
SEGFUZZ: Segmentizing Thread Interleaving to
Discover Kernel Concurrency Bugs through Fuzzing

Dae R. Jeong† Byoungyoung Lee‡ Insik Shin† Youngjin Kwon†
† School of Computing, KAIST,

‡ Department of Electrical and Computer Engineering, Seoul National University

Abstract—Discovering kernel concurrency bugs through fuzzing
is challenging. Identifying kernel concurrency bugs, as opposed
to non-concurrency bugs, necessitates an analysis of possible
interleavings between two or more threads. However, because the
search space of thread interleaving is vast, it is impractical to
investigate all conceivable thread interleavings. To explore the
vast search space, most previous approaches perform random
or simple heuristic searches without having coverage for thread
interleaving or with an insufficient form of coverage. As a result,
they either conduct wasteful searches with redundant executions
or overlook concurrent bugs that their coverage cannot address.

To overcome such limitations, we propose SEGFUZZ, a fuzzing
framework for kernel concurrency bugs. When exploring the
search space of thread interleavings, SEGFUZZ decomposes an
entire thread interleaving into a set of segments, each of which
represents an interleaving of the small number of instructions,
and utilizes individual segments as interleaving coverage, called
interleaving segment coverage. When searching for thread inter-
leavings, SEGFUZZ mutates interleavings in explored interleaving
segments to construct new thread interleavings that have not yet
been explored. With SEGFUZZ, we discover new 21 concurrency
bugs in Linux kernels, and demonstrate the efficiency of SEGFUZZ
by showing that SEGFUZZ can identify known bugs on average
4.1 times quickly than the state-of-the-art approaches.

I. INTRODUCTION

Concurrency bugs are common in modern kernels due
to the pervasive adoption of efficient but difficult-to-reason
parallelization techniques. The consequence of kernel con-
currency bugs is disastrous. They crash the entire system,
breaking availability [16, 57] or causing data loss [48]. Even
worse, attackers exploit concurrency bugs to mount a privilege
escalation attack. These threats are becoming more serious
in recent years, as the number of concurrency bugs has
been steadily increasing in Linux kernels [26], and a recent
study [38] demonstrates that a user-level attacker reliably
exploits concurrency bugs. Furthermore, we observe that many
zero-day attacks in Linux kernels [21, 23, 31, 32, 39] use
concurrency bugs by exploiting malicious thread interleavings.

However, discovering kernel concurrency bugs is much more
difficult than finding non-concurrency bugs. In contrast to non-
concurrency bugs which are discovered by sequential testing of
single-thread execution, kernel concurrency bugs are typically
caused by the concurrent execution of two or more threads.
Kernel concurrency bugs only emerge in a particular pattern
of interleavings between threads, which happens only when a
certain timing condition is met. Therefore, to discover kernel
concurrency bugs, a fuzzer must consider two aspects: how to

explore execution paths (i.e., sequential aspects), and how to
navigate thread interleavings (i.e., concurrent aspects).

For decades, coverage-guided fuzzing has been extensively
studied to effectively explore the search space of execution
paths [8, 11, 20, 22, 35, 36, 70, 75, 89]. However, little
progress has been made in exploring thread interleavings.
Specifically, little is known about how to define the coverage
metric for thread interleavings (shortly, interleaving coverage
metric), and how to utilize interleaving coverage metric in
exploring thread interleavings. For example, Razzer [28] and
Snowboard [17] use their own heuristics combined by static
or dynamic analysis, but they are coverage-oblivious. They
cannot prune redundant executions of thread interleavings
that produce identical coverage. KRACE [88] proposes alias
coverage, which tracks concurrently-executed two instructions,
but alias coverage suffers from effectively summarizing the
behavior of concurrency bugs. This is because most concurrency
bugs are caused by interleavings of more instructions [49].
Furthermore, KRACE randomly schedules instructions during
runtime without considering what thread interleavings are
explored before.

To overcome the shortcoming of existing techniques, this
paper proposes SEGFUZZ, a fuzzing framework for kernel
concurrency bugs. At its core, SEGFUZZ aims to systematically
explore the vast search space of thread interleavings to quickly
identify interleavings leading to concurrency bugs. The central
idea behind SEGFUZZ is i) defining a new, effective interleaving
coverage metric that reflects the common nature of concurrency
bugs, and ii) using that metric to drive an efficient search
strategy for discovering previously untested thread interleavings.
Hence, we demonstrate that SEGFUZZ significantly saves CPU
costs in kernel fuzzing by finding concurrent bugs quickly.
SEGFUZZ achieves the goal with the following two key ideas:
segmentizing thread interleaving and the mutation-based thread
interleaving exploration.

Segmentizing thread interleaving. The key idea is built
upon the discovery in the previous study [49] which highlights
that most concurrency bugs occur when at most four memory
accesses referring to shared memory objects are interleaved.
Based on this finding, SEGFUZZ decomposes the large thread
interleaving space into tractable small sub-spaces, called inter-
leaving segment. The number of instructions in an interleaving
segment is small (at most four by default), and each interleaving
segment represents an interleaving of those instructions.

Using interleaving segments, we propose novel interleaving
coverage metric, interleaving segment coverage, which is
defined as a set of detected interleaving segments. Using
interleaving segment coverage provides two benefits to fuzzers.
First, a fuzzer can consider interactions of multiple instructions,
which increases accuracy of discovering concurrency bugs
in comparison to previous approaches [30, 88]. Second, a
fuzzer can test the unexplored thread interleavings guided by
interleaving segment coverage while avoiding redundant testing.
Mutation-based thread interleavings exploration. To effec-
tively test unexplored thread interleavings, SEGFUZZ proposes
a mutation approach on observed interleaving segments that are
recorded in interleaving segment coverage. This is achieved
by changing the interleaving orders of instructions in each
segment. This approach allows SEGFUZZ to proactively infer
which instruction orders are possible before running them,
enabling it to determine the next interleavings to be tested.
Furthermore, SEGFUZZ mutates as many segments as possible
to generate unexplored thread interleavings from the mutated
segments, which helps to navigate the search space of thread
interleavings more quickly

We implement SEGFUZZ across various software layers. We
run SEGFUZZ against the latest version of the Linux kernel
(ranging from 5.19-rc2 to 6.2), and find new 21 concurrency
bugs all of which exhibits harmful behaviors such as memory
corruption, task hangs, or assertion violations. We emphasize
that all concurrency bugs found by SEGFUZZ were lurking
in subsystems where Syzkaller [20] has been testing for
several years, which demonstrates the usefulness of SEGFUZZ
in discovering concurrency bugs. To quantify the efficiency
of SEGFUZZ, we experimentally compare SEGFUZZ against
the state-of-the-art techniques, Snowboard and KRACE, and
demonstrate that SEGFUZZ discovers concurrency bugs more
quickly (4.1× on average) than previous works.

We describe our contributions in three folds:
• Interleaving segment coverage: Based on the idea of

segmentizing thread interleaving, we propose interleaving
segment coverage, which encodes interleavings of multiple
instructions, and provides solid clues for a fuzzer to track
the progress of exploring thread interleavings.

• Mutation-based interleaving exploration: Unlike the ran-
dom or simple heuristic exploration of thread interleavings
(as in most previous approaches), we propose the mutation-
based interleaving exploration, which strategically and
quickly explores the search space of thread interleavings.

• Practical impact: We discovered new 21 harmful con-
currency bugs in recent Linux kernels, which have been
extensively tested before, demonstrating the practicality
of SEGFUZZ.

II. BACKGROUND

A. (Conventional) Kernel Fuzzing

Throughout decades, a number of fuzzing approaches [20,
22, 33, 35, 36, 68, 75, 89] have been proposed to discover
vulnerabilities in the kernel. These approaches, specifically

coverage-guided fuzzing, execute a large number of random
inputs (i.e., sequences of system calls) while a code coverage
metric (e.g., branch coverage) tracks the execution path that
each input explores. Although conventional fuzzing techniques
have proven useful in large system software, they primarily
focus on the sequential aspect of execution, which relates to the
execution path of a single thread and do not adequately consider
the concurrent aspect, which involves thread interleaving among
threads. As a consequence, conventional fuzzing is limited in
discovering concurrency bugs such as race conditions, data
races, and deadlocks [12, 77].

B. Concurrency Fuzzing

Recently, several approaches [10, 17, 28, 30, 88] have been
proposed to consider both sequential and concurrent aspects
of the kernel execution into fuzzing. Concurrency fuzzers
repeatedly execute a multi-thread input (e.g., a multi-threaded
system call sequence) while controlling thread scheduling and
tracking unique behaviors of thread interleavings.
Thread interleaving exploration. Unlike conventional fuzzers,
concurrency fuzzers consider thread interleaving is another
input domain that a fuzzer needs to explore. To explore
diverse thread interleavings, concurrency fuzzers adopt various
thread interleaving exploration schemes. For instance, at every
iteration, Razzer [28] and Snowboard [17] selects a single pair
of instructions, and determines and enforces their execution
order. Whereas, KRACE [88] randomly schedules instructions,
and Conzzer [30] designates two functions and run them
concurrently. During runtime, concurrency fuzzing overrides the
kernel’s scheduler, and controls thread scheduling as desired.
Interleaving coverage metric. As KRACE [88] reveals, code
coverage metrics (e.g., branch coverage) are not enough to
capture unique behaviors of thread interleavings, because code
coverage metrics only track behaviors in a single thread without
paying attention to thread interleavings. To capture unique
behaviors of thread interleavings, a few concurrency fuzzers [30,
88] come up with interleaving coverage metrics, which track the
execution order of concurrent events between threads, ranging
from a finer-granularity (e.g., instruction [88]) to a coarser-
granularity (e.g., function [30]). Concurrency fuzzers utilize
interleaving coverage when determining if thread interleavings
of a multi-thread input needs to be further tested.

III. MOTIVATION

We first study how concurrency bugs manifest depending on
thread interleaving through a real-world bug example. Then,
we identify design objectives to discover kernel concurrency
bugs efficiently and discuss limitations in prior work.
Manifestation of concurrency bugs. In Figure 1, an unini-
tialized access bug may manifest when two system calls are
executed concurrently: sendmsg(), and setsockopt(). Let us
assume inet->hdrincl is initially 1. During the execution of
sendmsg(), thread A reads a value of inet->hdrincl twice
at A2 and A4, which may be intervened in the middle by another
thread (i.e., thread B). In that case, if B1 is executed between

2

 /* In raw_sendmsg() */
 struct raw_frag_vec rfv;

 if (inet->hdrincl == 0)
 initialize_rfv(&rfv);

 if (inet->hdrincl == 0)
 ip_append_data(..., &rfv, ...);

 sk->owned = 1;

 /* In do_ip_setsockopt() */

 inet->hdrincl = 0;

 sk->owned = 0;

A1

A2
A3

A4
A5

A6

B1

B2

Thread A - sendmsg() Thread B - setsockopt()

Initial value: inet->hdrincl = 1;

Fig. 1: Simplified code snippet of CVE-2017-17712. If B1 is executed
between A2 and A4, concurrent accesses on inet->hdrincl leads to
uninitialized stack pointer usage on rfv, and an attacker may gain
root privileges through a dedicated attack technique [47].

A2 and A4, thread A reads different values of inet->hdrincl
at A2 and A4, causing uninitialized access to rfv (e.g., A5).
Observation 1: Interleaving of multiple memory accesses.
This example demonstrates that a specific interleaving of
multiple instructions is necessary to cause a concurrency
bug. In the example of Figure 1, three memory accesses are
interleaved, which eventually causes the uninitialized access
bug. First, A2 should be executed before B1 (i.e., A2⇒ B11)
to make thread A not initialize rfv. Second, B1 should
be executed before A4 (i.e., B1 ⇒ A4) to make thread A
dereference uninitialized rfv while other memory accesses
do not contribute to the bug. Therefore, to trigger the kernel
concurrency bug, a fuzzer must consider interleavings of the
three memory accesses, e.g., (A2⇒ B1⇒ A4).
Design goal 1: Informative interleaving coverage. The
observation gives an insight of how to define interleaving
coverage metric. When discovering the uninitialized access bug,
an interleaving coverage metric should distinguish different
interleavings of multiple memory accesses. For example, (B1⇒
A2 ⇒ A4) (i.e., Figure 2-(a)) and (A2 ⇒ B1 ⇒ A4) (i.e.,
Figure 2-(b)) should be distinguished, and thus, interleaving
coverage should not be saturated until (A2 ⇒ B1 ⇒ A4) is
executed. Otherwise, a fuzzer may think that there is no more
interesting thread interleaving in the multi-thread input after it
executes Figure 2-(a), and stop searching for new interleavings
in the input, missing the opportunity to find the concurrency
bug. However, it is crucial that how many instructions the
coverage metric consider to distinguish different interleavings.
If interleaving coverage metric tracks interleavings of too few
instructions (e.g., 2), it may miss interleavings that should be
tested. On the other hand, tracking interleavings of too many
instructions (e.g., thousands) cause high search complexity
due to its large coverage space. Therefore, this work seeks a
balancing point in the bug-finding capability and the search
complexity when defining an interleaving coverage metric.
Observation 2: Feedback from explored executions. We find
that even if an explored execution does not cause a concurrency
bug, it provides useful feedback to guide what interleavings
should be further explored. In the example of Figure 1, let us
assume a fuzzer executes the two system calls sequentially such
that thread B executes all instructions followed by the execution

1In this paper, X⇒ Y denotes that X is executed before Y

if (inet->hdrincl == 0)

if (inet->hdrincl == 0)

inet->hdrincl = 0;
B1

A2

A4
if (inet->hdrincl == 0)

if (inet->hdrincl == 0)

inet->hdrincl = 0;
B1

A2

A4

(a) (b)

Thread A Thread B Thread A Thread B

Fig. 2: Two thread interleavings between thread A and thread B
described in Figure 1. The uninitialized access bug manifests only in
(b). We omit bug-irrelevant memory accesses (i.e., A6 and B2).

of thread A (i.e., Figure 2-(a)). In the explored execution, a
fuzzer observes the three instructions, B1, A2, and A4, are
executed in the order of (B1 ⇒ A2 ⇒ A4) and they access
the same memory object (i.e., inet->hdrincl). From this
execution, one can easily imagine a new interleaving of these
three instructions by changing the execution order of B1 and
A2, resulting in Figure 2-(b). The speculative interleaving is
what exactly we are looking for; it is the offending interleaving
causing the uninitialized access bug, e.g., (A2 ⇒ B1 ⇒ A4),
and, if executed, the interleaving triggers the bug.
Design goal 2: Speculative interleaving exploration. The
observation gives a direction that how a fuzzer should explore
the search space using a coverage metric. If interleaving
coverage tracks that (B1 ⇒ A2 ⇒ A4) is explored before,
a fuzzer can utilize interleaving coverage as feedback to infer
unexplored thread interleavings (e.g., A2 ⇒ B1 ⇒ A4). This
allows a systematic way to explore the search space rather
than performing randomized or heuristic-based exploration
pervasively used in previous approaches [7, 10, 14, 88].
Considering concurrency bugs often manifest with a thread
interleaving that rarely happen [38], the systematic interleaving
exploration boosts up the concurrency bug discovery, as a
fuzzer directly executes unexplored thread interleavings instead
of executing random interleavings thousands of times.

