePairg,,q (Which is generated by running a static
analysis as described in §III-A). If covered, the single-thread
executor passes Py, which is annotated with the information on
covered RacePairc,,q, to the next phase, multi-thread fuzzing.
Below, we describe the details of the single-thread generator
and executor in turn.

Single-Thread Generator. The single-thread generator con-
structs a single-threaded user-land program (which we refer
to as Py), performing a sequence of random system calls
to test the kernel’s behavior. RAZZER constructs Py with
the following two strategies: generation and mutation. When
using the generation strategy, RAZZER randomly generates Py
following the pre-defined system call grammar. This system call
grammar includes all available system calls as well as a range
of reasonable parameter values for each syscall. Following
this grammar, RAZZER attempts to construct a reasonable user
program by randomly selecting a sequence of system calls. It
then randomly populates each system call’s parameters, and its
return value is randomly piggy-backed onto the parameters of
a following the syscall as well. As we describe in more detail
in §IV, RAZZER utilizes pre-defined system call grammar in
Syzkaller [42].

As opposed to generation, mutation randomly mutates the
existing Py. It may randomly drop some syscalls in Py, insert
new syscalls, or change certain parameter value.

Single-Thread Executor. Given Py from the generator, the
single-thread executor runs each Py while performing the
following two tasks. First, if an execution of Py covers two
memory access instructions in any RacePairg,,q, RAZZER an-
notates such matched RacePair.,,q information to Py,. RAZZER
then passes this annotated Py to the multi-thread generator so
that it can be further checked as to whether it is racing.

More specifically, while running Py, RAZZER monitors
the execution coverage per syscall, leveraging the underlying
kernel’s support to collect the execution coverage, as this
capability is a general feature in modern kernels (e.g., the
current prototype of RAZZER for Linux relies on KCov [3]).
After running Py, RAZZER checks if its execution coverage
matches any RacePairg,,g—i.e., one syscall in Py causes the
kernel to execute one instruction of RacePairg,,q, and the
other syscall executes the other instruction of RacePairc,yg.
If matched, RAZZER annotates the detailed information of
the matched RacePairc,,g to Py such that RAZZER can test

whether RacePair.,,g can be deterministically triggered in the
subsequent fuzzing phases. This annotated information includes
the following: (i) two racy syscalls, each of which executes
RacePairc,,q; and (ii) the addresses of RacePair ag.

Note that there can be multiple RacePair.,,q matched from
a single Py. Based on our experience with RAZZER, running a
single Py matches up to 130 unique RacePairsg,q. In this case,
RAZZER annotates each RacePairg,;,q to a cloned individual
copy of Py.

Second, if a running result of Py yields new coverage not
executed before by any other Py, RAZZER saves this Py and
feeds it back to the single-thread generator again. In fact,
this mechanism is largely similar to fuzz testing techniques
(known as maintaining a fuzzing corpus). A fuzzing corpus
informally represents a minimal set of inputs, which may cover
all previously explored basic blocks if all corpus inputs were
executed.

Example: CVE-2017-2636 with Single-Thread Fuzz. As
illustrated in Figure 3, suppose a single-thread gen-
erator generated Py with the following three syscalls
in order, int fd = open(...), ioctl(fd, TCLFLSH), and
write(£fd, ...), while there are other syscalls as well in the
middle of these three. If this Py is executed by the single-
thread executor, it identifies that a certain RacePair.,,q has
been executed by the program—i.e., the pair(n_hdlc.c:216,
n_hdlc.c:440) where the first is executed by n_hdlc.c:216 and
the second is executed by ioctl(£fd, TCLFLSH). In such a case
all of this matched information is annotated to Py and passed
to the multi-thread fuzzing phase.

2) Multi-Thread Fuzzing: After the single-thread fuzzing
phase, RAZZER moves on to the multi-thread fuzzing phase.
For each RacePair ,,g, the multi-thread generator transforms Py
into P, a multi-thread version of Pg. Py is also instrumented
with hypervisor calls to trigger a race deterministically at
the given RacePairg,,g. Lastly, multi-thread executor runs
each Pp. If the Py, is confirmed to trigger a race by the
hypervisor, RAZZER promotes the corresponding RacePaircng
to RacePairy,., and continues to mutate P, by feeding it
back to the generator. Furthermore, if Py, crashes the kernel,
RAZZER produces a detailed report of an identified harmful
race.

Multi-Thread Generator. The multi-thread generator takes an
annotated Py (which includes RacePairc,,q) as input. Then it
outputs P, a multi-thread version of Py while leveraging
the annotated RacePair.,,q¢ information to trigger the race
deterministically with hypercalls.

Figure 5 illustrates a simplified pseudo-code of this transfor-
mation process. It takes the following arguments as input:
Py, the program to be transformed; i and j, each is an
index of racing syscalls within Py (z < 7); and RP_i and
RP_j, each is an address of a corresponding RacePaircang
instruction. For simplicity, it is assumed that all of the annotated
information (from the single executor) is provided as an input
argument. This algorithm initially constructs two different
execution threads, thr® and thrl, where each execution is

1 def Convert_Pst_to_Pmt(Pst, i, j, RP_i, RP_j):

2 # @Pst: A singled threaded program (annotated)

3 # @i, @j: an index of racing syscalls within Pst

4 # @P_1i, @RP_j: an address of a corresponding racepair

5 # instruction (to syscalls[i] and syscalls[j], respectively)
6

7 # Get pinned threads, thr® and thrl

8 thr® = get_pinned_thread(vCPU®)

9 thrl = get_pinned_thread(vCPU1)

10
11 # Assign syscalls to thr® and thrl

12 syscalls = get_syscalls(Pst)

13 thr®.add_syscalls(syscalls[:i])

14 thrl.add_syscalls(syscalls[i+1:j])

15

16 # Determine the execution order

17 r = random([vCPU®, vCPU1])

18 thr®.add_hypercall (hcall_order(r))

19

20 # Trigger and check races

21 thr0.add_hypercall (hcall_set_bp(vCPU®, RP_i))
22 thr0.add_syscalls(syscalls[i])

23 thr®.add_hypercall (hcall_check-race())
24

25 thrl.add_hypercall (hcall_set_bp(vCPUl, RP_j))
26 thrl.add_syscalls(syscalls[j])

27 thrl.add_hypercall (hcall_check_race())
28

29 # Post-race behaviors

30 thr0.add_syscalls(gen_random_syscalls())
31 thrl.add_syscalls(gen_random_syscalls())
32

33 Pmt = Construct_Pmt(thr®, thril)

34 return Pmt

Fig. 5: RAZZER’s multi-thread generator algorithm

pinned to an individual virtual CPU (lines 8 and 9). RAZZER
leverages the kernel’s existing feature to pin threads (i.e., the
sched_setaffinity syscall in Linux), which enables flexible
thread controls from the user-space.

