
CAB-FUZZ: Practical Concolic Testing Techniques for COTS Operating
Systems

Su Yong Kim∗§ Sangho Lee† Insu Yun† Wen Xu†

Byoungyoung Lee¶ Youngtae Yun∗ Taesoo Kim†

∗The Affiliated Institute of ETRI †Georgia Institute of Technology ¶Purdue University

Abstract
Discovering the security vulnerabilities of commercial
off-the-shelf (COTS) operating systems (OSes) is chal-
lenging because they not only are huge and complex, but
also lack detailed debug information. Concolic testing,
which generates all feasible inputs of a program by using
symbolic execution and tests the program with the gen-
erated inputs, is one of the most promising approaches
to solve this problem. Unfortunately, the state-of-the-art
concolic testing tools do not scale well for testing COTS
OSes because of state explosion. Indeed, they often fail
to find a single bug (or crash) in COTS OSes despite their
long execution time.

In this paper, we propose CAB-FUZZ (Context-Aware
and Boundary-focused), a practical concolic testing tool
to quickly explore interesting paths that are highly likely
triggering real bugs without debug information. First,
CAB-FUZZ prioritizes the boundary states of arrays
and loops, inspired by the fact that many vulnerabilities
originate from a lack of proper boundary checks. Sec-
ond, CAB-FUZZ exploits real programs interacting with
COTS OSes to construct proper contexts to explore deep
and complex kernel states without debug information. We
applied CAB-FUZZ to Windows 7 and Windows Server
2008 and found 21 undisclosed unique crashes, includ-
ing two local privilege escalation vulnerabilities (CVE-
2015-6098 and CVE-2016-0040) and one information
disclosure vulnerability in a cryptography driver (CVE-
2016-7219). CAB-FUZZ found vulnerabilities that are
non-trivial to discover; five vulnerabilities have existed
for 14 years, and we could trigger them even in the initial
version of Windows XP (August 2001).

1 Introduction
Concolic testing is a well-known approach to automati-

cally detect software vulnerabilities [8]. Empowered by
its symbolic interpretation of the input, it generates and

§This work is done while this author was a visiting scholar in
Georgia Institute of Technology.

explores all feasible states in a program and thoroughly
checks whether a certain security property can be vio-
lated. In particular, it has shown its effectiveness for
small applications and/or applications with source code.
For example, Avgerinos et al. [1] found more than 10,000
bugs in about 4,000 small applications. Also, Ramos
and Engler [40] found 67 bugs in various open-source
projects, such as BIND, OpenSSL, and the Linux kernel.

However, concolic testing does not scale well for com-
plex and large software [5, 8, 13, 48], such as commer-
cial off-the-shelf (COTS) operating systems (OSes). The
complete concolic execution of COTS OSes would never
terminate in a reasonable amount of time due to the well-
known limitation of the symbolic execution, state (or
path) explosion, where the number of feasible program
states increases exponentially (e.g., once reaching a loop
statement). Since the COTS OSes have massive imple-
mentation complexity, testing using symbolic execution
ends up exploring a very small portion of program states,
i.e., it cannot test deep execution paths.

Moreover, a proprietary nature of COTS OSes prevents
concolic testing from exploring program states with pre-
contexts. Unlike the open-source kernel for which the
internal documentation and all test suites are publicly
available [41, 50], COTS OSes do not provide such com-
prehensive information. Although manual annotation on
the interface can help increase code coverage and detect
logical bugs [27], it also does not scale. For these rea-
sons, concolic execution on COTS OSes cannot explore
program states that are only reachable after undergoing
complex runtime operations.