A. Limitation of prior approaches

Although prior approaches achieve their own successes, we
find that their interleaving coverage metrics and interleaving
exploration methods do not satisfy Design goal 1 and 2.
Less informative interleaving coverage. We find that
previously proposed interleaving coverage metrics are limited
in distinguishing two interleavings in Figure 2. Thus, they do
not satisfy Design goal 1. For example, let us suppose we adopt
alias coverage [88], which tracks interleaving orders of two
instructions. Alias coverage determines an interleaved execution
X exposes a new behavior if X contains an unexplored directed-
instruction pair IW → IR, where IR reads a value written by
IW . Assuming Figure 2-(a) is executed first, alias coverage
identifies Figure 2-(a) exposes new behaviors when it sees two
unexplored directed-instruction pair: (B1→ A2) and (B1→ A4).
However, according to alias coverage, Figure 2-(b), which
causes the uninitialized access bug, does not exhibit any new
coverage because (B1→ A4) is already explored in Figure 2-
(a). Therefore, alias coverage may make the wrong decision

3

about whether a fuzzer needs to run these two system calls
more, misleading a fuzzer to de-prioritize a multi-thread input
in which a concurrency bug resides. In evaluation, we quantify
the limitation in Table III. Likewise, concurrent call pair
coverage [30] also suffers from distinguishing these two thread
interleavings; These two interleavings take place in the same
functions (i.e., raw_sendmsg() and do_ip_setsockopt()),
while concurrent call pair tracks a concurrently-executed
function pair without being aware of fine-grained interleavings
of instructions within functions.
Ineffective interleaving exploration. Stemming from the
aforementioned limitations in coverage, existing thread inter-
leaving exploration methods do not efficiently explore the
search space of thread interleaving. Specifically, Razzer [28]
and Snowboard [17] are coverage-oblivious. They do not
make use of any interleaving coverage and perform their
heuristic-based interleaving exploration. KRACE [88] randomly
schedules instructions at every iteration without considering
what thread interleavings are explored before. KRACE utilizes
its own interleaving coverage only when deciding whether it
runs a given multi-thread input more. Whereas Conzzer [30]
designates two functions and run them concurrently, but it still
leaves instructions’ interleaving uncontrolled and scheduled
randomly. In summary, existing approaches do not systemat-
ically search for thread interleavings, and execute redundant
thread interleavings.

IV. EXPLORING THREAD INTERLEAVING SPACE

This work focuses on how to efficiently explore the vast
search space of thread interleavings when a multi-thread input
(e.g., sendmsg() and setsockopt() in Figure 1) is given.
Our approach utilizes an explored thread interleaving as a seed
interleaving (e.g., Figure 3-(a)). With the seed interleaving, a
fuzzer explores thread interleavings (e.g., Figure 6-(c)) of the
given input in the following three steps:

1) Decomposing the explored thread interleaving into seg-
ments containing a small number of instructions.

2) Mutating interleavings within segments to generate unex-
plored interleavings for each segment.

3) Recomposing mutated segments into whole interleaving
to determine how to schedule instructions in future.

In this section, we first explain our key intuition behind
decomposing explored interleavings into interleaving seg-
ments (§IV-A). Then, we propose a novel interleaving coverage
metric based on decomposed interleaving segments (i.e., step
1) to satisfy Design goal 1 (§IV-B). Lastly, we explain how to
mutate (i.e., step 2) and recompose (i.e., step 3) interleaving
segments to explore thread interleavings to satisfy Design goal
2 (§IV-C).

A. Key Idea: Segmentizing thread interleaving

When fuzzing concurrency bugs with an interleaving cover-
age metric, the fundamental challenge is the large search space,
because testing multiple memory accesses increases the search
space exponentially. Therefore, this work seeks to strike the

inet->hdrincl = 0;

inet->hdrincl = 0;if (inet->hdrincl == 0)
A6

B2

B1

A2

A4

Thread A Thread B

(a) (b)

inet->hdrincl = 0;

if (inet->hdrincl == 0)

B1
A2

if (inet->hdrincl == 0)

A4
if (inet->hdrincl == 0)

B1
A4

if (inet->hdrincl == 0)
A6

B2

inet->hdrincl = 0;
B1

A2
if (inet->hdrincl == 0)
A6

B2

Segment #1

Segment #2 Segment #3

Fig. 3: (a) A thread interleaving example of Figure 1, and (b)
interleaving segments contained in (a). Note that red circles correspond
to instructions involved in triggering the uninitialized access bug.

balance in the trade-off between the bug-finding capability and
the search complexity.
Segmentizing thread interleaving. To reduce the search com-
plexity, we take the classical wisdom of problem decomposition,
where the complexity of a problem exponentially decreases as
the problem size decreases. Our key strategy is decomposing the
search space into small sub-spaces, called interleaving segments.
Interleaving segments represent interleavings of a small number
of instructions accessing shared memory objects. To define the
size (i.e., the number of instructions) of an interleaving segment,
we use the observation from an extensive survey [49] in which
92.4% (97 out of 105) of concurrency bugs manifest due to
the execution order of at most four memory accesses referring
to shared memory objects. We confirm that the observation is
still valid in recent Linux kernels. We collect 15 recent patches
to fix kernel concurrency bugs, and check how many memory
accesses are involved when triggering concurrency bugs fixed
by these patches. Unsurprisingly, 14 concurrency bugs among
them were caused by at most four memory accesses, while
only 6 were caused by at most two memory accesses.

This finding implies that all other memory accesses beyond
four accesses and their execution orders do not meaningfully
affect manifestation of a concurrency bug. It is also applied
to the example of Figure 1. The uninitialized access bug is
triggered by the execution order of three memory accesses (e.g.,
A2, A4 and B1), while others (e.g., A6 and B2) are irrelevant
to the manifestation of the concurrency bug. Following the
observation, we confine the size of an interleaving segment
to contain at most four memory-accessing instructions, which
makes the problem of defining a coverage metric tractable
while maintaining a strong bug-finding capability.
Example of interleaving segments. Figure 3 illustrates
interleaving segments from the single execution of two system
calls, where the execution scenario is represented in Figure 3-
(a). Then, interleaving segments described in Figure 3-(b)
represent a part of its thread interleaving, comprised by at
most four instructions. For example, Segment #1 represents
an interleaving of three instructions B1, A2, and A4, stating that
B1 is executed before A2 and A4. Similarly, Segment #2 and
Segment #3 describe interleavings of (B1, A2, A6, and B2),
and (B1, A4, A6, and B2) respectively. How to build segments
is described in §IV-B.

4

Benefits of segmentizing thread interleaving. Segmentiz-
ing thread interleavings provides two benefits to a fuzzer.
First, when defining an interleaving coverage metric, tracking
explored interleavings in each segment gives a befitting
guidance to determine whether a fuzzer further explores thread
interleavings or not. Because most concurrency bugs manifest
depending on interleavings of at most four memory accesses,
if a fuzzer explores all possible interleavings for each detected
segment, it is unlikely that a fuzzer misses a concurrency
bug. Accordingly, interleavings in each segment can act as an
interleaving coverage metric, satisfying Design goal 1.

Second, explored interleaving segments can be used to sys-
tematically search for interleavings in next iterations. Since each
interleaving segment contains only a small number of memory
accesses, a fuzzer can speculatively creates new interleavings
from explored interleavings. Taking an example of Segment
#1 in Figure 3, besides execution order (B1 ⇒ A2 ⇒ A4)
(represented in Segment #1), a fuzzer easily rearranges the
three instructions to speculate unexplored execution orders of
these instructions such as (A2 ⇒ B1 ⇒ A4) which causes
the uninitialized access bug if executed. Therefore, instead of
doing a randomized search (as in most prior approaches), if a
fuzzer figures out which of the enumerated interleavings have
not been explored, a fuzzer can strategically explore the search
space with speculative interleavings, satisfying Design goal 2.

B. Interleaving Segment Coverage

As discussed, we decompose explored thread interleavings
into interleaving segments. We first represent an explored thread
interleaving as a directed acyclic graph (DAG). Then, we
compute subgraphs of the DAG called segment graphs, each
of which represents an interleaving segment. Using a set of
segment graphs, we propose a novel interleaving coverage
metric called interleaving segment coverage. Interleaving
segment coverage is a collection of explored segment graphs,
designed to track interleavings within interleaving segments.
Graph representation of thread interleaving. In the
representation of DAG, a vertex represents a memory-accessing
instruction, and an edge represents an execution ordering
between two memory-accessing instructions. There are two
types of edges, program-order edges and interleaving-order
edges. A program-order edge indicates an execution order
between two memory-accessing instruction in a single thread.
Whereas, an interleaving-order edge indicates the execution
order between two memory-accessing instructions that 1) access
the same shared data, 2) at least one of them is a write operation,
and 3) are executed by different threads.
Generating segment graphs. Figure 4 illustrates how a
fuzzer computes segment graphs from the execution example of
Figure 3-(a). First, the given thread interleaving is represented
as a DAG. Given that the execution in Figure 3-(a) involves
five memory accesses, a fuzzer generates five vertices, each of
which corresponds to a memory-accessing instruction as shown
in Figure 4-(a). Between these vertices, a fuzzer generates
edges to represent execution orderings. Specifically, program-
order edges represented as dotted edges (e.g., (A2⇒ A4)) are

Interleaving segment graph

A2
B1

A4

(a) (b)

Interleaving graph
A2

B1
A4

A6 B2

Fig. 4: (a) Graph representation of Figure 3-(a), and (b) segment
graph corresponding to Segment #1 in Figure 3-(b) (extracted from
the gray part of (a)). In each graph, dotted arrows represent program-
order edges, and solid arrows represent interleaving-order edges.

drawn to represent orderings in a single thread, such as “A2 is
executed before A4 in thread A”. Similarly, a fuzzer generates
interleaving-order edges represented as solid edges, expressing
interleaving orders between threads. For example, (B1⇒ A2)
represents interleaving between B1 and A2 that access the same
memory object (i.e., inet->hdrincl). As a result, a fuzzer
constructs a DAG to describe the whole thread interleaving.
We provide an algorithm of the above process in Appendix A1.

Afterwards, a fuzzer derives subgraphs, called segment
graphs, from the generated DAG, each of which includes
at most four vertices, which reflects the finding in the previous
survey [49], To compute a segment graph g, a fuzzer selects
two interleaving-order edges and vertices connected by these
two edges. In the example, assume a fuzzer selects (B1⇒ A2)
and (B1 ⇒ A4) from Figure 4-(a). As three vertices A2, A4,
and B1 are connected by these two edges, a segment graph g
contains the three vertices. Then, a fuzzer extracts all edges that
connect these vertices (i.e., the two interleaving-order edges
and remaining (A2⇒ A4)), and adds the edges into g, resulting
in Figure 4-(b). A detailed algorithm is given in Appendix A2.