It then extracts all syscalls from Pg (line 12) and subse-
quently splits these syscalls into two different threads, thre
and thrl. At this point, we do not add racing syscalls yet—
thr® contains syscalls before i-th syscalls (line 13) and thrl
contains syscalls from (i+1)-th syscalls to (j-1)-th syscalls
(line 14). To guide the execution order of RacePairgmg,
RAZZER inserts hcall_set_order() while randomly selecting
the preceding vCPU (lines 17 and 18). Next, in order to trigger
the race deterministically at RacePair.,,q, RAZZER resorts to
hypervisor’s per-core breakpoint functionality by instrumenting
hcall_set_bp() (lines 21 and 25) immediately before inserting
racy syscalls (lines 22 and 26). RAZZER then instruments
hcall_check_race() further to check precisely if RacePairgyg
truly causes a race condition (lines 23 and 27). Lastly, in order
to induce harmful post-race behaviors further (as described
in §II), RAZZER adds randomly generated syscalls (lines 30
and 31).

Multi-Thread Executor. The primary role of the multi-thread
executor is to run Py, finally to test if RacePaircyg truly triggers
arace. While running at runtime, it leverages hypercalls to setup
a per-core breakpoint in the RacePairc,,g instructions before
invoking a corresponding racy syscall. hcall_check_race()
then determines if a race is truly triggered by inspecting
the following two conditions: (1) if two breakpoints are
indeed captured by the hypervisor, and (2) the concrete
memory addresses accessed by the RacePairg,,q instructions

are identical.

Because causing a true race itself does not necessarily imply
a harmful race (§1I), RAZZER also invokes post-race syscalls
in an effort to discern harmful races from true races. Most
modern kernels employ runtime race detection mechanisms to
check whether a harmful race occurs. For example, the Linux
kernel employs various dynamic techniques to detect harmful
races. Examples are lockdep [29], KASAN [2], or assertions
manually inserted by kernel developers. We enabled all of
these techniques while building the kernel binary such that
RAZZER can leverage this enhanced race detection capability.
If a violation is detected, RAZZER generates a detailed report
about the harmful race.

An important feature of RAZZER is that it provides feedback
to the multi-thread generator on Py, causing a true race (even
when it is a benign race) such that Py, can be mutated further,
but only for the part related to post-race behaviors.

Example: CVE-2017-2636 with Multi-Thread Fuzz. As
shown in Figure 3, once receiving Py, the multi-thread generator
transforms P into P, according to the annotation information
of the matched RacePairg,,q. Following the transformation
algorithm (Figure 5), the generator places int fd = open(...)
and ioctl(fd, TCLFLSH) in user thread A and write(fd, ...)
in user thread B. It also instruments hypercalls accordingly—
i.e., a hcall_set_order() is inserted into thread A (this
example randomly selected vCPUO as a parameter) and
hcall_set_bp() is inserted before the racy syscalls. After the
racy syscalls, hcall_check_race() is inserted to check if it
causes a true race. If so, RAZZER promotes RacePair.,,g to
RacePairyye, and Py is pushed back to the generator such that
it can be mutated further. If any future mutation by the generator
inserts ioctl(fd, TCXONC) and close(fd), the executor will
observe the crash and then generate a race report (shown
in Figure 16 in the appendix). The race report shows the user
program which triggers the race (line 1 to 10 in Figure 16),
followed by detailed RacePairy,. information (line 12 to 20).
After that, the report also includes the crash report generated
by the kernel (lines 24 to 33). It is worth noting that the race
is the root cause of this kernel’s crash report.

IV. IMPLEMENTATION

We implemented RAZZER’s static analysis based on LLVM
4.0.0 and SVF [39], which provides the points-to analysis frame-
work. Because SVF is implemented for user-land programs,
we modified SVF to handle the kernel’s memory allocation
and free functions in the kernel. Moreover, as SVF ignores all
accesses to non-pointer variables even if a non-pointer variable
resides in the heap or in global structures, we modified SVF
to handle a non-pointer variable if the variable exists in the
heap area or in global structures. RAZZER’s static analysis
generates RacePairg,g as a set of two instructions in a source
code, each of which is represented with a source filename
and a line number within a file. RacePair¢,,g is translated
into a machine address during building the kernel using
debugging information generated by GCC. RAZZER’s hypervisor

is implemented on QEMU 2.5.0 and utilizes KVM (Kernel-
based Virtual Machine) to take the advantage of hardware
acceleration. When breakpoints are hit, we use Capstone [1] to
disassemble the instruction to check RacePair.,,g. RAZZER’s
fuzzer is implemented based on Syzkaller [42], a kernel fuzzer
developed by Google.

To summarize the implementation complexity, RAZZER
modified the existing framework as follows: SVF [39] to
implement its static analysis (§III-A) with 638 LoC in C++,
QEMU [5] to implement its hypervisor (§11I-B) with 652 LoC
in C, and Syzkaller [42] to implement its fuzzer (§III-C) with
6,403 LoC in Go and 286 LoC in C++.

V. EVALUATION

In this section, we evaluate various aspects of RAZZER.
First, we list the newly discovered harmful races found
by RAZZER (§V-A), and then we evaluate the effectiveness
of RAZZER’s static analysis (§V-B). Next, we measure the
performance overhead of our hypervisor (§V-C) and conduct a
comparison study of the fuzzing efficiency with state-of-the-art
tools (§V-D).

Experimental Setup. All of our evaluations were performed
on an Intel(R) Xeon(R) CPU E5-4655 v4 @ 2.50GHz (30MB
cache) with 512GB of RAM. We ran Ubuntu 16.04 with Linux
4.15.12 64-bit as the host kernel. To run RAZZER, we created
32 VMs using our modified KVM/QEMU, and allocated 16
VMs for single-thread and 16 VMs for multi-thread fuzzing.
To run Syzkaller for comparison, we created 32 VMs using
the stock KVM/QEMU so as to utilize the same computing
power used when RAZZER run.

Target Kernel Preparation. RAZZER requires no manual
modification of the target kernel to be analyzed. For each
kernel version, it builds the kernel in two phases. First it builds
using LLVM compiler-suites to generate Bitcode objects to
perform the static analysis. Then, it builds the kernel using
GCC, which will be running as a virtual machine on RAZZER’s
hypervisor.