In this paper, we propose CAB-FUZZ (Context-Aware
and Boundary-focused), a practical system specialized to
detect vulnerabilities in COTS OSes based on concolic
testing. First, to overcome the scalability limitation of
concolic testing, CAB-FUZZ prioritizes states likely hav-
ing vulnerabilities. This prioritization is based on the
observation that a majority of critical security bugs (e.g.,
memory corruption and information disclosure) originate

from a lack of proper boundary checks. This is why com-
pilers and even hardware have adopted boundary-check
mechanisms, such as SoftBound [37], SafeStack [28], and
Intel Memory Protection Extensions (MPX) [20]. There-
fore, we instruct CAB-FUZZ to generate and explore the
boundary states of arrays and loops first, thereby detect-
ing vulnerabilities as early as possible before exploding
in terms of program states.

Second, to construct pre-contexts of COTS OSes with-
out detailed debug information, CAB-FUZZ refers to real
programs as a concolic-execution template. Since such
a program frequently interacts with the COTS OSes to
perform a certain operation, it embodies sufficient infor-
mation and logic that constructs pre-contexts for using OS
functions. Thus, if CAB-FUZZ runs a real program until
it calls any target OS function that we are interested in,
CAB-FUZZ is able to prepare with proper pre-contexts
to initiate concolic testing correctly.

We implemented CAB-FUZZ based on a popular con-
colic testing tool, S2E [10], and evaluated it with two
popular COTS OSes, Windows 7 and Windows Server
2008, especially for the 274 device drivers shipped with
them. Since our approaches are general and independent
of the OS, we believe they can be applied to currently
unsupported OSes in the future.

In total CAB-FUZZ discovered 21 unique crashes of
six device drivers developed by Microsoft and ESET (§5).
Among them we reported six reproducible crashes to Mi-
crosoft and one reproducible crash to ESET. Microsoft
confirmed that three of them were undisclosed vulnera-
bilities and could be abused by a guest account for lo-
cal privilege escalation (CVE-2015-6098 and CVE-2016-
0040) and information disclosure in a cryptography driver
(CVE-2016-7219). Especially, the later vulnerability even
existed in the latest versions of Windows (Windows 10
and Windows Server 2016). Microsoft acknowledged the
other three reports demanding administrator privilege and
ESET fixed the bug we reported.

This evaluation result arguably demonstrates the ef-
fectiveness of CAB-FUZZ in finding vulnerabilities in
COTS OSes despite its lack of completeness. CAB-FUZZ
may not be able to trigger sophisticated bugs unrelated to
boundary states. However, because of the fundamental
scalability limitation of concolic testing, complete con-
colic testing is infeasible especially for large software.
One of the contributions of CAB-FUZZ is that it changes
the way we think of concolic testing—sacrificing com-
pleteness in a degree—to make it practical. Microsoft
invests huge engineering efforts and computational re-
sources in finding vulnerabilities, but CAB-FUZZ still
discovered many different vulnerabilities in the Windows
kernel using relatively moderate engineering efforts and
computational resources. Specifically, we want to em-
phasize that Microsoft made fuzzing mandatory for every

untrusted interface for every product, and their fuzzing
solution has been running 24/7 since 2007 for a total of
over 500 machine years [3]. However, despite this ef-
fort, CAB-FUZZ was able to discover 14-year-old bugs
in Windows’ kernel device drivers (§5.3).

This paper makes the following contributions.

• Practical Techniques. CAB-FUZZ makes concolic
testing practical by addressing its two important
challenges: state explosion and missing execution
contexts. CAB-FUZZ prioritizes boundary condi-
tions to trigger a crash before explosion and refers
to a real application to construct proper execution
contexts.

• Evaluation and In-depth Analysis. We analyzed
the implementation of COTS OSes in detail to fig-
ure out why CAB-FUZZ was able to detect their
vulnerabilities effectively compared to conventional
techniques.

• Real-world Impact. CAB-FUZZ discovered 21
unique crashes of device drivers for Windows 7 and
Windows Server 2008. We reported all reproducible
crashes to the vendors. They confirmed that four
of the reported crashes were critical and fixed them.
Specifically, two of them were privilege escalation
vulnerabilities and one was an information disclo-
sure vulnerability in a cryptography driver.