Lastly, a fuzzer gathers segment graphs into a set G =
{g1, g2, ..., gn} (e.g., in Figure 3, three segment graphs corre-
sponding to Segment #1, #2, and #3), and uses G to track
interleaving segment coverage and to search unexplored thread
interleavings.
Tracking interleaving segment coverage. Our interleaving
coverage called interleaving segment coverage tracks segment
graphs. When a new segment graph is detected, it is added
to interleaving segment coverage. If new segment graphs are
continuously discovered in a multi-thread input, it indicates
that a fuzzer should invest more computing power to further
explore thread interleavings in the input. Otherwise, a fuzzer
can conclude that the input no longer reveals interesting inter-
leavings. In practice, however, interleaving segment coverage
contains a large number of segment graphs, which consumes
a large amount of memory even though the size of individual
segment graphs is small. To reduce memory consumption, we
hash each segment graph, so interleaving segment coverage
is stored as a universal hash table of segment graphs. We
adopt Merkel hashing [25, 51]. The key property of Merkel
hashing is reflecting directions of edges, so that a fuzzer
can distinguish different interleavings of the same vertices.
For example, four segment graphs described in Figure 5 are
hashed into different values. Due to space constraints, we

5

(d)

A2
B1

A4

(a)

A2
B1

A4

(b)

A2
B1

A4

(c)

A2
B1

A4

Explored segment graph Mutated segment graphs

Fig. 5: Example of interleaving segment mutation. In this example,
(a) represents an interleaving segment graph of Figure 4 while (b)
and (c) represent valid mutated segments of (a). Whereas (d) is an
invalid mutated segment of (a) because it contains a loop.

present how our graph hashing works in distinguishing different
interleavings of Figure 5 in Appendix B.

C. Mutation-based Interleaving Exploration

To explore the interleaving search space, we use detected
segment graphs. Specifically, a fuzzer mutates explored in-
terleaving segments into unexplored interleaving segments,
where mutated segments contain new interleavings to be tested.
Afterwards, a fuzzer recomposes mutated segments to obtain a
speculative interleaving, and generates scheduling points from
the recomposed interleaving.
Mutating interleaving segment. Suppose a set of explored
segment graphs G = {g1, g2, ..., gn} (e.g., segment graphs
corresponding to Figure 3-(b)) is given. For each gi ∈ G, a
fuzzer mutates gi by flipping the directions of its interleaving-
order edges, which implies changing the interleaving order of
an instruction pair that access the same memory object. Figure 5
illustrates how a fuzzer mutates a segment graph. Given an
explored segment graph described in Figure 5-(a), flipping
(B1⇒ A2) produces a segment graph described in Figure 5-(b).
Likewise, flipping both (B1⇒ A2) and (B1⇒ A4) in Figure 5-
(a) generates a different segment graph of Figure 5-(c), which
also represents another interleaving. Note that flipping only
(B1 ⇒ A4) of Figure 5-(a), however, generates an invalid
segment graph as shown in Figure 5-(d) because it creates a
loop B1 ⇒ A2 ⇒ A4 ⇒ B1. When a mutated segment graph
contains a loop, a fuzzer discards the segment. Note that a
fuzzer drops a mutated segment graph if it is already explored,
eliminating redundant executions. A fuzzer identifies such case
when the hash value of a newly mutated segment graph is
recorded in interleaving segment coverage. In such a way,
a fuzzer forms a set of unexplored mutated segment graphs
Gmutated (e.g., in Figure 3, mutated segment graphs derived
from Segment #1, #2, and #3), and recomposes them for the
next search.
Recomposing mutated segment graphs. One could take up a
single mutated segment graph in Gmutated for the next search.
However, it might require many search iterations because the
size of Gmutated could be large. Instead, we select multiple
mutated segment graphs, and recompose them to form a large
graph to test multiple mutated segments at one execution.

Segment #1*

Segment #2*

(a) (b)
A6 B2

B1A2

A2
B1

A4

(c)

if (inet->hdrincl == 0)

A6

B2

B1

A2

A4

Thread A Thread B

inet->hdrincl = 0;

if (inet->hdrincl == 0)
A2

B1
A4

A6 B2
Recompose Topological

 sort

Fig. 6: Example of recomposing mutated segment graphs into a
speculative thread interleaving, where (a) represents mutated segment
graphs, (b) represents a graph combining the two mutated segment
graphs, and (c) represents an instruction sequence to test Segment
#1* and #2*

Figure 6 demonstrates a sketch of recomposing steps. Sup-
pose, from Gmutated, we select two mutated segment graphs
called Segment #1* and #2* (i.e., Figure 6-(a)), which are
derived from Segment #1 and #2 in Figure 3-(b) respectively.
We can then merge the two segment graphs, resulting in a larger
graph containing all vertices and all edges from Segment #1*
and #2* as described in Figure 6-(b). This large graph describes
all interleavings from selected mutated segment graphs, and
later, is used to schedule instructions to test both Segment
#1* and #2* at once (i.e., Figure 6-(c)).

When recomposing mutated segment graphs, one important
constraint is that a loop should not be formed (i.e., Figure 6-
(b) should not contain a loop). To select multiple mutated
segment graphs without making a loop, a fuzzer starts with an
empty set of G∗

mutated. Then, a fuzzer iterates over all mutated
segment graphs g ∈ Gmutated. From g, a fuzzer tries to add
edges in g into G∗

mutated one by one and check it causes a
loop or not. If it does not form a loop, a fuzzer adds the
segment graph g into G∗

mutated. After iterating all mutated
segment graphs in Gmutated, a fuzzer obtains G∗

mutated which
is a subset of Gmutated without containing a loop. Then, a
fuzzer excludes selected mutated segment graphs from the set
of all mutated segment graphs (i.e., Gmutated = Gmutated \
G∗

mutated), and generates scheduling points to test mutated
interleaving segments contained in G∗

mutated. We show this
process in Algorithm 3 in Appendix A3.
Generating scheduling points. As a final step, once G∗

mutated

(i.e., Figure 6-(b)) is obtained, a fuzzer creates scheduling
points, where each scheduling point describes an instruction on
which preemption should happen (including the end of each
system call) as well as the next thread to run. A fuzzer generates
scheduling points by conducting a topological sort [34] to
G∗

mutated, which generates an instruction sequence. Figure 6-(c)
shows the result of conducting the topological sort to Figure 6-
(b). As shown in the figure, the resulting instruction sequence
can be used to test merged mutated segments, i.e., Segment
#1* and #2*. In this instruction sequence, a fuzzer selects
scheduling points as A2, B2 and A6, and uses scheduling points
when enforcing thread scheduling as detailed in §V-C.

V. DESIGN OF SEGFUZZ

SEGFUZZ is a kernel concurrency fuzzer adopting inter-
leaving segment coverage (§IV-B) and the mutation-based

6

Single-thread fuzzing Multi-thread fuzzing

 r0 = socket()
 setsockopt(r0)
 sendmsg(r0)

Input
generation

Input
mutation

Execution

Memory
accesses

Schedule
generation

Input
transformation

Generator

Imt
Thread A Thread B

Executor

Generator

A2

B1

A4

Explored segments

A2
B1

A4

Execution

A2
B1

A4

Thread A Thread B

Ist

 r0 = socket()
 setsockopt() sendmsg(r0)

Memory
accesses

Interleaving
segment
coverage

Explored segments

Schedule

Executor

Branch
coverage

Fig. 7: An overview of SEGFUZZ’s architecture.

interleaving exploration (§IV-C). As shown in Figure 7,
SEGFUZZ consists of two stages of fuzzing. The first stage is a
single-thread fuzzing, which searches for execution paths using
branch coverage, and the second stage is a multi-thread fuzzing
to explore thread interleavings using interleaving segment
coverage. In both stages, SEGFUZZ traces timestamp-annotated
memory accesses executed by each system call, and the second
stage adopts a mechanism to control thread scheduling.

In the following, we provide the overall design of
SEGFUZZ (§V-A). Then, we describe the kernel instrumenta-
tion (§V-B) to trace timestamp-annotated memory accesses, and
the execution engine (§V-C) to control thread scheduling. Lastly,
we explain the implementation detail of SEGFUZZ (§V-D).

A. Two-stage Fuzzing

SEGFUZZ’s single-thread fuzzing (§V-A1) and multi-thread
fuzzing (§V-A2) consist of two components, an input generator
and an input executor. We explain each details in the following.

1) Single-thread fuzzing: In a single-thread fuzzing stage,
the single-thread generator produces a single-thread input
(referred as IST) in the form of a sequence of random system
calls, (S1, S2, ..., Sn). And then, the single-thread executor
runs IST to identify two system calls in IST that potentially
exhibit new interleaving segment coverage. If identified, IST

will be passed to the next stage, the multi-thread fuzzing.
Single-thread generator. Similar with a conventional fuzzing,
the single-thread generator constructs a single-threaded input
IST with two strategies, generation and mutation. When
using the generation strategy, SEGFUZZ randomly generates
a system call sequence based on well-formed system call
description grammar Syzlang [18], which describes templates
of available system calls including types of arguments, a range
of feasible values of each argument, and the type of a return
value. With Syzlang, SEGFUZZ produces a single-thread input
by repeatedly selecting a random system call and providing
reasonable arguments of the system call. The mutation strategy
is an alternative of the generation strategy. When using a
mutation strategy, SEGFUZZ picks up an already-generated
single-thread input, and modifies the single-thread input by
appending additional system calls, removing existing system
calls, or changing values of arguments of existing system calls.

Single-thread executor. Given IST from the single-thread
generator, the single-thread executor runs IST while tracing
basic blocks and timestamp-annotated memory accesses ex-
ecuted by each system call. After the execution is finished,
the single-thread executor computes branch coverage, and if
IST exposes new branch coverage that has not been explored,
SEGFUZZ keeps IST , and feeds it back to the single-thread
generator so that the single-thread generator further mutates
IST to find more branch coverage.

Moreover, the single-thread executor identifies a pair of
system calls in IST that potentially exposes new interleaving
segment coverage if executed concurrently. Specifically, for
each system call pair (Si, Sj) in IST , the single-thread executor
computes a set of explored segment graphs G with memory
accessed executed by Si and Sj (as described in §IV-B), and
checks if G contains new segment graphs that have not been
explored. If so, the single thread executor passes IST as well
as (Si, Sj) and G to the multi-thread fuzzing. The multi-thread
fuzzing will split IST into two system call sequences with the
purpose of running Si and Sj concurrently.

CVE-2017-17712 in single-thread fuzzing. To discover CVE-
2017-17712 demonstrated in Figure 1, let us assume the single-
thread generator produces IST as a sequence of three system
calls r0 = socket(), setsocktopt(r0), sendmsg(r0) as
described in Figure 7. Then, the single-thread executor runs
this IST , and collects memory accesses executed by two
system calls setsockopt(r0) and sendmsg(r0). Since these
memory accesses are annotated with timestamps, the single-
thread executor identifies that all memory accesses executed by
setsockopt(r0) are followed by memory accesses executed
by sendmsg(r0), and computes a set of segment graphs
G, which includes (B1 ⇒ A2 ⇒ A4) (i.e., Figure 2-(a)).
Assuming (B1⇒ A2⇒ A4) has been unseen before, SEGFUZZ
determines that it is worth exploring interleavings between the
two system calls. Thus, the single-thread executor passes IST

as well as the two system calls and G to the next stage.
2) Multi-thread fuzzing: After IST is passed with (Si, Sj)

and G, the multi-thread generator transforms IST to a multi-
thread input IMT . In addition, the multi-thread generator pro-
duces schedules, according to the mutation-based interleaving
exploration (§IV-C). The multi-thread executor then tests each
schedule of IMT with a support of the execution engine (§V-C),
and collects interleaving segment coverage (§IV-B).

Multi-thread generator. Given IST and (Si, Sj), the
multi-thread generator first produces IMT , which preserves
all system calls in IST , but executes Si and Sj concur-
rently. Specifically, assuming i < j, the multi-thread gen-
erator splits IST , which is a single sequcne of system calls
(S1, S2, ..., Si, ..., Sj , ..., Sn−1, Sn), into two sequences of sys-
tem calls, (S1, S2, ..., Si) and (Si+1, ...Sj , ..., Sn). Then, the
multi-thread executor runs the two system call sequences in
two different threads, while runs Si and Sj concurrently. A
detailed example is provided in Appendix C.

Also, the multi-thread generator repeatedly produces various
schedules. To generate schedules, the multi-thread generator

7

implements the mutation-based interleaving exploration method
detailed in §IV-C. Briefly explaining, given a set of explored
segment graphs G, the multi-thread generator mutates segment
graphs in G to derive a set of unexplored mutated segment
graphs Gmutated, and then selects a subset of Gmutated called
G∗

mutated to generate a schedule. The multi-thread executor
then runs IMT while enforcing the generated schedule.
Multi-thread executor. The multi-thread executor runs IMT

while enforcing a schedule generated by the multi-thread
generator. During the execution of IMT , the multi-thread
executor checks if the running thread interleaving causes a
harmful behavior (e.g., memory corruption or deadlock) with
a support from devloper tools such as lockdep [44], kernel
watchdog [46], and sanitizers [24, 41, 45, 73]. If these developer
tools detect that an abnormal behavior occurs in the kernel, the
multi-thread executor writes a report of the abnormal behavior
as well as IMT and the executed thread interleaving.

Otherwise, with memory accesses executed by Si and Sj ,
the multi-thread executor computes a set of executed segment
graphs G′, and probes for interleaving segment coverage as
described in §IV-B. In addition, the multi-thread executor feeds
G′ to the multi-thread generator, allowing the multi-thread
generator to further explore thread interleavings.
CVE-2017-17712 in multi-thread fuzzing. Once receiving
IST , the multi-thread generator transforms IST into IMT .
In this example, thread A executes two system calls, r0
= socket and setsockopt(r0), and thread B executes
one system call sendmsg(r0), while two system calls
setsockopt(r0) and sendmsg(r0) will be executed con-
currently (as described as IMT in Figure 7). Furthermore,
the multi-thread generator produces a schedule according to
the mutation-basd interleaving exploration. Given G including
(B1 ⇒ A2 ⇒ A4), the multi-thread generator produces a
mutated segment graph corresponding to (A2 ⇒ B2 ⇒ A4)
(refer Figure 5). Then, the multi-thread generator generates
a schedule to test (A2 ⇒ B1 ⇒ A4) (refer Figure 6). Lastly,
when the multi-thread executor runs IMT with the generated
schedule, the uninitialized access bug is triggered.