A. Newly Found Race Bugs

To demonstrate RAZZER’s ability to find race bugs, we
ran RAZZER on various versions of the Linux kernel, from
v4.16-rc3 (released on Feb 25, 2018) to v4.18-rc3 (released
on July 1, 2018). We ran RAZZER for approximately 7 weeks
using the machine described in the experimental setup section.

Figure 6 summarizes the races identified by RAZZER. In total,
RAZZER found 30 harmful races in the kernel. After reporting
these, 16 were confirmed and patches of 14 were accordingly
submitted by the kernel developers. After the patches were
proposed, 13 races were merged into the various versions
of affected kernel versions (including the mainline as well).
We would like to highlight that the Linux kernel has been
extensively fuzzed by many different engineers and researchers
and thus that it is not easy to find new bugs with moderate
computing power. For instance, the Syzkaller team at Google
runs their fuzzer on their massive cloud infrastructure in a 24/7
manner to detect bugs early in the Linux kernel. Nevertheless,

Kernel crash summary Crash type Kernel version Kernel subsystem Confirmed Patch submitted Fixed
KASAN: slab-out-of-bounds write in tty_insert_flip_string_flag Use-After-Free v4.8 drivers/tty/ ' v v
WARNING in __static_key_slow_dec Reachable Warning v4.8 net/ v

Kernel BUG at net/packet/af_packet.c:LINE! Reachable Assertion v4.16-rc3 net/packet/ v v v
WARNING in refcount_dec Reachable Warning v4.16-rc3 net/packet/ v v v
unable to handle kernel paging request in snd_seq_oss_readq_puts Page Fault v4.16 sound/core/seq/oss/ v v v
KASAN: use-after-free Read in loopback_active_get Use-After-Free v4.16 sound/drivers/ v v v
KASAN: null-ptr-deref Read in rds_ib_get_mr Null ptr deref v4.17-rcl net/rdma/ v (assisted Syzkaller) v v
KASAN: null-ptr-deref Read in list_lru_del Null ptr deref v4.17-rcl fs/

BUG: unable to handle kernel NULL ptr dereference in corrupted Null ptr deref v4.17-rcl net/sctp/

KASAN: use-after-free Read in nd_jump_root Use-After-Free v4.17-rcl fs/ v v v
KASAN: use-after-free Read in link_path_walk Use-After-Free v4.17-rcl fs/ v v v
BUG: unable to handle kernel paging request in __inet_check_established =~ Page Fault v4.17-rcl net/ipv4/

KASAN: null-ptr-deref Read in ata_pio_sector Null ptr deref v4.17-rcl net/drivers/ata/

WARNING in ip_recv_error Reachable Warning v4.17-rcl net/ v v v
WARNING in remove_proc_entry Reachable Warning v4.17-rcl net/sunrpc/

KASAN: null-ptr-deref Read in ip6gre_exit_batch_net Null ptr deref v4.17-rcl net/ipv6/

KASAN: slab-out-of-bounds Write in __register_sysctl_table Heap overflow v4.17-rcl net/ipv6/

KASAN: use-after-free Write in skb_release_data Use-After-Free v4.17-rcl net/core/

KASAN: invalid-free in ptlock_free Double free v4.17-rcl mm/

Kernel BUG at lib/list_debug.c:LINE! Reachable Assertion v4.17-rcl drivers/infiniband/

INFO: trying to register non-static key in __handle_mm_fault Reachable INFO va.17-rcl mm/

KASAN: use-after-free Read in vhost-chr_write_iter Use-After-Free v4.17-rcl drivers/vhost/ v v v
BUG: soft lockup in vmemdup_user Soft lockup v4.17-rcl net/

KASAN: use-after-free Read in rds_tcp_accept_one Use-After-Free v4.17-rcl net/rds/

WARNING in sg_rq_end_io Reachable Warning v4.17-rcl drivers/scsi/

BUG: soft lockup in snd_virmidi_output_trigger Soft lockup v4.18-rc3 sound/core/seq/ v (assisted Syzkaller) v v
KASAN: null-ptr-deref Read in smc_ioctl Null ptr deref v4.18-rc3 net/smc/ ' v v
KASAN: null-ptr-deref Write in binderf_update_page_range Null ptr deref v4.18-rc3 drivers/android/ v '

WARNING in port_delete Reachable Warning v4.18-rc3 sound/core/seq/ V' (assisted Syzkaller)

KASAN: null-ptr-deref in inode_permission Null ptr def v4.18-rc3 fs/ v v v

Fig. 6: List of harmful race bugs newly discovered by RAZZER

= 30 . P ::L"‘; # po->has_vnet_hdr = !lval; # po->running = 0;

§ Lt + F N XX T, | movzbl 0x6e0(%r15),%eax
$20 AL 8 shi $0x3,%r12d

g o |sg %3 X Race Bug T, | and SOxFFFFF7, %eax andb $0xfe,0x6€0(%r13)
S } + Non-Race Bug or %r12d,%eax

= 0 T, | mov %al,0x6e0(%r15)

0 100 200) 300 400 500 vCPUO vCPU1
Time (hours) Fig. 8: A thread interleaving causing the race of

Fig. 7: Number of unique crashes over time (v4.17-rcl).

RAZZER found 30 races, demonstrating its strong effectiveness

with regard to finding race bugs.

Efficiency in Discovering New Harmful Races. To clarify
how long RAZZER takes to discover such races, Figure 7
illustrates the number of unique crash types found by RAZZER
over time while running v4.17-rcl. In this figure, we plotted
two classes of bugs: (i) non-race bugs, which are discovered by
single-thread fuzzing; and (ii) race bugs, which are discovered
by multi-thread fuzzing. While RAZZER’s general goal is to
find race bugs, its single-thread fuzzer also finds non-race bugs
as well (as it is randomly fuzzing the kernel), and all the
crashes found by the single-thread fuzzer are highly likely to

WARNING in refcount_dec (v4.16-rc3)

be non-race bugs 2. In general, both race bugs and non-race
bugs show the similar patterns—most bugs are found in the
early stage of fuzzing. Particularly focusing on race bugs, 70%
were found within the first 100 hours, whereas the following
400 hours only 30% were found.

Reliability and Security Impacts. All of these harmful races
found by RAZZER have severe reliability and security impacts.
From the reliability perspective, races are detrimental. They
cause unpredictable, non-deterministic crashes of the kernel,
which are still challenging to reproduce due to the nature of

%It is still possible to observe race bugs from the single-thread user program
(i.e., races during interrupt handling in the kernel), but we do not consider
these cases in this paper and leave it as future work.

races, critically damaging the reliability of the entire system.
From the security perspective, some of these races can be
abused by an attacker who launches a privilege escalation
attack (i.e., acquiring root privileges from a non-root execution)
as opposed to a denial-of-service attack. In particular, if
buffer overflows or use-after-free allow a write operation (i.e.,
KASAN: slab-out-of-bounds write in tty_insert_flip_string_flag,
KASAN: slab-out-of-bounds Write in __register_sysctl_table,
and KASAN: use-after-free Write in skb_release_data), a user
program may overwrite a credential structure in the kernel to
escalate its privilege.

Very Old Races in the Kernel. Surprisingly, we noted several
harmful races found by RAZZER had existed in the kernel for a
very long time, implying that RAZZER is capable of uncovering
harmful races that tools such as the kernel fuzzers like
Syzkaller, the random thread interleaving tool SKI, and many
other dynamic race detectors cannot find. More specifically,
based on our bug report, the kernel developer found that the
WARNING in refcount_dec issue was present in the kernel since
2007 (Linux v2.6.20), and KASAN: slab-out-of-bounds write
in tty_insert_flip_string_fixed_flag was present since
2011 (Linux v2.6.38).

To consider about why some race bugs have long re-
mained undetected, we conducted an in-depth study of
WARNING in refcount_dec. Based on our analysis, we be-
lieve it is related to the fact that the chance to observe
this race is extremely low in practice. As shown in Fig-
ure 8, RacePairy, 1s in this case mov %al,0x6e0(%r15) and
andb $0xfe,0x6e0(%r13). In order to manifest this race,
vCPU1 should execute andb $0xfe,0x6e0(%r13) while vCPU®
is executing only three non-memory access instructions in
T, showing a very small time window to trigger the race.
Considering the numerous of instructions that each syscall
will be executing, this is an extremely rare case, signifying
the effectiveness of RAZZER in enforcing deterministic thread
interleaving towards potential race spots.

Root Cause Information. One notable feature of RAZZER
is that it produces a detailed report on an identified harmful
race, which significantly helps to discern its root cause
(see Figure 16 and Figure 17 in the appendix). Based on
this root cause information, particularly with regard to the
two racy syscalls and confirmed RacePairy,, locations,
developers were able to fix races promptly once we reported
these cases. For example, it only took 20 minutes and 2
hours, respectively, for developers to propose the patches
for KASAN: use-after-free in loopback_active_get
and Unable to handle kernel paging request in
snd_seq_oss_readq_puts3 .

Another interesting example is KASAN:
null-ptr-deref Read in rds_ib_get_mr. This race was
in fact reported by Syzkaller 9 days earlier than it was by
RAZZER, but the kernel developers did not take any action.

3 As this taken time simply measures each developer’s response time to our
report, we assume that the actual time required to develop a patch should be
much shorter than this.

10

Kernel module Size (LLVM Bitcode) Analysis Time

cert 148 KB 0.2 sec
init 728 KB 1 sec
security 1.7MB 3 sec
lib 3.5MB 36 sec
crypto 3.3MB 42 sec
arch 11 MB 2 min
block 6 MB 3 min
ipc 5SMB 3 min
mm 15MB 5 min
fs 17MB 8 min
sound 20MB 22 min
kernel 29MB 24 min
net 47 MB 72 min
drivers 68 MB 134 min

Fig. 9: Performance of RAZZER’s static analysis (v4.17-rcl)

CVE ID
CVE-2017-2636

First Instruction Second Instruction

drivers/tty/n_hdlc.c:216 drivers/tty/n_hdlc.c:440

CVE-2016-8655 net/packet/af_packet.c:3660

net/ipv4/raw.c:640

net/packet/af_packet.c:4229

CVE-2017-17712 net/ipv4/ip_sockglue.c:748

Fig. 10: RacePairyy, required to find known race bugs (Linux v4.8).
RAZZER’s static analysis results, RacePairscnd, included all of these
pairs.

We assume that this is due to the difficulty of determining
the root cause of this race based on a Syzkaller’s report,
as it is more suitable for understanding memory corruption
issues along with KASAN'’s report. However, once we sent
RAZZER’s detailed report, this race was confirmed in one day
by the respective kernel developer, implying that our report
helped the developer to understand the race.

We note that race bugs are generally known to be difficult
bugs with regard to understanding their root causes; hence,
even when they are easily reproducible, it is still not trivial for
developers to understand a race and generate a patch. However,
as suggested by our experiences with kernel developers,
RAZZER not only finds harmful races but also assists with
easy, low-cost patching processes.

B. Effectiveness of Static Analysis

Performance Overhead of Partitioned Analysis. To demon-
strate the effectiveness of RAZZER’s partitioned analysis, we
measured the time taken to obtain all RacePairsg,,g from the
entire kernel. As shown in Figure 9, RAZZER showed moderate
performance overhead per module—ranging from 2 minutes to
134 minutes, depending on the size of the target LLVM bitcode.
We believe this is fast enough to ensure a proper analysis of
the kernel as the kernel is updated. It is worth noting that,
the consolidated entire kernel binary (i.e., vmlinux.bc) is a
756 MB LLVM Bitcode file and our analysis of this binary
did not terminate when we ran it for 7 days.

Correctness of RacePairsg,q. Because our static analysis
prunes out a numerous number of non-racy memory pairs,
it may show false negatives (i.e., some RacePairy,. is not
included in the obtained RacePairsg,q). As such, to demon-
strate the correctness of RacePairsg,,q results, we checked

Kernel version # of Paired Memory Access Instr. # of RacePairs , g

v4.8 578M 0.3M (0.05%)
v4.16-rc3 8,509M 3.4M (0.04%)
v4.17-rcl 4,025M 1.5M (0.05%)

Fig. 11: The total number of race candidate pairs generated by
RAZZER’s static analysis. We also present the number of paired
memory access instructions to be referred as the upper-bound number
of the analysis.

if the obtained RacePairsc,,q include RacePairy,. for the
three previously known harmful races in Linux v4.8 shown
in Figure 10. After checking this, we confirmed that the
RacePairsg,,¢ from our static analysis indeed includes all
three RacePairy,. cases. Although this represents a limited
study to show the correctness of RAZZER’s static analysis,
we emphasize here that RAZZER’s static analysis mechanism
would be effective enough to discover races similar to those
three CVE races. Moreover, we believe that the 30 harmful
races newly found by RAZZER also support the correctness of
the RacePairsgyg results, especially from practical aspects.
Effectiveness of RacePairg,,q. Figure 11 shows the total
number of RacePairsg,,q obtained by RAZZER from the entire
kernel through its static analysis. For a clearer understanding of
this number, we also show the total number of paired memory
access instructions, approximating the upper bound number of
RacePairsgg results, in the kernel which is partitioned in a
way that RAZZER does.