B. Kernel Instrumentation

SEGFUZZ requires to trace basic blocks (for computing
code coverage) and timestamp-annotated memory accesses (for
computing interleaving coverage) executed by each system call.
For this, SEGFUZZ incorporates a compiler pass that inserts
callback function calls 1) at the entry of each basic block,
and 2) before each instruction that accesses globally-visible
memory objects. At the entry of a basic block, the callback
function records the starting address of the basic block into
a per-thread memory region, which is shared between the
user space and the kernel space through mmap. Thus after a
thread executes a system call, the thread can identify executed
basic blocks by reading the memory region. Similar to the
case of basic block, at instructions that access globally-visible
memory objects, the callback function records five tuples (i.e.,
the address of the memory object, the instruction address, the
size and the type of the memory access, and the timestamp)

Thread A① Spawning
 threads
② Delivering
 a schedule

Thread B

Userspace fuzzer

Kernel

setsockopt()semdmsg()

③ Executing
 syscalls

hcall_sched(A2, 0)
hcall_sched(A6, 2)
hcall_ready()

hcall_sched(B2, 1)
hcall_ready()
setsockopt(r0)sendmsg(r0)

B2

A2

A4

BP

Hypercall
handler

Breakpoint
handler

②-1 Install
 breakpoints

Suspend
④-1 Suspend &
 resume
 execution

Resume

Execution engine

BP

B1

④ Performing
 preemption

Fig. 8: The workflow of the execution engine.

into another per-thread memory region, allowing a thread to
identifying memory accesses executed by a system call.

C. Execution Engine

The execution engine grants an ability to the fuzzer process
that it can control thread scheduling. It is implemented in the
hypervisor layer to be non-intrusive to the kernel execution.
Enforcing a schedule. To request the execution engine to
enforce a schedule, the fuzzer process sends a schedule through
hypercall interfaces before executing system calls. During the
execution, the execution engine suspends and resumes the
execution of system calls as described in the given schedule.

Figure 8 shows a workflow of the execution engine. At
the beginning, the fuzzer process spawns threads, where each
thread is assigned a system call and scheduling points (1 in
Figure 8). Then, each thread invokes hypercalls (i.e., hcall_-
sched()) to deliver scheduling points to the execution engine
(2). When the execution engine receives a scheduling point,
the execution engine installs a breakpoint on an instruction on
which the scheduling point refers (2 -1). It is worth noting
that hcall_sched() takes the order of scheduling points as a
second paramter. In this example, preemption will occur first on
A2, followed by B2 and A6 in order during the execution. After
delivering scheduling points, each thread calls hcall_ready(),
which sleeps until all threads call are ready, and after all threads
call hcall_ready(), the execution engine wakes them up, and
the threads start executing system calls (3). While executing
system calls, the execution engine keeps only one thread to
run. When the running thread reaches a scheduling point, the
execution engine performs preemption (4) by suspending the
running thread and resuming the next thread to run as specified
in the given schedule (4 -1).
Performing preemption. In order to perform preemption,
SEGFUZZ leverages the hardware breakpoint feature [27]
shipped in modern Intel CPU chipsets. During the execution,
the execution engine recognizes that the execution reaches a
scheduling point when a breakpoint is hit. When a thread hits
a breakpoint, the execution engine stores context information
(e.g., register values) of the running thread in the hypervisor’s
memory, and changes the program counter of the thread to
an infinite loop called a trampoline. In the trampoline, the

8

thread keeps calling a kernel API cond_resched() which
yields a CPU. As a consequence, the thread is suspended in the
trampoline without making a progress. To resume the suspended
thread, the execution engine restores registers including a
program counter with the values stored when the thread was
suspended, and then the thread can continue its execution.
Restriction of hardware breakpoint. While SEGFUZZ often
needs more than four scheduling points, the number of hardware
breakpoints that can be installed simultaneously is limited
(e.g., four in Intel CPU chipsets). SEGFUZZ overcomes this
restriction by leveraging the fact that scheduling points are
ordered. Specifically, the execution engine installs breakpoints
on first four scheduling points, and when an installed breakpoint
is hit, the execution engine moves a breakpoint onto the next
scheduling point.
Handling missing scheduling points. During the execution,
instructions on which scheduling points install might not be
executed, for example, if the control flow changes due to kernel
internal states. In such case, the execution engine does not
mess up the order of scheduling points. For example, when
executing a schedule of Figure 8, it is possible that thread A
may skip A2, and hit a breakpoint installed on A6. If so, the
execution engine ignores all scheduling points before A6 (i.e.,
A2 and B2), and keeps enforcing a schedule after A6.
Virtual Machine Instrospection (VMI). The execution engine
introspects the target kernel for two reasons. First, because a
breakpoint does not distinguish which thread hits the breakpoint,
the execution engine needs to determine whether the breakpoint
is hit by a thread of the fuzzer process, or by an irrelevant
thread. Second, when a running thread tries to acquire a lock,
the execution engine inspects whether the lock has been held
by a suspended thread, which may cause the unexpected block.
While the VMI is crucial to properly control thread scheduling,
we leave details of our VMI in Appendix D.

D. Implementation

We implement SEGFUZZ in various software layers as
follows: The SEGFUZZ’s two-stage fuzzing (§V-A) is imple-
mented based on Syzkaller [20], with 3334 2 LoC in GoLang
and 341 LoC in C++. The kernel instrumentation (§V-B) is im-
plemented in two parts, a compiler pass and callback functions.
The compiler pass is implemented on the LLVM compiler suite
12.0.1 [69] with 323 LoC in C++, and, the callback functions
are implemented in the Linux kernel source tree with 265
LoC in C. Lastly, the execution engine (§V-C) is implemented
on QEMU 6.0.0 with 1662 LoC in C, and leverages KVM
(Kernel-based Virtual Machine) to take advantage of hardware
acceleration. We have open-sourced the implementation of
SEGFUZZ in https://github.com/casys-kaist/segfuzz.

VI. EVALUATION

We demonstrate the usefulness of SEGFUZZ by 1) pro-
viding newly found concurrency bugs in the recent Linux

2We use scc [6] and sloccount [85] to measure LoC of GO and C, C++
respectively.

kernels (§VI-A), 2) quantitatively comparing SEGFUZZ against
prior concurrency fuzzing techniques (§VI-B), and 3) analyzing
performance characteristics of SEGFUZZ (§VI-C).

A. Finding Real-world Concurrency Bugs

Experimental setup. We run SEGFUZZ on a two-socket
machine equipped with Intel(R) Xeon(R) CPU E5-2683 v4
@ 2.10GHz (32 physical cores) and 512 GB of RAM. We
run Ubuntu Server 20.04.4 LTS on Linux 5.4.143 as a host
operating system. During our experiments, we launch 32 virtual
machines (VMs) where each VM is equipped with four vCPUs
and 8 GB memory. We use a Linux kernel configuration used
by Syzkaller [20] so that Syzkaller and SEGFUZZ search
the same kernel modules/subsystems. The kernel versions we
run on SEGFUZZ ranges from 5.19-rc2 to 6.2.
Newly found concurrency bugs. During our evaluation period,
SEGFUZZ discovers 83 unique crash titles including ones that
Syzkaller also finds. Among them, 21 are newly identified
as harmful concurrency bugs, and three (i.e., #2, #3, and #5)
were reported by Syzkaller after few month later. The result
is summarized in Table I. This result shows that SEGFUZZ
is able to find bugs across the entire kernel layers from
specific device drivers (e.g., #1, and #3) to various network
subsystems (e.g., #8, #12, and #21). Unlike KRACE, which
focuses on kernel file systems, SEGFUZZ is not tailored to
specific subsystems. SEGFUZZ discovers not only less-harmful
bugs such as warnings (e.g., #12) but also critical bugs such
as memory corruptions (e.g., #2, #10, and #13). Interestingly,
based on the root cause confirmation by kernel developers, we
find that some bugs has been in the kernel for a long time, but
are never identified by other fuzzing systems. #10 (i.e., KASAN:
use-after-free Read in slip_ioctl) was present in the
kernel since 2013, and #11 (i.e., general protection
fault in add_wait_queue) was present since 2011. These
cases demonstrate that SEGFUZZ is capable of discovering
hard-to-find concurrency bugs.

B. Comparison with prior approaches

We compare SEGFUZZ against prior approaches to answer
the following questions: 1) is interleaving segment cover-
age (§IV-B) informative and helpful in discovering concurrency
bugs? (Design goal 1 in §III) (§VI-B1), and 2) how efficient
is the mutation-based interleaving exploration (§IV-C) in
exploring the search space of thread interleavings? (Design
goal 2) (§VI-B2). To evaluate the points, we collect well-known
concurrency bugs as a test set, and then compare SEGFUZZ
and prior approaches on the test set.
Bug selection. Table II shows concurrency bugs for the
comparison study. Our concurrency bug selection criteria are
1) concurrency bugs are studied in previous studies [17, 28,
38, 68, 86], and 2) we can find patches fixing concurrency
bugs so that we can inject them into a kernel. We exclude two
Android-specific concurrency bugs (i.e., CVE-2019-1999 [59]
and CVE-2019-2025 [60]) evaluated in ExpRace [38]. To run
tests on a consistent environment, we use the same kernel of

9

 https://github.com/casys-kaist/segfuzz

ID Kernel Version Subsystem Crash Type Crash Summary Status

#1 5.19-rc2 drivers/misc/vmw_vmci general protection fault general protection fault in vmci_host_poll being fixed
#2 5.19-rc2 net/caif use-after-free access KASAN: use-after-free Read in cfusbl_device_notify fixed
#3 5.19-rc2 drivers/net/can/slcan use-after-free access KASAN: use-after-free Read in slcan_receive_buf fixed
#4 5.19-rc2 net/netfilter general protection fault general protection fault in cttimeout_net_exit fixed
#5 5.19-rc2 kernel use-after-free access KASAN: use-after-free Read in raw_notifier_call_chain fixed
#6 5.19-rc3 kernel/trace task hung INFO: task hung in blk_trace_remove confirmed
#7 5.19-rc3 kernel/trace task hung INFO: task hung in blk_trace_setup confirmed
#8 5.19-rc3 net/key assertion violation kernel BUG in pfkey_send_acquire reported
#9 6.0-rc7 kernel/sched general protection fault general protection fault in add_wait_queue_exclusive being fixed

#10 6.0-rc7 drivers/net/slip use-after-free access KASAN: use-after-free Read in slip_ioctl confirmed
#11 6.0-rc7 kernel/sched general protection fault general protection fault in add_wait_queue being fixed
#12 6.0-rc7 net/can warning WARNING in isotp_tx_timer_handler being fixed
#13 6.0-rc7 sound/core/oss use-after-free access KASAN: use-after-free Read in snd_pcm_plug_read_transfer reported
#14 6.0-rc7 mm assertion violation Kernel BUG in find_lock_entries reported
#15 6.0-rc7 net/ipv4 use-after-free access KASAN: use-after-free Read in tcp_write_timer_handler confirmed
#16 6.2-rc1 kernel/events use-after-free access KASAN: use-after-free Read in event_sched_out fixed
#17 6.2-rc1 drivers/video/fbdev general protection fault general protection fault in soft_cursor reported
#18 6.2-rc1 kernel/events use-after-free access KASAN: use-after-free Read in perf_event_groups_insert fixed
#19 6.2-rc7 drivers/usb/core invalid page fault BUG: unable to handle kernel paging request in usb_start_wait_urb reported
#20 6.2-rc7 fs/kernfs invalid page fault BUG: unable to handle kernel paging request in __kernfs_new_node reported
#21 6.2 net/ipv4 general protection fault general protection fault in raw_seq_start being fixed

TABLE I: List of concurrency bugs newly discovered by SEGFUZZ. In the Status column, “being fixed” means that a patch is submitted
but has not been merged into the mainline kernel at the time of writing.

ID Vulnerability Subsystem Crash Type Reference

Vul #1 CVE-2016-8655 [52] net/packet use-after-free access [28, 38]
Vul #2 CVE-2017-2636 [55] drivers/tty double-free [28, 38]
Vul #3 CVE-2017-7533 [56] fs/notify slab-out-of-bound acc. [38, 68]
Vul #4 CVE-2017-17712 [54] net/ipv4 uninitialized access [28, 38]
Vul #5 CVE-2017-15649 [53] net/packet use-after-free access [86]
Vul #6 CVE-2018-12232 [57] net NULL dereference [68]
Vul #7 CVE-2019-6974 [61] virt/kvm use-after-free access [38]
Vul #8 CVE-2019-11486 [58] drivers/tty use-after-free access [38]
Vul #9 69e16d01d1de [16] net/l2tp NULL dereference [17]

TABLE II: Known concurrency bugs that are studied in previous
works, MoonShine [68], Razzer [28], ExpRace [38], FUZE [86], and
Snowboard [17].

version v6.0-rc7 and make the bugs available by rolling back
patches that addressed concurrency bugs.
Comparison method. We measure the number of executions
and the elapsed time required to discover each concurrency bug.
However, these metrics heavily depend on initial seeds and the
process of mutating multi-threaded input seeds, which may vary
across evaluations and disturb a fair fuzzing evaluation [37].
To confine such noisy randomness, we manually provide a
multi-threaded input as well as a pair of system calls that
triggers each concurrency bug. Therefore, we evenly compare
how accurately and quickly fuzzers can discover concurrency
bugs when the same bug-triggering inputs are given. We limit
the number of executions to 10000 for each measurement,
which is large enough for our evaluation.