For all kernel versions, RAZZER produced 0.05%, 0.04%,
and 0.05% of RacePairs.,,g compared to the paired number
of memory access instructions. This suggests that RAZZER’s
static analysis effectively guides its fuzzer to focus only on
less than 0.1% of potential racy spots, effectively avoiding an
enormous number of non-racy spots to be explored.

C. Hypervisor Overhead

Given that RAZZER utilizes hypercalls to enable the de-
terministic behavior of vCPUs, it requires extra overhead to
communicate with the hypervisor. To understand how much
overhead is incurred due to the hypervisor, we measured the
elapsed time of each hypercall 100M times and computed
the average. We used user-space clock_gettime() as a timer
function for these measurements. For a simple comparison of
RAZZER’s hypercall overhead, we implemented a no-op hyper-
call (i.e., hcall_nop()) as a baseline hypercall. hcall_nop()
does nothing and immediately returns from the hypervisor once
invoked.

Figure 12 shows the performance overhead of RAZZER’s
hypercalls. As shown in the figure, our hypercalls incur
overhead ranging from 4.69us to 5.64pus. This implies that to
run each Py, in the multi-thread executor, RAZZER’s hypercall
based mechanism would requires about 14.92us (i.e., 5.46 +
4.77 + 4.69), which would not be significant overhead. In partic-
ular, while hcall_set_order() and hcall_check_race() only
incurs 8% and 9% of the overhead compared to hcall_nopQ),
hcall_set_bp() incurs 25%, as hcall_set_bp() must install
a hardware breakpoint within the corresponding vCPU, which

11

hcall_nop(Q)
4.34ps

hcall_set_bp() hcall_check_race() hcall_set_order()

5.46ps 4.77us 4.69us

Fig. 12: Performance overhead when performing RAZZER’s hypercalls

Syzkaller [42] RAZZER
Single Multi Avg.
Throughput 144K 151K 86K 118K

Fig. 13: Fuzzing throughput of Syzkaller and RAZZER. We present
the number of execution per machine for one hour. Single/Multi
denotes the throughput on machines running single-thread/multi-thread
fuzzing (v4.17-rcl).

requires extra switching steps in our underlying hypervisor
designs—i.e., our base hypervisor, KVM, must switch to the
host kernel to access vCPU registers.

D. Comparison Study of the Fuzzing Efficiency

1) Finding Offending User Programs: This subsection
demonstrates how well RAZZER finds a user program triggering
a race (i.e., how well RAZZER meets R1 in §II-B). We
measured two different aspects: (1) the fuzzing throughput,
showing how many input program instances that RAZZER
can execute for a certain period of time; and (2) the number
of executions required to find a user program triggering a
previously known harmful race. In these measurements, we
also compare RAZZER’s performance with that of Syzkaller
to clarify how well RAZZER meets R1 compared to the
state-of-the-art kernel fuzzing tool. In summary, the fuzzing
throughput of RAZZER is worse than Syzkaller as expected,
because RAZZER utilizes a hypervisor to enforce deterministic
thread interleaving behavior. However, RAZZER is much faster
than Syzkaller when finding a user program triggering a
harmful race (i.e., 23 to 86 times faster at a minimum), as
deterministic thread interleaving behavior towards potential
racy spots significantly reduces the search space to be fuzzed.

Execution Throughput. We measure the number of user pro-
grams executed by RAZZER, both in the single-thread (§III-C1)
and multi-thread fuzzing phases ($III-C1).

Figure 13 shows the execution throughput result after
running both tools for 10 minutes. The number in each
cell represents the averaged number per VM for an easy
comparison. As expected, RAZZER’s multi-thread fuzzing
shows lower throughput than RAZZER’s single-thread fuzzing
and Syzkaller, mainly due to two extra jobs which arise during
the multi-thread fuzzing step. First, it performs extra hypercalls,
where the invocation itself imposes extra overhead, and second,
if both breakpoints remain unfired, the hypervisor should wait
until its own timer expires.

One interesting aspect to note here is that RAZZER’s single-
thread fuzzing shows higher throughput than that of Syzkaller.
This occurs because RAZZER’s single-thread executor is truly
single-threaded whereas Syzkaller spawns multiple worker
threads to identify data races.

Required Number of Executions to Find a Race. The
execution throughput of fuzz testing may be an indirect measure
of how efficient the fuzz technique is, but a more direct and
important measure should be the time required to find bugs (i.e.,
a harmful race in this paper). To demonstrate this, we measured
the number of executions required to discover previously known
harmful races, CVE-2017-2636, CVE-2016-8655, and CVE-
2017-17712, while running for 10 hours. To trigger the race
within a reasonable time for this experiment, we configured the
program generation grammar of both RAZZER and Syzkaller
as a limited set of syscalls that is related to the target race
bug. For a fair evaluation, we used the same configuration for
both tools and provided RacePairc,,g generated from the entire
kernel to RAZZER (i.e., fewer RacePair.,,q leads to a more
efficient search for RAZZER).

As shown in Figure 14, RAZZER found all of these previously
known races with a reasonable number of execution (i.e., from
246 K to 1,170 K) from as well as within a reasonable amount of
time (i.e., from 7 minutes to 26 minutes). However, Syzkaller
failed to find all of these cases, although executed from SM
to 37 M generated/mutated programs over the duration of 10
hours. Particularly based on these CVE cases, these outcomes
suggest that RAZZER is faster than Syzkaller, ranging from
23 to 85 times at least.

2) Finding Offending Thread-Interleaving cases: In order
to show how well RAZZER finds a thread interleaving for a
given program to trigger a race (i.e., how well RAZZER meets
R2 in §II-B), we performed the comparison study between
RAZZER and SKI.

Experimental Setting. Because we do not have access to the
implementation of SKI, we implemented SKIgy, by extending
RAZZER with SKI’s random thread interleaving features. The
key to implement SKIgy, lies in implementing its random thread
interleaving feature, which is done by modifying RAZZER’s
multi-thread fuzzing phase. Instead of utilizing RAZZER’s
hypercalls for the per-core breakpoint at RacePaircand, SKIgmu
performs random thread interleaving, as shown in Figure 2.
More specifically, SKIgy, continues to randomly select one
vCPU and then executes it until it meets any memory access
instruction. Thus, SKIg,, interleaves the execution as it faces
the memory access instruction, which is identical to what SKI
originally proposed.

In this experiment, we assume that RAZZER and SKIgp,
obtained a user program triggering a harmful race so as to
focus on evaluating the R2 aspect. This is supported by turning
off the input generator during the single-thread fuzzing phase
ahd then simply providing a single user program to it. We
used three programs, each of which already triggers previ-
ously known harmful races. These are CVE-2017-2636 [28],
CVE-2016-8655 [26], and CVE-2017-17712 [27].

Number of Executions to Find Races. Figure 15 shows
the number of required executions to trigger each race while
running RAZZER and SKIgp,. As RAZZER only explores
thread interleaving related to RacePairscang (spotted by running
a given user program) and thus explores far fewer thread

12

interleaving cases, RAZZER requires far fewer executions
than SKIgg,, ranging from 30 times to 398 times less. This
result also suggests that many thread interleaving cases that
are explored by SKIgn, are not related to races, signifying
RAZZER’s effectiveness in meeting R2.

VI. RELATED WORK

In this section, we discuss work related to RAZZER, partic-
ularly focusing on techniques that can identify (or assist in the
identification of) data races.

Dynamic Fuzz Testing. Many recent studies have demon-
strated that fuzzing is a promising technique to find bugs
in user-land programs [8, 12, 18, 33, 34, 44, 46] and in
kernels [13, 19, 23, 24, 42, 43, 45]. The key advantage of
fuzzing is not only that this method efficiently finds bugs
in target programs but also that it does not suffer from false
positives as it generates an input reproducing a bug. However, to
the best of our knowledge, all fuzzing techniques are inefficient
when used to identify race bugs mainly because their designs
are not tailored to races. While most fuzzers focus on leveraging
previously explored execution coverage, they do not consider
thread interleaving (i.e., traditional fuzzers do not not meet
R2 in §1I-B). Compared to these, RAZZER considers both the
execution coverage and thread interleaving to discover data
races more effectively.

Dynamic Thread Scheduler. Several studies [10, 16, 30, 35,
40] have attempted to find instances of race-causing thread
interleaving by implementing a customized thread scheduler
which randomizes the per-thread execution scheduling. In
particular, the PCT Algorithm [10] and SKI [16] discover races
in user programs or the kernel through exploring all possible
thread interleaving cases. Limitations of these two methods
are: (i) they do not consider R1 (§1I-B) as they do not generate
(or mutate) an input program and thus it cannot find a new
program which triggers data race; and (ii) they are not efficient
in meeting R2 as they must search the very large spaces of
all possible thread interleaving cases. In fact, the design of
RAZZER is inspired by the PCT algorithm and SKI—it meets
R1 by tailoring the fuzzing process while efficiently meeting
R2 by undertaking prioritized searches over RacePairscng.

Dynamic Race Detector. Many studies [7, 9, 11, 15, 20, 22,
25, 31, 32, 36, 40, 47, 48] have sought to improve the race
detection capability at runtime by collecting rich contextual
information on races. These are essentially orthogonal to
RAZZER—once deployed together with RAZZER, RAZZER’s
race detection capability can be augmented as well. This
orthogonal relationship is similar how traditional fuzzers
(focusing on identifying memory corruption bugs) run with
extra sanitizers (i.e., AFL [46] and Syzkaller [42] strongly
encourage their users to run them with AddressSanitizer [37]
or MemorySanitizer [38]).

In particular, ThreadSanitizer [36] is a commodity race
detector developed by Google which was recently utilized
with the Linux kernel as well. To augment the performance
when detecting races, TxRace [47] leverages the hardware

Syzkaller [42] RAZZER
Race Bugs
exec Time Found # exec Time Found
Single Multi Total
CVE-2017-2636 SM 10 hrs X 169K 77K 246K 7 mins v
CVE-2016-8655 29M 10 hrs X 821K 349K 1,L170K 26 mins v
CVE-2017-17712 37TM 10 hrs X 565K 242K 807K 18 mins v

Fig. 14: Efficiency of Syzkaller and RAZZER in finding a user program that triggers a race. We measured the total number of executions
and the time required to find previously known races. RAZZER found all of the known races within a reasonable amount of time, while

Syzkaller did not find any within the given time of 10 hours (v4.8)

CVE-2017-2636 CVE-2016-8655 CVE-2017-17712

CVE

Found Total Found Total Found Total
SKIEmu [16] 2,038 6,435 636 8,008 8362 27,132
RAZZER 8 23 21 43 21 56

Fig. 15: Efficiency of SKIgm, and RAZZER in uncovering thread
interleaving that triggers a race. Found column shows the required
number of executions to find the interleaving (obtained by repeating
the experiment 5 times and computing the average), and the Total
column shows the theoretical maximum number of required executions
for each tool (v4.8).

transactional memory and ProRace [48] utilizes a performance
monitoring unit. Memory sampling techniques [9, 11, 15, 25]
selectively monitor memory accesses to optimize the perfor-
mances. RaceMob [21] crowdsources runtime race tests from
potential data races that are generated by the static analysis.
Snorlax [22] suggests a coarse interleaving hypothesis to
leverage coarse-grained timing information to determine the
thread interleaving of events.

Static Analysis. A static analysis has been used extensively
to discover unknown bugs. In this category, we focus our
discussion on static analysis works relevant to either race bug
detection or points-to analysis implementations. Relay [41]
is a static race detector for large programs such as kernels.
Relay generates RacePairsc,,q by performing a lockset-based
bottom-up analysis while summarizing each function’s behavior.
RacerX [14] is also designed to find race conditions and
deadlocks for large, complex multi-threaded systems. Due
to the limitations of using static analysis techniques alone,
these are essentially incurring a high false positive rate (e.g.,
Relay showed a false positive rate of 84% on the Linux kernel),
critically limiting their usage in practice. However, RAZZER
also leverages dynamic analysis techniques, addressing the
possibility of high false positive rates. In terms of points-to
analysis implementations, K-miner [17] was recently presented
to uncover memory corruption vulnerabilities in commodity
operating systems through an inter-procedural and context-
sensitive analysis. RAZZER’s static analysis is built based
on the implementation of K-miner’s but modified to identify
RacePairsg,,g through a points-to analysis.

VII. DISCUSSION

False Negatives in Static Analysis. Since RAZZER relies on
the results of the static analysis, if any true race pair is missing
from RacePair.,yg, it would lead to false negatives of RAZZER.