1) Comparison of interleaving coverage metrics: We imple-
ment a different coverage metric in SEGFUZZ and compare the
version with SEGFUZZ using interleaving segment coverage.
Comparison target. We choose alias coverage as a comparison
target since it is an interleaving coverage metric most relevant to
interleaving segment coverage (i.e., both describe interleavings
of instructions). However, alias coverage is implemented only
for file systems, so we emulate alias coverage in SEGFUZZ
by limiting the number of vertices of each segment graph
to two. Hence, like alias coverage, interleaving segments of
size 2 contains a single interleaving between two instructions
where at least one of them is a write instruction. Using the

ID Trials Avg.
#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 exec.

Vul #1 [52] ✓ ✓ - ✓ - - ✓ - ✓ ✓ 9.4
Vul #2 [55] - - - - - - - - - - 8.4
Vul #3 [56] - - - - - - - - - - 32
Vul #4 [54] - - - - - - - - - - 21.5
Vul #5 [53] ✓ - ✓ ✓ ✓ - ✓ ✓ ✓ - 12
Vul #6 [57] - - - - - - - - - - 16.0
Vul #7 [61] - - - - - - - - - - 10.4
Vul #8 [58] - - - - - - - - - - 6
Vul #9 [16] ✓ ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ 9.3

TABLE III: Trade-off between the bug-finding capability and
the search complexity. Out of 10 trials using the less-informative
interleaving coverage metric, ✓ indicates that a bug is triggered,
while - indicates that a bug is not triggered. The Avg. exec. column
denotes that the average number of execution until the saturation of
interleaving coverage.

emulated alias coverage, we run SEGFUZZ to see whether each
concurrency bug is triggered until the emulated alias coverage
is saturated.
Result. Table III shows the result. When using emulated alias
coverage, many (six ouf of nine) concurrency bugs are not
discovered even if emulated alias coverage is completely satu-
rated. Whereas using interleaving segment coverage, SEGFUZZ
can discover all listed concurrency bugs before the saturation
of interleaving segment coverage in every trial. The example
of CVE-2017-17712 described in §III (i.e., Figure 1) explains
why such results come out; emulated alias coverage considers
only interleavings between two instructions, which is not
sufficient to execute the offending interleaving containing
multiple instructions. We manually identify that all listed
concurrency bugs are caused by thread interleavings of three
or four instructions, which supports our design choice on the
size of interleaving segments (§IV-A). On the other hand,
alias coverage is saturated quickly. With our mutation-based
interleaving exploration, it is saturated after 13.9 executions
on average, ranging from 6 to 32.
Bug-finding capability and search complexity trade-off. The
result indicates the trade-off between the bug-finding capability
and the search complexity; Alias coverage shows the lower

10

 Vul #1 Vul #2 Vul #3 Vul #4 Vul #5 Vul #6 Vul #7 Vul #8 Vul #9
0

100

200

300

of
 e

xe
cu

tio
ns

6 22 30
17 38

12

81

3
41

12
58

191

79

31
8

229

37

156

96

9

53

1296
342

14

>10000
494 >10000

270
721

274 1757
1852

78

>10000
>10000

>10000

SegFuzz Snowboard KRACE Naive

 Vul #1 Vul #2 Vul #3 Vul #4 Vul #5 Vul #6 Vul #7 Vul #8 Vul #9
0

50

100

150

200

El
ap

se
d

tim
e

(s
)

2 7 16
5 13

3

52

1
23

4
26

58

22
10

2

139

16

61
44

4
24

359

100

4

>5720
222 >3410

85

377

83

474 460

29

>5578
>3810

>3358

Fig. 9: The number of executions and the elapsed time (secs) required for each fuzzer to discover given concurrency bugs. The Naive
column indicates the kernel’s scheduler (i.e., no thread scheduling control applied).

search complexity while it also shows the weaker bug-finding
capability. Whereas, interleaving segment coverage shows the
stronger bug-finding capability but it sets the larger search
space than the alias coverage, causing higher search complexity.
Nevertheless, we claim that its search complexity is still
tractable to perform the mutation-based interleaving exploration,
and we validate our claim in the next evaluation (§VI-B2).

2) Efficiency of mutation-based interleaving exploration:
One could argue that even if interleaving segment coverage is
informative to describe offending thread interleavings, its search
space is too large to explore. However, it is tractable to run
the mutation-based interleaving exploration using interleaving
segment coverage. To demonstrate this, we compare the
mutation-based interleaving exploration (§IV-C) against various
interleaving exploration methods proposed in prior approaches.
Comparison target. We compare SEGFUZZ to state-of-the-art
kernel concurrency fuzzers, Snowboard [17], and KRACE [88].
Unfortunately, we cannot directly run Snowboard and KRACE
for the comparison study; KRACE is implemented only
for file systems, and Snowboard runs based on the binary
translation (i.e., TCG) of QEMU without utilizing the hardware
acceleration (i.e., KVM), and thus, its original implementation
is not suitable for the elapsed time comparison with SEGFUZZ.
Therefore, we implement their approaches on the multi-thread
fuzzing phase (§V-A2) of SEGFUZZ by applying 1) the random
delay injection scheme of KRACE, and 2) the enforcing-single-
interleaving-order scheme used by Snowboard. In addition to
them, we also compare with the kernel scheduler (i.e., no thread
scheduling control applied) as the naive baseline.
Discovering concurrency bugs. Figure 9 shows the compari-
son result when discovering concurrency bugs. In these figures,
SegFuzz, Snowboard, and KRACE display the number of
executions and the elapsed time taken and Naive corresponds
to the kernel scheduler without any thread scheduling control
enabled. In Naive, we identify the difficulty of discovering
varies from a bug to a bug. For example, CVE-2018-12232
appears as the easiest concurrency bug to discover since it can
be discovered within 78 executions even with the naive kernel
scheduler. On the other hand, the kernel scheduler fails to
discover three concurrency bugs, CVE-2019-6974, CVE-2019-
11486, and 69e16d01d1de within 10K times of executions.
Regardless of the varying difficulty, SEGFUZZ can discover
all of concurrency bugs within a short time. SEGFUZZ can
discover given concurrency bugs within just 26.8 runs (ranging

 Vul #1 Vul #2 Vul #3 Vul #4 Vul #5 Vul #6 Vul #7 Vul #90

500

1000

El
ap

se
d

tim
e

(s
)

64
8

388

22
133

37 109
64

247
152

947

69 156 218

1084

307313

186

474

218
145

705

1276

624748

1135
1459

894

283

1150 1650
>3107

Fig. 10: Elapsed time to exhaustively test given multi-threaded inputs
after applying patches that fix concurrency bugs.

from 3 to 81) and 13 seconds (ranging from 1 to 52) on average.
Whereas, Snowboard discovers concurrency bugs within 89
runs (ranging from 8 to 229 runs) and 37.5 seconds (ranging
from 2 to 139) on average, and KRACE discovers them, if
successful, within 329.1 runs (ranging from 9 to 1296) and
107 seconds (ranging from 4 to 359) on average. Moreover,
KRACE even suffers from discovering CVE-2019-6974 and
69e16d01d1de.
Exhaustively testing multi-threaded inputs. While Figure 9
shows that SEGFUZZ outperforms previous approaches when
discovering concurrency bugs within given multi-threaded
inputs, we wonder whether SEGFUZZ is also efficient when
exhaustively testing multi-threaded inputs until interleaving
segment coverage is saturated, but the testing does not cause
concurrency bugs. These are common cases when a fuzzer
tests inputs. To evaluate this, we re-apply all patches to fix
concurrency bugs in Table II and measure how much time is
required until saturating interleaving segment coverage of given
multi-threaded inputs. In this experiment, Vul #8 is excluded
because its patch simply disables the vulnerable subsystem.

Figure 10 shows the result. As shown in the figure, SEGFUZZ
demonstrates elapsed time that is 7.1 times faster than
Snowboard and 11.1 times faster than KRACE. While this
result compares each approach when testing a single multi-
threaded input, it is worth noting that the performance benefit
of SEGFUZZ is cumulative across long-running fuzz testing.
During fuzzing, a fuzzer needs to run a significant number
of multi-threaded inputs. For example, during our evaluation,
SEGFUZZ generates more than 60,000 inputs. As shown in
Figure 10, SEGFUZZ can save 298 seconds for testing a single
multi-threaded input on average compared to Snowboard, and
this save keeps accumulated as a fuzzer keeps running. In this
perspective, our evaluation demonstrates that SEGFUZZ has
remarkable benefits over other approaches.

11

0 20 40 60 80 100
Time (h)

0.0M

0.2M

0.4M

0.6M

0.8M

of
 b

ra
nc

he
s

Branch
Branch (Syzkaller) 0.0M

5.0M

10.0M

15.0M

20.0M

of

 in
te

rle
av

in
g

se
gm

en
tsInterleaving segment

Interleaving segment
(w/o scheduling control)

Fig. 11: Coverage growth of SEGFUZZ.

In summary, these analysis results confirm that the mutation-
based interleaving exploration exhibits superior performance
by quickly navigating the search space even if interleaving
segment coverage constructs more complex search space than
alias coverage.

C. Performance characteristics of SEGFUZZ

This section provides performance characteristics of
SEGFUZZ in coverage growth, fuzzing throughput, and per-
input overhead.
Coverage growth. Since coverage metrics are the paramount
performance metric of fuzzing, we measure the coverage
growth for both code coverage (i.e., the number of taken
branches) and interleaving coverage (i.e., the number of
observed interleaving segments) during 100 hours of fuzzing.
To see how much SEGFUZZ improves thread interleaving
exploration, we disable the thread scheduling control in
the multi-thread fuzzing phase of SEGFUZZ (i.e., random
thread schduling), and measure the interleaving coverage.
The result is described in a line denoted by Interleaving
segment w/o scheduling control in Figure 11. With the
thread scheduling control disabled, SEGFUZZ finds 29.1% less
interleaving segment coverage during the same period. To
confirm that this improvement comes from actual performance
benefits, we repeat the same experiment with 24 hours duration,
and measure the p-value using Mann-Whitney U test [3, 37, 67].
The p-value is 0.03, which is lower than a conventional
threshold of 0.05, indicating that the observed improvement is
likely caused by a the performance benefit of SEGFUZZ rather
than randomness. As a consequence, we can conclude that
our design choices significantly improve in exploring thread
interleavings.

In addition, since SEGFUZZ invests the computing power
to repeatedly execute a multi-threaded input, we expect that
SEGFUZZ might explore code coverage less than the baseline
Syzkaller. To see the difference of the code coverage
exploration in SEGFUZZ and Syzkaller, we measure code
coverage of Syzkaller and illustrate it as a line denoted by
Branch (Syzkaller) in Figure 11. As a result, SEGFUZZ
finds 3.2% less code coverage compared to the baseline
Syzkaller. This is a definitely downside of SEGFUZZ.
However, considering the huge benefit in exploring thread
interleavings, we still believe that this is marginal.

SEGFUZZ Syzkaller Syzkaller-memtrace

4.55 8.40 4.74

TABLE IV: Fuzzing throughput (# of exec/s) of SEGFUZZ
and Syzkaller. Syzkaller-memtrace indicates throughput of
Syzkaller with memory access tracing enabled.

Comp. overhead (§IV) Runtime overhead (§V)

Total Exec.
syscall

Tracking
coverage
(§IV-B)

Interleaving
search
(§IV-C)

Tracing
accesses
(§V-B)

Thread
scheduling
(§V-C)

267.2 107.6 8.9 17.2 90.7 42.8

TABLE V: Elapsed time (ms) for executing one multi-thread input.
We decompose the elapsed time into the system call execution (Exec.
syscall), SEGFUZZ’s computational overheads (Comp. overhead)
and runtime overhead (Runtime overhead).

Fuzzing throughput. All SEGFUZZ’s mechanisms provide
benefits in finding concurrency bugs with a cost of additional
overheads and throughput degradation. To comprehend the
trade-off, we measure the fuzzing throughput of SEGFUZZ
and compare it with the Syzkaller’s throughput. In order to
experiment in the same environment, we measure throughput
with an empty set of seed. Because both Syzkaller and
SEGFUZZ restart VMs after an hour of fuzzing, we measure
throughput in an hour of execution in order to eliminate noises
caused by, for example, VM rebooting or kernel crashes.

Table IV shows the result. SEGFUZZ shows the lower
throughput than Syzkaller. In particular, the SEGFUZZ’s
throughput is about 54% of the Syzkaller’s through-
put. To further understand why the SEGFUZZ’s through-
put is degraded, we additionally measure throughput of
Syzkaller while tracing memory accesses (through instru-
mentation described in §V-B), but not making use of it. As
shown in the Syzkaller-memtrace column in Table IV,
it shows the throughput similar to that of SEGFUZZ; the
Syzkaller-memtrace’s throughput is just 4.1% higher than
the throughput of SEGFUZZ. These results indicate that the
throughput of SEGFUZZ is mainly degraded by the heavy instru-
mentation to trace memory accesses. However, as KRACE [88]
states, it can be understandable at the cost for the high input
quality. In the fuzzer’s perspective, while tracking memory
accesses has negative impacts on throughput, it is important
to have a higher randomness for a fuzzer to execute more
interesting inputs (i.e., unexplored thread interleavings) to
discover concurrency bugs. The effectiveness of high input
quality is more pronounced in §VI-B2, showing SEGFUZZ can
discover concurrency bugs very quickly.