13

Such missing cases of the static analysis may occur mainly due
to the partition analysis. Specifically, the partition analysis of
RAZZER is based on the assumption that a race across different
kernel modules are rarely happen (e.g., a file system and a
terminal device driver). However, if that happens, RAZZER’s
RacePair.,;,¢ would not include such a race pair. In order to
completely address this problem, RAZZER needs to avoid the
partition analysis. Instead, it should perform more precise static
analysis techniques, which aggressively identifies must-not-
race pairs. For instance, RAZZER can leverage synchronization
primitives as done in previous work [14, 41].

Applying RAZZER for Other Systems. We believe it would
not be challenging to apply RAZZER for other modern operating
systems, such as Windows, MacOSX, FreeBSD, as long as
their source code is available. The only place that RAZZER
leverages Linux-specific domain knowledge is in its system call
invocation model, and all the rest designs are platform-agnostic
as its core mechanism is performed either offline (i.e., a static
analysis) or transparent (i.e., a tailored hypervisor).

To apply RAZZER for userland programs, additional mutation
strategies after identifying a race may not be necessary. Unlike
the Linux kernel which occasionally allows a race to improve
performance, a race itself itself is considered as a bug in most
of userland programs.

VIII. CONCLUSION

We proposed RAZZER, a fuzz testing tool tailored to find race
bugs. It utilizes a static analysis to spot potential data race points
to guide the fuzzer to identify races. Moreover, it modifies the
underlying hypervisor to trigger a race deterministically. The
evaluation of RAZZER demonstrates its strong capability to
detect races. It has thus far detected 30 new races in the Linux
kernel, and a comparison study with other state-of-the-art tools,
specifically Syzkaller and SKI, demonstrates its outstanding
efficiency to detect race bugs in the kernel.

IX. ACKNOWLEDGMENT

We would like to thank anonymous reviewers for their
insightful comments, which significantly improved the final
version of this paper. We also would like to thank Linux
kernel developers for their helpful feedback and responses. This
research is supported in part by ERC through NRF of Korea
(NRF-2018R1A5A1059921) and Samsung Research Funding
& Incubation Center (SRFC-IT1701-05).

[1
[2
[3
[4
[5
[6]

[t St e Y

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

Capstone, 2018. https://www.capstone-engine.org.

Kernel address sanitizer, 2018. https://github.com/google/kasan/wiki.
Kcov, 2018. http://simonkagstrom.github.io/kcov/index.html.

Linux kernel mailing list archive, 2018. https://lkml.org.

Qemu, 2018. https://www.gemu.org.

L. O. Andersen. Program analysis and specialization for the C
programming language. PhD thesis, University of Copenhagen, 1994.

Z. Anderson, D. Gay, R. Ennals, and E. Brewer. Sharc: Checking
data sharing strategies for multithreaded c. In Proceedings of the 2008
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Tucson, Arizona, June 2008.

M. Bohme, V.-T. Pham, and A. Roychoudhury. Coverage-based greybox
fuzzing as markov chain. IEEE Transactions on Software Engineering,
2017.

M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: proportional
detection of data races. In Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), Toronto, Canada, June 2010.

S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A
randomized scheduler with probabilistic guarantees of finding bugs. In
Proceedings of the 15th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
New York, NY, Mar. 2010.

Y. Cai, J. Zhang, L. Cao, and J. Liu. A deployable sampling strategy
for data race detection. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM,
2016.

S. K. Cha, M. Woo, and D. Brumley. Program-adaptive mutational
fuzzing. In Proceedings of the 36th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2015.

J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna. Difuze: Interface aware fuzzing for kernel drivers. In Pro-
ceedings of the 24th ACM Conference on Computer and Communications
Security (CCS), Dallas, TX, Oct.—Nov. 2017.

D. Engler and K. Ashcraft. Racerx: effective, static detection of race
conditions and deadlocks. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP), Bolton Landing, NY, Oct. 2003.

J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective
data-race detection for the kernel. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Vancouver, Canada, Oct. 2010.

P. Fonseca, R. Rodrigues, and B. B. Brandenburg. Ski: Exposing
kernel concurrency bugs through systematic schedule exploration. In
Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Broomfield, Colorado, Oct. 2014.

D. Gens, S. Schmitt, L. Davi, and A.-R. Sadeghi. K-miner: Uncovering
memory corruption in linux. In Proceedings of the 2018 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
Feb. 2018.

1. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowsing
for overflows: A guided fuzzer to find buffer boundary violations.
In Proceedings of the 22th USENIX Security Symposium (Security),
Washington, DC, Aug. 2013.

H. Han and S. K. Cha. Imf: Inferred model-based fuzzer. In Proceedings
of the 24th ACM Conference on Computer and Communications Security
(CCS), Dallas, TX, Oct.—Nov. 2017.

G. J. Holzmann. The model checker spin. IEEE Transactions on software
engineering, 23(5), 1997.

B. Kasikci, C. Zamfir, and G. Candea. Racemob: crowdsourced data race
detection. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), Farmington, PA, Nov. 2013.

B. Kasikci, W. Cui, X. Ge, and B. Niu. Lazy diagnosis of in-production
concurrency bugs. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP), Shanghai, China, Oct. 2017.

S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, and T. Kim. Cab-

14

[24]
[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

fuzz: practical concolic testing techniques for cots operating systems. In
Proceedings of the 2017 USENIX Annual Technical Conference (ATC),
Santa Clara, CA, July 2017.

M. Labs. Kernelfuzzer, 2016. https://github.com/mwrlabs/KernelFuzzer.

D. Marino, M. Musuvathi, and S. Narayanasamy. Literace: effective
sampling for lightweight data-race detection. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Dublin, Ireland, June 2009.

MITRE. CVE-2016-8655., 2016. https://cve.mitre.org/cgi-bin/cvename.
cgi’name=CVE-2016-8655.

MITRE. CVE-2017-17712., 2017. https://cve.mitre.org/cgi-bin/cvename.
cgi?’name=CVE-2017-17712.

MITRE. CVE-2017-2636., 2017. https://cve.mitre.org/cgi-bin/cvename.
cgi?’name=CVE-2017-2636.

I. Molnar. Runtime locking correctness validator, 2018. https://www.
kernel.org/doc/Documentation/locking/lockdep-design.txt.

M. Musuvathi and S. Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), San Diego, CA, June 2007.

N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(PLDI), San Diego, CA, June 2007.