Per-input overhead. In SEGFUZZ, there are two types of
overheads for executing a multi-thread input, i.e., computational
overheads and runtime overheads. Specifically, computation
overheads are caused by tracking interleaving segment coverage
after executing the input (§IV-B), and calculating scheduling
points before executing the input (§IV-C). On the other
hand, runtime overheads are caused by tracing memory
accesses (§V-B) and controlling thread scheduling (§V-C). To
closely examine these overheads, we measure the elapsed time

12

for executing a single multi-thread input, and break down the
elapsed time into each overhead. For this measurement, we
run 10 thousands times and take an average.

Table V shows the result. When executing a single input, the
total elapsed time is 267.2ms. During the execution, the part that
took the longest time is executing system calls; it takes 107.6ms.
However, overheads incurred by SEGFUZZ is not negligible.
Tracing memory accesses (§V-B) takes 90.7ms, and controlling
thread scheduling (§V-C) takes 42.8ms. These two runtime
overheads almost double the execution time, and are the main
cause of degrading the throughput of fuzzing as shown in the
above. In contrast, the total amount of time for computation
is 26.1 (= 8.9 + 17.2)ms, and occupies approximately 9%
of the total elapsed time. Accordingly, we can see that the
computational overhead is relatively small.

VII. DISCUSSSION

Larger interleaving segment. While we restrict the size
of each interleaving segment to four, a small fraction of
concurrency bugs (e.g., 8 out of 105 from the survey study [49])
are triggered with interleaving segments with size of larger than
four. Thus, interleaving segment coverage falls short in tracking
offending interleavings of this kind of concurrency bugs.
Nonetheless, the mutation-based interleaving exploration is
still able to trigger them via recomposing multiple interleaving
segments. Since this kind of bugs also may severely affect the
security of the kernel, we leave how to track their offending
interleavings using interleaving coverage as future work.
Kernel background threads. Some system calls can spawn
a kernel background thread (e.g., kworkerd), and cause a
concurrency bug with it. However, SEGFUZZ does not utilize
interleaving segment coverage for kernel background threads.
Thus, it may be inefficient for SEGFUZZ to find concurrency
bugs in kernel background threads. Nonetheless, we emphasize
that this limitation is not stemmed from our design choices
but from the lack of a mechanism to trace basic blocks and
memory accesses in kernel background threads. We expect that
SEGFUZZ can be further improved if we devise the tracing
mechanism, and leave this part as future work.

VIII. RELATED WORK

In this section, we discuss prior efforts to automatically
discover concurrency bugs in the kernel.
Kernel fuzzing. To discover vulnerabilities in the kernel,
fuzzing, specifically coverage-guided fuzzing [20, 22, 33, 35,
36, 68, 70, 74–76, 80, 89], has proven to be practical and
is widely used in industrial fields. Then, to further improve
a kernel fuzzing, a number of attempts have been made to
incorporate advanced techniques [35, 68, 75], or to expand the
input space beyond syscalls [36, 74, 89]. Although they all
achieve meaningful successes, they are limited in exploring
thread interleavings, which raises a demand for discovering
concurrency bugs in the kernel.
Controlled concurrency testing (CCT). CCT [1, 7, 9, 14,
29, 40, 62–64, 78] introduces an idea of overriding the kernel

scheduler and methodically testing thread interleavings of
a given input. To the best of our knowledge, concurrency
fuzzing stems from CCT with an idea of merging the test
case generation (i.e., fuzzing) and the thread interleaving
exploration (i.e., CCT). Specifically, Razzer [28] states that it
is inspired by SKI [14], a CCT technique aiming the kernel.
SEGFUZZ is also affected by CCT techniques, and improves
the concurrency bug-finding capability by adopting interleaving
segment coverage and mutation-based interlaving exploration.
Data race detection. A large volume of work [5, 13, 42, 50,
65, 66, 72, 79, 90, 91] are proposed to detect data races, a
subset of concurrency bugs [2, 43], while there are also non-
data race concurrency bugs. For example, during our evaluation,
SEGFUZZ can easily trigger non-data race concurrency bugs
(e.g., CVE-2019-6974, 69e16d01d1de) that cannot be detected
using a data race detector, while data race detectors can detect
non-memory corruption bugs such as semantic bugs (detailed in
Appendix E). In addition, data race detectors are orthogonal to
the design of SEGFUZZ, and thus, the SEGFUZZ’s concurrency-
bug detection capability can be agumented if deployed together
with a data race detector.
Double-fetch bugs. Several work [4, 71, 81, 83, 84, 87] are
proposed to discover a certain type of concurrency bugs, called
double-fetch bugs [82]. Double-fetch bugs manifest when one
thread tries to fetch a single data twice while another thread
modifies the data in the middle of fetches. While SEGFUZZ
is able to identify other concurrency bugs that are not double-
fetch bugs, SEGFUZZ may not be effective in detecting certain
double-fetch bugs, such as ones that shared data resides in
userspace memory (as described in Appendix F). Therefore, we
believe SEGFUZZ and previous work to discover double-fetch
bugs complement each other.

IX. CONCLUSION

In this paper, we propose SEGFUZZ, a novel and effective
kernel concurrency fuzzer. Its key improvements reside in 1)
adopting informative interleaving coverage called interleav-
ing segment coverage, and 2) mutation-based interleaving
exploration which utilizes explored thread interleavings. As
a result, SEGFUZZ has discovered 21 previously-undisclosed
concurrency bugs, and a comparison study demonstrates that
SEGFUZZ outperforms state-of-the-art concurrency fuzzers.

X. ACKNOWLEDGMENT

We sincerely appreciate anonymous reviewers and our
anonymous shepherd for their constructive and valuable com-
ments. This work was supported in part by ERC (NRF-
2018R1A5A1059921) funded by the Korea government(MSIT),
the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. RS-2023-
00209093), Institute of Information & communications Tech-
nology Planning & Evaluation (IITP) grant funded by the
Korea government(MSIT) (No. 2021-0-00871), and Samsung
Electronics.

13

REFERENCES
[1] M. Abdelrasoul. Promoting secondary orders of event pairs in randomized

scheduling using a randomized stride. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering
(ASE), Urbana-Champaign, IL, Oct.–Nov. 2017.

[2] J. Alglave, L. Maranget, P. E. McKenney, A. Parri, and A. Stern.
Frightening small children and disconcerting grown-ups: Concurrency
in the linux kernel. In Proceedings of the 23rd ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Williamsburg, VA, Mar. 2018.

[3] A. Arcuri and L. Briand. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In Proceedings
of the 33th International Conference on Software Engineering (ICSE),
Honolulu, HI, May 2007.

[4] A. Bhattacharyya, U. Tesic, and M. Payer. Midas: Systematic kernel
TOCTTOU protection. In Proceedings of the 31st USENIX Security
Symposium (Security), Boston, MA, Aug. 2022.

[5] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: proportional
detection of data races. In Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), Toronto, Canada, June 2010.

[6] B. Boyter. Sloc Cloc and Code (scc), 2020. https://github.com/boyter/scc/.
[7] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A

randomized scheduler with probabilistic guarantees of finding bugs. In
Proceedings of the 15th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Istanbul, Turkey, Mar. 2010.

[8] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), San Diego, CA, Dec. 2008.

[9] Y. Cai and Z. Yang. Radius aware probabilistic testing of deadlocks
with guarantees. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE), Singapore, Sept.
2016.

[10] H. Chen, S. Guo, Y. Xue, Y. Sui, C. Zhang, Y. Li, H. Wang, and Y. Liu.
MUZZ: Thread-aware grey-box fuzzing for effective bug hunting in
multithreaded programs. In Proceedings of the 29th USENIX Security
Symposium (Security), Virtual, Aug. 2020.

[11] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: A platform for in-vivo
multi-path analysis of software systems. In Proceedings of the 16th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Newport Beach, CA, Mar.
2011.

[12] A. Choudhary, S. Lu, and M. Pradel. Efficient detection of thread
safety violations via coverage-guided generation of concurrent tests.
In Proceedings of the 39th International Conference on Software
Engineering (ICSE), Buenos Aires, Argentina, May 2017.

[13] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective
data-race detection for the kernel. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Vancouver, Canada, Oct. 2010.

[14] P. Fonseca, R. Rodrigues, and B. B. Brandenburg. SKI: Exposing
kernel concurrency bugs through systematic schedule exploration. In
Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Broomfield, Colorado, Oct. 2014.

[15] G. Fowler, L. C. Noll, and K.-P. Vo. FNV Hash, 2022. http://isthe.com/
chongo/tech/comp/fnv/index.html.

[16] S. Gong. net: fix a concurrency bug in l2tp_tunnel_-
register(), 2012. https://github.com/torvalds/linux/commit/
69e16d01d1de4f1249869de342915f608feb55d5.

[17] S. Gong, D. Altinbüken, P. Fonseca, and P. Maniatis. Snowboard: Finding
kernel concurrency bugs through systematic inter-thread communication
analysis. In Proceedings of the 28th ACM Symposium on Operating
Systems Principles (SOSP), Virtual, Oct. 2021.

[18] Google. Syscall description language, 2016. https://github.
com/llvm-mirror/llvm/blob/master/lib/Transforms/Instrumentation/
SanitizerCoverage.cpp.

[19] Google. The Go Programming Language, 2022. https://pkg.go.dev/hash/
fnv.

[20] Google. Syzkaller - kernel fuzzer, 2022. https://github.com/google/
syzkaller.

[21] R. Guo and J. Zeng. Trace Me if You Can: Bypassing Linux Syscall
Tracing, 2022. https://www.blackhat.com/us-22/briefings/schedule/index.
html#trace-me-if-you-can-bypassing-linux-syscall-tracing-26427.

[22] H. Han and S. K. Cha. Imf: Inferred model-based fuzzer. In Proceedings
of the 23rd ACM Conference on Computer and Communications Security
(CCS), Dallas, Texas, Nov. 2017.

[23] H. Han, R. Jian, X. Wang, and P. Zhou. Android Universal
Root: Exploiting Mobile GPU / Command Queue Drivers, 2022.
https://www.blackhat.com/us-21/briefings/schedule/index.html#typhoon-
mangkhut-one-click-remote-universal-root-formed-with-two-
vulnerabilities-22946.

[24] W. Han, B. Joe, B. Lee, C. Song, and I. Shin. Enhancing memory error
detection for large-scale applications and fuzz testing. In Proceedings of
the 2018 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2018.

[25] C. Helbling. Directed graph hashing. CoRR, abs/2002.06653, 2020. URL
https://arxiv.org/abs/2002.06653.

[26] Z. Huang, S. Guo, M. Wu, and C. Wang. Understanding concurrency
vulnerabilities in linux kernel, 2022.

[27] Intel Corporation. Hardware and Software Breakpoints, 2020. https:
//software.intel.com/en-us/node/676419.

[28] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin. Razzer:
Finding kernel race bugs through fuzzing. In Proceedings of the 40th
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2019.

[29] D. R. Jeong, M. Jung, Y. Lee, B. Lee, I. Shin, and Y. Kwon. Diagnosing
kernel concurrency failures with AITIA. In Proceedings of the 18th
European Conference on Computer Systems (EuroSys), Rome, Italy, May
2023.

[30] Z.-M. Jiang, J.-J. Bai, K. Lu, and S.-M. Hu. Context-sensitive and
directional concurrency fuzzing for data-race detection. In Proceedings
of the 2022 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Apr. 2022.

[31] X. Jin, R. Neal, C. Resell, and C. Lecigne. Monitoring
Surveillance Vendors: A Deep Dive into In-the-Wild Android
Full Chains in 2021, 2021. https://www.blackhat.com/us-
22/briefings/schedule/index.html#monitoring-surveillance-vendors-
a-deep-dive-into-in-the-wild-android-full-chains-in--26629.

[32] X. Jin, R. Neal, and J. Bottarini. Android Universal Root:
Exploiting Mobile GPU / Command Queue Drivers, 2022.
https://www.blackhat.com/us-22/briefings/schedule/index.html#android-
universal-root-exploiting-mobile-gpu--command-queue-drivers-27239.

[33] D. Jones. Trinity: Linux system call fuzzer., 2012. https://github.com/
kernelslacker/trinity.

[34] A. B. Kahn. Topological sorting of large networks. Communications of
the ACM, 5(11):558–562, 1962.

[35] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee. Hfl:
Hybrid fuzzing on the linux kernel. In Proceedings of the 2020 Annual
Network and Distributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2020.

[36] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim. Finding
semantic bugs in file systems with an extensible fuzzing framework.
In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP), Huntsville, Ontario, Canada, Oct. 2019.

[37] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. Evaluating fuzz
testing. In Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS), Toronto, Canada, Oct. 2018.

[38] Y. Lee, C. Min, and B. Lee. ExpRace: Exploiting kernel races through
raising interrupts. In Proceedings of the 30th USENIX Security Symposium
(Security), Virtual, Aug. 2021.

[39] Y. Lee, B. Lee, and C. Min. Exploiting Kernel Races through
Taming Thread Interleaving, 2022. https://www.blackhat.com/us-
20/briefings/schedule/index.html#exploiting-kernel-races-through-
taming-thread-interleaving-20223.

14

https://github.com/boyter/scc/
http://isthe.com/chongo/tech/comp/fnv/index.html
http://isthe.com/chongo/tech/comp/fnv/index.html
https://github.com/torvalds/linux/commit/69e16d01d1de4f1249869de342915f608feb55d5
https://github.com/torvalds/linux/commit/69e16d01d1de4f1249869de342915f608feb55d5
https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/Instrumentation/SanitizerCoverage.cpp
https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/Instrumentation/SanitizerCoverage.cpp
https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/Instrumentation/SanitizerCoverage.cpp
https://pkg.go.dev/hash/fnv
https://pkg.go.dev/hash/fnv
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://www.blackhat.com/us-22/briefings/schedule/index.html#trace-me-if-you-can-bypassing-linux-syscall-tracing-26427
https://www.blackhat.com/us-22/briefings/schedule/index.html#trace-me-if-you-can-bypassing-linux-syscall-tracing-26427
https://www.blackhat.com/us-21/briefings/schedule/index.html#typhoon-mangkhut-one-click-remote-universal-root-formed-with-two-vulnerabilities-22946
https://www.blackhat.com/us-21/briefings/schedule/index.html#typhoon-mangkhut-one-click-remote-universal-root-formed-with-two-vulnerabilities-22946
https://www.blackhat.com/us-21/briefings/schedule/index.html#typhoon-mangkhut-one-click-remote-universal-root-formed-with-two-vulnerabilities-22946
https://arxiv.org/abs/2002.06653
https://software.intel.com/en-us/node/676419
https://software.intel.com/en-us/node/676419
https://www.blackhat.com/us-22/briefings/schedule/index.html#monitoring-surveillance-vendors-a-deep-dive-into-in-the-wild-android-full-chains-in--26629
https://www.blackhat.com/us-22/briefings/schedule/index.html#monitoring-surveillance-vendors-a-deep-dive-into-in-the-wild-android-full-chains-in--26629
https://www.blackhat.com/us-22/briefings/schedule/index.html#monitoring-surveillance-vendors-a-deep-dive-into-in-the-wild-android-full-chains-in--26629
https://www.blackhat.com/us-22/briefings/schedule/index.html#android-universal-root-exploiting-mobile-gpu--command-queue-drivers-27239
https://www.blackhat.com/us-22/briefings/schedule/index.html#android-universal-root-exploiting-mobile-gpu--command-queue-drivers-27239
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://www.blackhat.com/us-20/briefings/schedule/index.html#exploiting-kernel-races-through-taming-thread-interleaving-20223
https://www.blackhat.com/us-20/briefings/schedule/index.html#exploiting-kernel-races-through-taming-thread-interleaving-20223
https://www.blackhat.com/us-20/briefings/schedule/index.html#exploiting-kernel-races-through-taming-thread-interleaving-20223

[40] C. Lidbury and A. F. Donaldson. Sparse record and replay with controlled
scheduling. In Proceedings of the 2019 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Phoenix,
AZ, June 2019.

[41] Linux. The Kernel Address Sanitizer (KASAN), 2022.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
Documentation/dev-tools/kasan.rst.

[42] Linux. The kernel concurrency sanitizer (kcsan), 2022.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
Documentation/dev-tools/kcsan.rst.

[43] Linux. Explanation of the Linux-Kernel Memory Consistency Model,
2022. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
tree/tools/memory-model/Documentation/explanation.txt.

[44] Linux. Runtime locking correctness validator, 2022. https://www.kernel.
org/doc/Documentation/locking/lockdep-design.txt.

[45] Linux. The Undefined Behavior Sanitizer - UBSAN, 2022. https:
//www.kernel.org/doc/Documentation/dev-tools/ubsan.rst.

[46] Linux. Linux Watchdog Support, 2022. https://www.kernel.org/doc/html/
latest/watchdog/index.html.

[47] K. Lu, M.-T. Walter, D. Pfaff, S. Nümberger, W. Lee, and M. Backes.
Unleashing use-before-initialization vulnerabilities in the linux kernel
using targeted stack spraying. In Proceedings of the 2017 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
Feb.–Mar. 2017.

[48] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu. A study
of linux file system evolution. In 11th USENIX Conference on File and
Storage Technologies (FAST) (FAST 13), San Jose, CA, Feb. 2013.

[49] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics. In
Proceedings of the 13th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Seattle, WA, Mar. 2008.

[50] D. Marino, M. Musuvathi, and S. Narayanasamy. Literace: effective
sampling for lightweight data-race detection. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Dublin, Ireland, June 2009.

[51] R. C. Merkle. A digital signature based on a conventional encryption
function. In Proceedings of the 6th Annual International Conference on
the Theory and Applications of Cryptographic Techniques (EUROCRYPT),
Amsterdam, The Netherlands, Apr. 1987.

[52] MITRE Corporation. Cve-2016-8655, 2016. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-8655.

[53] MITRE Corporation. Cve-2017-15649, 2016. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-15649.

[54] MITRE Corporation. Cve-2017-17712, 2016. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-17712.

[55] MITRE Corporation. Cve-2017-2636, 2017. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-2636.

[56] MITRE Corporation. Cve-2017-7533, 2017. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-7533.

[57] MITRE Corporation. Cve-2018-12232, 2018. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2018-12232.

[58] MITRE Corporation. Cve-2019-11486, 2019. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2019-11486.

[59] MITRE Corporation. Cve-2019-1999, 2019. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2019-1999.

[60] MITRE Corporation. Cve-2019-2025, 2019. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2019-2025.

[61] MITRE Corporation. Cve-2019-6974, 2019. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2019-6974.

[62] S. Mukherjee, P. Deligiannis, A. Biswas, and A. Lal. Learning-based
controlled concurrency testing. In Proceedings of the 2020 Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Virtual, Sept. 2020.

[63] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent programs.
In Proceedings of the 8th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), San Diego, CA, Dec. 2008.
[64] S. Nagarakatte, S. Burckhardt, M. M. Martin, and M. Musuvathi.

Multicore acceleration of priority-based schedulers for concurrency bug
detection. In Proceedings of the 2012 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Beijing,
China, June 2012.

[65] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(PLDI), San Diego, CA, June 2007.

[66] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In
Proceedings of the 9th ACM Symposium on Principles and Practice of
Parallel Programming (PPOPP), San Diego, CA, June 2003.

[67] R. L. Ott and M. T. Longnecker. An introduction to statistical methods
and data analysis. Cengage Learning, 2015.

[68] S. Pailoor, A. Aday, and S. Jana. MoonShine: Optimizing OS fuzzer
seed selection with trace distillation. In Proceedings of the 27th USENIX
Security Symposium (Security), Baltimore, MD, Aug. 2018.

[69] L. Project. The LLVM Compiler Infrastructure, 2021. https://llvm.org/.
[70] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz.

kAFL:Hardware-Assisted feedback fuzzing for OS kernels. In Proceed-
ings of the 26th USENIX Security Symposium (Security), Vancouver,
Canada, Aug. 2017.

[71] M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schuster, A. Fogh,
and S. Mangard. Automated detection, exploitation, and elimination of
double-fetch bugs using modern cpu features. In Proceedings of the
13th ACM Symposium on Information, Computer and Communications
Security (ASIACCS), Incheon, Korea, June 2018.

[72] K. Serebryany and T. Iskhodzhanov. Threadsanitizer: data race detection
in practice. In Proceedings of the workshop on binary instrumentation
and applications, 2009.

[73] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Address-
Sanitizer: A fast address sanity checker. In Proceedings of the 2012
USENIX Annual Technical Conference (ATC), Boston, MA, June 2012.

[74] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert, G. Vigna,
C. Kruegel, J.-P. Seifert, and M. Franz. Periscope: An effective probing
and fuzzing framework for the hardware-os boundary. In Proceedings of
the 2019 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2019.

[75] H. Sun, Y. Shen, C. Wang, J. Liu, Y. Jiang, T. Chen, and A. Cui. Healer:
Relation learning guided kernel fuzzing. In Proceedings of the 28th
ACM Symposium on Operating Systems Principles (SOSP), Virtual, Oct.
2021.

[76] H. Sun, Y. Shen, J. Liu, Y. Xu, and Y. Jiang. KSG: Augmenting kernel
fuzzing with system call specification generation. In Proceedings of the
2022 USENIX Annual Technical Conference (ATC), Carlsbad, CA, July
2022.

[77] V. Terragni and M. Pezzè. Effectiveness and challenges in generating
concurrent tests for thread-safe classes. In Proceedings of the 40th
International Conference on Software Engineering (ICSE), Gothenburg,
Sweden, May–June 2018.

[78] P. Thomson, A. F. Donaldson, and A. Betts. Concurrency testing using
schedule bounding: An empirical study. In Proceedings of the 19th
ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP), Orlando, FL, Feb. 2014.

[79] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy. Detecting
and surviving data races using complementary schedules. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles (SOSP),
Cascais, Portugal, Oct. 2011.

[80] D. Wang, Z. Zhang, H. Zhang, Z. Qian, S. V. Krishnamurthy, and N. Abu-
Ghazaleh. SyzVegas: Beating kernel fuzzing odds with reinforcement
learning. In Proceedings of the 30th USENIX Security Symposium
(Security), Virtual, Aug. 2021.

[81] P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro. How double-
fetch situations turn into double-fetch vulnerabilities: A study of double
fetches in the linux kernel. In Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, Canada, Aug. 2017.

[82] P. Wang, K. Lu, G. Li, and X. Zhou. A survey of the double-fetch

15

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/dev-tools/kasan.rst
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/dev-tools/kasan.rst
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/dev-tools/kcsan.rst
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/dev-tools/kcsan.rst
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/dev-tools/ubsan.rst
https://www.kernel.org/doc/Documentation/dev-tools/ubsan.rst
https://www.kernel.org/doc/html/latest/watchdog/index.html
https://www.kernel.org/doc/html/latest/watchdog/index.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8655
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8655
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15649
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15649
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17712
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17712
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2636
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2636
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7533
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7533
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-12232
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-12232
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11486
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11486
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1999
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1999
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2025
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2025
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6974
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6974
https://llvm.org/

vulnerabilities. Concurrency and Computation: Practice and Experience,
30(6):e4345, 2018.

[83] P. Wang, K. Lu, G. Li, and X. Zhou. Dftracker: detecting double-fetch
bugs by multi-taint parallel tracking. Frontiers of Computer Science, 13:
247–263, 2019.

[84] W. Wang, K. Lu, and P.-C. Yew. Check it again: Detecting lacking-
recheck bugs in os kernels. In Proceedings of the 24th ACM Conference
on Computer and Communications Security (CCS), Toronto, Canada,
Oct. 2018.

[85] D. A. Wheeler. SLOCCount, 2020. https://dwheeler.com/sloccount/.
[86] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou. FUZE: Towards

facilitating exploit generation for kernel Use-After-Free vulnerabilities.
In Proceedings of the 27th USENIX Security Symposium (Security),
Baltimore, MD, Aug. 2018.

[87] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim. Precise and scalable
detection of double-fetch bugs in os kernels. In Proceedings of the 39th
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2018.

[88] M. Xu, S. Kashyap, H. Zhao, and T. Kim. Krace: Data race fuzzing
for kernel file systems. In Proceedings of the 41st IEEE Symposium on
Security and Privacy (Oakland), San Francisco, CA, May 2020.

[89] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim. Fuzzing file
systems via two-dimensional input space exploration. In Proceedings
of the 40th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2019.

[90] T. Zhang, D. Lee, and C. Jung. Txrace: Efficient data race detection
using commodity hardware transactional memory. In Proceedings of
the 21st ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Atlanta,
GA, Apr. 2016.

[91] T. Zhang, C. Jung, and D. Lee. Prorace: Practical data race detection
for production use. In Proceedings of the 22nd ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Xi’an, China, Apr. 2017.

APPENDIX

A. Algorithms to Decompose and Recompoase Thread Inter-
leavings

Algorithm 1: Generating a DAG (V,E)

Input :Si, Sj : sequences of memory access executed by
two system calls

Output : (V,E): a directed-acyclic graph
1 V,Epo, Eio = ∅, ∅, ∅
2 for S ∈ {Si, Sj} do
3 for a ∈ S do
4 V = V ∪ {vertex(a)}
5 end

▷ Generate program-order edges
6 for a1, a2 ∈ S × S do
7 if a1.timestamp < a2.timestamp then
8 Epo = Epo ∪ (vertex(a1), vertex(a2))
9 end

10 end
▷ Generate interleaving-order edges

11 for a1, a2 ∈ (Si × Sj) ∪ (Sj × Si) do
12 if memory_access_overlapped(a1, a2) then
13 if a1.timestamp < a2.timestamp then
14 Eio = Eio ∪ (vertex(a1), vertex(a2))
15 else
16 Eio = Eio ∪ (vertex(a2), vertex(a1))
17 end
18 end
19 E = Epo ∪ Eio

1) Algorithm to generate a DAG: Algorithm 1 describes an
algorithm for generating a DAG for two system calls (Si, Sj).
It first generates vertices corresponding memory accesses
(line #3∼#5), and program-order edges for each system
call (line #6∼#9). Then, to describe a thread interleaving,
it generates an interleaving-order edge (a1, a2) if they are
overlapped; a1 and a2 1) are executed different threads
(line #11), 2) access the same data where at least one of them
is write (line #12). Lastly, it returns a DAG (V,E) where
E is an union of program-order edges and interleaving-order
edges.