R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In
Acm Sigplan Notices, volume 38. ACM, 2003.

S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos.
Vuzzer: Application-aware evolutionary fuzzing. In Proceedings of
the 2017 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb.—Mar. 2017.

A. Rebert, S. K. Cha, T. Avgerinos, J. M. Foote, D. Warren, G. Grieco,
and D. Brumley. Optimizing seed selection for fuzzing. In Proceedings
of the 23rd USENIX Security Symposium (Security), San Diego, CA,
Aug. 2014.

K. Sen. Race directed random testing of concurrent programs. In
Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Tucson, Arizona, June
2008.

K. Serebryany and T. Iskhodzhanov. Threadsanitizer: data race detection
in practice. In Proceedings of the Workshop on Binary Instrumentation
and Applications, pages 62-71. ACM, 2009.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Address-
sanitizer: A fast address sanity checker. In USENIX Annual Technical
Conference, pages 309-318, 2012.

E. Stepanov and K. Serebryany. Memorysanitizer: fast detector of
uninitialized memory use in c++. In Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion. IEEE Computer Society, 2015.

Y. Sui and J. Xue. Svf: interprocedural static value-flow analysis in
Ilvm. In Proceedings of the 25th International Conference on Compiler
Construction. ACM, 2016.

K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy. Detecting
and surviving data races using complementary schedules. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles (SOSP),
Cascais, Portugal, Oct. 2011.

J. W. Voung, R. Jhala, and S. Lerner. Relay: static race detection on
millions of lines of code. In Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. ACM, 2007.
D. Vyukov. Syzkaller, 2015. https://github.com/google/syzkaller.

V. M. Weaver and D. Jones. perf fuzzer: Targeted fuzzing of the perf event
open () system call. Technical report, Technical Report UMAINEVMW-
TR-PERF-FUZZER, University of Maine, 2015.

M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley. Scheduling black-box
mutational fuzzing. In Proceedings of the 20th ACM Conference on

Computer and Communications Security (CCS), Berlin, Germany, Oct.
2013.

https://github.com/google/kasan/wiki
http://simonkagstrom.github.io/kcov/index.html
https://lkml.org
https://www.qemu.org
https://github.com/mwrlabs/KernelFuzzer
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8655
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8655
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17712
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17712
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2636
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2636
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/google/syzkaller

[45] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang. APPENDIX
Semfuzz: Semantics-based automatic generation of proof-of-concept
exploits. In Proceedings of the 24th ACM Conference on Computer and | [*] User program dump
Communications Security (CCS), Dallas, TX, Oct.—Nov. 2017. s # ..
[46] M. Zalewsk. American fuzzy lop, 2014. http:/lcamtuf.coredump.cx/afl. 3 ~ thr®: int fd = open("...") # syscall index 0
4
5

...
[47] T. Zhang, D. Lee, and C. Jung. Txrace: Efficient data race detection thr®: ioctl(fd, TCLFLSH) # syscall index 8

using commodity hardware transactional memory. In Proceedings of ¢ # ...

the 21st ACM International Conference on Architectural Support for 7 thrl: write(fd, "...") # syscall index 12
Programming Languages and Operating Systems (ASPLOS), Atlanta, 8 # ...

GA, Apr. 2016. 9 thrl: ioctl(fd, TCXONC)

. A 10 thrl: close(fd)
[48] T. Zhang, C. Jung, and D. Lee. Prorace: Practical data race detection |,

for production use. In Proceedings of the 22nd ACM International |, [*] RacePair-0: drivers/tty/n_hdlc.c:440
Conference on Architectural Support for Programming Languages and 13 Syscall index 8 (sys_ioctl)

Operating Systems (ASPLOS), Xi’an, China, Apr. 2017. 14 BP-0 at ffffffff817£8351
15 Write to ffff8801e704c020

—

3
—

*] RacePair-1: drivers/tty/n_hdlc.c:216
18 Syscall index 12 (sys_write)

19 BP-1 at ffffffff817£f95h9

20 Read from ffff8801e704c020

22 [*] Confirmed as the true race.

24 # Begin: A crash report from the kernel.
25 BUG: KASAN: use-after-free in n_hdlc_buf_get+0x41/0x90 ...

26 # ...

27 # ...

28 Call Trace:

29 dump_stack+0xb3/0x110

30 # ...

31 n_hdlc_buf_get+0x41/0x90

32 n_hdlc_tty_close+0x1c8/0x2d0
33 # ...

Fig. 16: A race report produced by RAZZER on CVE-2017-2636

1 [*] User program dump

2 # ...

3 thr®: sys_setsockopt(PACKET_AUXDATA) # syscall index 3
4 # ...

5 thrl: sys_setsockopt(PACKET_RX_RING) # syscall index 7
6 # ...

7

8

9

—

*] RacePair-0: net/packet/af_packet.c:3773
Syscall index 3 (sys_setsockopt)

10 BP-0 at ffffffff834701bb

1 Write to ffff8800b0ca9d120

[
—

*] RacePair-1: net/packet/af_packet.c:4303
14 Syscall index 7 (sys_setsockopt)

15 BP-1 at ffffffff8346d480

16 Read from ffff8800b0ca9dl20

18 [*] Confirmed as the true race.

20 # Begin: A crash report from the kernel.

21 refcount_t: decrement hit 0; leaking memory.

22 WARNING: CPU: O PID: 12248 at lib/refcount.c:228
23 # ...

25 Call Trace:
26 dump_stack+0x155/0x1f6 1lib/dump_stack.c:53

27 # ...
28 # ...
29 __sock_put include/net/sock.h:629 [inline]

30 __unregister_prot_hook+0x128/0x190 net/packet/af_packet.c:369

Fig. 17: A race report produced by RAZZER on a newly discovered
race, WARNING in refcount_dec (v4.16-rc3).

15

	Introduction
	Problem Scope and Design Requirements
	Problem Scope and Terminology
	Design Requirements

	Design
	Identifying Race Candidates
	Per-Core Scheduler in Hypervisor
	Setup Per-Core Breakpoint
	Resume Per-Core Execution
	Check Race Results

	Two Phased Fuzzing to Discover Races
	Single-Thread Fuzzing
	Multi-Thread Fuzzing

	Implementation
	Evaluation
	Newly Found Race Bugs
	Effectiveness of Static Analysis
	Hypervisor Overhead
	Comparison Study of the Fuzzing Efficiency
	Finding Offending User Programs
	Finding Offending Thread-Interleaving cases

	Related work
	Discussion
	Conclusion
	Acknowledgment
	Appendix