Algorithm 2: Decomposing a DAG (V,E) into G

Input : (V,E): a directed-acyclic graph
Output :G: a set of segment graphs

1 G = ∅
2 for e1, e2 ∈ E × E do

▷ Pick two interleaving-order edges and
compose a subgraph g

3 if is_io_edge(e1) ∧ is_io_edge(e2) ∧ e1 ̸= e2 then
4 v = vertices(e1) ∪ vertices(e2)
5 e = ∅
6 for v1, v2 ∈ v × v do
7 if (v1, v2) ∈ E then
8 e = e ∪ {(v1, v2)}
9 end

10 G = G ∪ {(v, e)}
11 end

2) Algorithm to decompose a DAG: Algorithm 2 describes
an algorithm to decompose a given DAG (V,E) to a set of
segment graphs. To this end, it selects two edges e1, e2 ∈ E
(line #2). If these two edges are both interleaving-order edges
and they are different (line #3), it generates a segment graph
(v, e), where v is a set of all vertices connected by e1 and e2
(line #4), and e is a set of all edges connecting vertices in
v (line #5∼#8). To check an edge e is an interleaivng-order
edge in (line #3), is_io_edge() returns true if two vertices
connected by e are executed by different threads. Lastly, it
gathers all segment graphs into G (line #10) and returns G.

3) Algorithm to recompose segment graphs: Algorithm 3
describes our greedy algorithm to recompose segment graphs.
Specifically, it iterates over Gmutated (line #2), and for each
mutated segment graph gmutated, it checks whether adding
gmutated into a recomposed DAG (V,E) forms a loop or
not. To this end, it checks that adding each edge e from
a selected mutated graph gmutated to a recomposed DAG
(V,E) forms a loop or not (line #4∼#7). Although it can be
further optimized, we use BFS to check a loop is formed in
loop_detected() (line #5). If it is confirmed that adding
gmutated does not form a loop in (V,E), it combines gmutated

into (V,E) (line #11) and remove gmutated from Gmutated

(line #12). After all process is finished, SEGFUZZ conducts
a topological sort on (V,E) to generate scheduling points.

B. Hashing Segment Graph

In order to distinguish different interleavings of the same
vertices, we adopt Merkel hashing [25, 51]. In particular, given

16

https://dwheeler.com/sloccount/

(a) (b)

r0 = socket()
setsockopt(r0)
write(r0)
sendmsg(r0)
close(r0)

IST

r0 = socket()

setsockopt(r0)

IMT

write(r0)
sendmsg(r0)
close(r0)

Thread A Thread B

transform

Fig. 13: Example of the input transformation conducted by the
userspace fuzzer (§V-A). IMT is a multi-thread input to trigger an
uninitialized access bug described in Figure 1.

Algorithm 3: Recomposing segment graphs
Input :Gmutated: a set of mutated segment graphs
Output : (V,E): a recomposed DAG

1 V,E = ∅, ∅
2 for gmutated ∈ Gmutated do
3 conflict = false

▷ Check whether adding gmutated into (V,E)
forms a loop

4 for e ∈ edges(gmutated) do
5 if loop_detected(V ∪ vertices(e), E ∪ {e}) then
6 conflict = true
7 break
8 end
9 if ¬conflict then

▷ Add gmutated into (V,E)
10 for e ∈ edges(gmutated) do
11 V,E = V ∪ vertices(e), E ∪ {e}
12 Gmutated = Gmutated \ {gmutated}
13 end
14 end

A2
B1

A4

(a)

A2
B1

A4

(b)

Fig. 12: Two different interleaving segment graphs representing
different interleavings of A2, A4, and B1 from Figure 1.

a graph G = (V,E), for all vertices v ∈ V , we first calculate
a hash value of v, hash(v), which reflects its out-going edges.
Let us denote o1, ..., om as vertices that is connected by an
edge v → ox. Then, hash(v) is calculated as follow:

hash(v) = H(v.label++o1.label++...++om.label)

where H denotes the non-cryptographic FNV hash
function [15, 19], and ++ denotes the label-concatenation
operation. Then, hash(G) is defined as follows:

hash(G) = ⊕
v∈V

hash(v)

where ⊕ denotes the XOR operation.
Applying hash(G) to Figure 12, hash(B1) is calculated

as H(B1++A2++A4) in Figure 12-(a), whereas, hash(B1)
is calculated as H(B1 + +A4) in Figure 12-(b). Thus, hash
values of even vertices labeled same (i.e., corresponding to the

same instruction) are calculated differently according to edges
connected to the vertex. Likewise, values of hash(A2) are also
calculated differently in the two graphs as the direction of
edges connecting A2 and B1 is different in the two graphs. As
a consequence, values of hash(G) (which are calculated as
hash(B1) ⊕ hash(A2) ⊕ hash(A4)) of Figure 12-(a) and (b)
are different, and SEGFUZZ can distinguish the two graphs in
Figure 12 using hash values of the two graphs.

C. Input Transformation

Figure 13 demonstrates an example of the input transforma-
tion. Let us assume IST is generated as a sequence of system
calls as described in Figure 13-(a), where setsockopt(r0)
and sendmsg(r0) executes source codes in Figure 1. When
IST is executed, the single-thread executor identifies that
setsockopt(r0) executed B1, and sendmsg(r0) executed
A2 and A4, and their execution order was (B1 ⇒ A2 ⇒ A4).
Then, the single-thread executor identifies that the segment
graph has not been explored, and consequently, IST is passed
to the multi-thread fuzzing phase.

When the multi-thread generator receives IST and the two
system calls setsockopt(r0) and sendmsg(r0), the multi-
thread generator simply splits IST into two parts, where the
first part conatins system calls from the first system call until
setsockopt(r0), and the second part contains the rest of the
system calls. Then, the multi-thread generator assigns the first
part to Thread A and the second part to Thread B (Figure 13-
(b)). During runtime, all system calls are executed in the same
order as in IST except setsockopt(r0) and sendmsg(r0).
Specifically, thread A executes r0 = socket() first as it is
the first system call in IST . And then, when thread A sees the
next system call is setsockopt(r0), it defers the execution
of setsockopt(r0) to execute it with sendmsg(r0). As the
next system call in IST is write(r0), thread B executes it.
When the next system call in IST is sendmsg(r0), two threads
execute two system calls setsockopt(r0) and sendmsg(r0)
concurrently. Lastly, thread B executes close(r0) which is
the last system call in IST . In this way, SEGFUZZ continuously
transforms IST to IMT , and the multi-thread fuzzing stage
keeps exploring thread interleavings of IMT .

D. Virtual Machine Introspection

The execution engine introspects the target kernel for two
reasons: 1) the execution engine determines whether the
breakpoint is hit by a thread of the userspace fuzzer, or by an
irrelevant thread, and 2) when a running thread tries to acquire
a lock, the execution engine inspects whether the lock is held
by a suspended thread.

As a hardware breakpoint does not distinguish the running
context of a kernel, if the context switch happens, a breakpoint
may be hit by another thread or an interrupt handler, making
the execution out of expectation. The execution engine recog-
nizes a running context using task_struct which holds the
thread description, and the per-cpu preempt_count variable
indicating what context the thread is in (e.g., a task context for
running a syscall, or a hardIRQ context to handle hardware

17

 /* In kvm_ioctl_create_device() */
 smp_store_release(fd[fd], file);

 atomic_inc(obj->refcnt);

 /* In __close_fd() */

 file = smp_load_acquire (fd[fd]);
 if (!file)
 return;
 if (dec_and_test (obj->refcnt))
 kfree(obj);

A1

A2

B1
B2
B3
B4
B5

Thread A Thread B

Fig. 14: Example of non-data race concurrency bug (CVE-2019-6974)
found in the KVM submodule.

interrupts). If a breakpoint is hit by a context other than the
fuzzer-controlled thread, the execution engine ignores it and
keeps the breakpoint.

In addition, when the suspended thread already acquires a
lock while the running thread wants to hold the same lock, the
whole execution cannot make a progress, because the execution
engine forces the lock-holding thread to suspend. Therefore,
the execution engine inspects whether the running thread is
going to be blocked due to the lock contention, and if it is, the
execution engine takes control from the running thread to the
suspended thread. Inspecting the lock contention is conducted
by hooking lockdep functions (i.e., lock_acquire() and
lock_release() in kernel/locking/lockdep.c) [44] that
are commonly called from synchronization primitives. When
the lockdep functions are called, the execution engine deter-
mines whether the running thread can make a progress through
various information such as the address of the synchronization
primitive, and operation type (i.e., lock, unlock, and trylock).
If the running thread cannot make a progress, the execution
engine perform preemption to prevent unexpected block.

E. Non-data race concurrency bug

Data races are a subset of concurrency bugs as described in
the follow.
Data race. In this paper, we employ the definition of data race
from Linux Kernel Memory Model (LKMM) [43]. According
to LKMM, a data race occurs when there are two memory
accesses such that 1) they access the same memory location,
2) at least one of them is a store, 3) at least one of them is
not annotated with special APIs such as WRITE_ONCE(), or
smp_load_acquire(), 4) they occur on different CPUs (or
in different threads on the same CPU), and 5) they execute
concurrently.
Example of non-data race concurrency bug. However, there
are many non-data race concurrency bugs. Figure 14 shows the
examples of non-data race concurrency bug (i.e., CVE-2019-
6974). In Figure 14, there is no data race because reading from
and writing to fdt->fd[fd] and obj->refcnt is annotated
with dedicated APIs such as smp_load_acquire() and dec_-
and_test(). In the perspective of data race detectors, all
concurrent accesses are out of the definition of data race, thus,
data race detectors report nothing with this example. However,
depending on interleaving of the two functions kvm_ioctl_-

create_device() and __close_fd(), a use-after-free bug
may occur as described in the figure.
Scope of this paper. SEGFUZZ mostly focuses on finding
concurrency bugs (including data races) that exhibit harmful
behaviors (e.g., memory corruptions). Thus, SEGFUZZ can
easily detect Figure 14, while data race detectors cannot.

F. Detailed discussion of double-fetch bugs with examples

In Figure 15, the two threads share the data through userspace
memory (pointed by &ucmsg->len). Specifically, thread A
fetches a length value pointed by &ucmsg->len twice from
the userspace. Since thread A checks the sanity of the value only
on the first read, if thread B modifies the value in the middle
of fetches, a buffer-overflow bug manifests when executing
copy_from_user(). Regarding this kind of double-fetch bugs,
SEGFUZZ may be ineffective to discover. This is because
SEGFUZZ does not trace memory accesses taken place in
userspace, and SEGFUZZ does not track interleaving segments
across kernel memory and userspace memory.

// check the sanity of ucmsg->len
get_user(ucmlen, &ucmsg->len);

if (!sanity_check(ucmlen))
 return -EINVAL;

// Re-read the value
get_user(ucmlen, &ucmsg->len);
copy_from_user(buf, uptr, ucmlen);

 // modify the value pointed
 // by ucmsg->len
 ucmsg->len = 0xffffffff;

 A1

A2
A3

A4
A5

B1

Thread A - kernel space Thread B - user space

Fig. 15: A code snippet of a double-fetch bug from [81] that SEGFUZZ
is ineffective in finding. &ucmsg->len points to a memory object in
userspace.

 // Read uninitilized pointer
 ptr = vmci->context;

 if (vmci->ct_type == CONTEXT)
 ptr->host_context;

 // Initialize vmci
 vmci->context = ctx_create();
 vmci->ct_type = CONTEXT;

A1

A2
A3

B1
B2

Thread A Thread B

Initially vmci is not intiaizlied

Fig. 16: A code snippet of a concurrency bug (#1 in Table I) that is
found by SEGFUZZ but is not a double-fetch bug.

On the other hand, Figure 16 shows a concurrency bug that
was found by SEGFUZZ and is not a double-fetch bug. In this
example, thread A should read vmci->context after checking the
value of vmci->ct_type in order to guarantee that the value
read through vmci->context is initialized when dereferencing.
However in the buggy scenario, thread A incorrectly reads
an uninitialized value of vmci->context, causing a general-
protection-fault. This example is not a double-fetch bug, and
is out of focus of [4, 81, 87]. SEGFUZZ can be helpful in
discovering this kind of non-double-fetch bugs.

18

	Introduction
	Background
	(Conventional) Kernel Fuzzing
	Concurrency Fuzzing

	Motivation
	Limitation of prior approaches

	Exploring Thread Interleaving Space
	Key Idea: Segmentizing thread interleaving
	Interleaving Segment Coverage
	Mutation-based Interleaving Exploration

	Design of SegFuzz
	Two-stage Fuzzing
	Single-thread fuzzing
	Multi-thread fuzzing

	Kernel Instrumentation
	Execution Engine
	Implementation

	Evaluation
	Finding Real-world Concurrency Bugs
	Comparison with prior approaches
	Comparison of interleaving coverage metrics
	Efficiency of mutation-based interleaving exploration

	Performance characteristics of SegFuzz

	Discusssion
	Related work
	Conclusion
	Acknowledgment
	Algorithms to Decompose and Recompoase Thread Interleavings
	Algorithm to generate a DAG
	Algorithm to decompose a DAG
	Algorithm to recompose segment graphs

	Hashing Segment Graph
	Input Transformation
	Virtual Machine Introspection
	Non-data race concurrency bug
	Detailed discussion of double-fetch bugs with examples