The rest of this paper is organized as follows. §2 de-
scribes the challenges of performing concolic testing for
COTS OSes. §3 depicts CAB-FUZZ and §4 describes its
implementation. §5 evaluates CAB-FUZZ’s vulnerability-
finding effectiveness. §6 discusses the various aspects of
CAB-FUZZ including its limitations, and §7 presents re-
lated work. §8 concludes the paper.

2 Challenges for COTS OSes
This section elaborates on the challenges involved in

performing concolic testing for COTS OSes to clearly
motivate our proposed system, CAB-FUZZ.
2.1 Binary

Automated binary analysis is necessary for production
software (e.g., COTS OS) because (1) it usually contains
third-party binaries and libraries without source code, (2)
its behavior can be changed due to compiler optimization
or linking, and (3) its code can be written with multiple
programming languages, making source code analysis
difficult. However, the following two challenges make
concolic testing for COTS OSes unpractical.
Missing Documentation and Test-suites. When doing
automated testing, especially for COTS OSes, a lack of
source code and document is a critical hurdle because
most of the communication interfaces between user- and
kernel-space are undocumented (often intentionally) and
vary dramatically across versions [21]. Further, COTS

1 // global arrays
2 bool flag_table[125];
3 void (*fn_table[36])(); //function pointer array
4

5 int dispatch_device_io_control(unsigned long ctrl_code,
6 unsigned long *buf) {
7 switch (ctrl_code) {
8 case 0x8fff23cc:
9 case 0x8fff23c8:

10 // sanitizing conditions (simplified)
11 if (buf[0] > 246 || buf[1] > 124 || buf[2] > 36)
12 return -1;
13

14 if (flag_table[buf[1]]) {
15 // buf[2] == 36 -> out-of-bound access
16 (*fn_table[buf[2]])();
17 }
18

19 for (int i = 1; i <= buf[0]; ++i) { ... }
20

21 // NOTE. the below included to comprehensively illustrate
22 // the effectiveness of on-the-fly technique.
23 // Not exist in the original NDProxy
24 case 0x8fff23c4:
25 // set all elements of flag_table to true
26 for (int i = 0; i < 125; i++)
27 flag_table[i] = true;
28 ...
29 }
30 }

Figure 1: A simplified code snippet reconstructed from ND-
Proxy vulnerability (CVE-2013-5065) [11]. It resulted in a local
privilege escalation in Windows XP and Server 2003.

OSes often do not provide test suites such that it is difficult
to generate proper input values that pass input validation
routines at an early state. This prevents the concolic test-
ing procedure from reaching later and deeper stages. Even
the state-of-the-art techniques (S2E [10] and Dowser [19])
rely on unit tests to pass input validation routines.
Handling Symbolic Memory. There are two common
ways to handle symbolic memory in concolic testing:
treating it as a symbolic array (symbolization) or con-
cretizing it (concretization). Memory symbolization is
typically used to avoid the state explosion problem be-
cause it efficiently abstracts the execution state. However,
memory symbolization is not suitable for a COTS binary
because it heavily uses the static information (e.g., ob-
ject size) for performance optimization, which is often
unavailable. Further, it produces complex constraints that
are barely solvable in large-scale, real-world software.

Therefore, CAB-FUZZ concretizes every symbolic
memory as it produces solvable constraints even for large-
scale software. But, it has to cope with the state explosion
problem as we discuss in the next section.

2.2 State Explosion
We illustrate state explosion with an NDProxy vulnera-

bility (CVE-2013-5065) and S2E [10].
CVE-2013-5065. Figure 1 shows a simplified code snip-
pet reverse-engineered from the NDProxy kernel driver.
The dispatch_device_io_control function handles the
requests of a user-mode process. ctrl_code and buf are

inputs from a user-mode process, where ctrl_code repre-
sents an operation and buf contains user data.

According to our analysis, this vulnerability originated
from the misverification of buf[2] at Line 11. buf[2]
is used as an index to refer to fn_table and it should
lie between 0 and 35 to avoid memory access violations.
In principle, having ctrl_code and buf as symbolic vari-
ables, S2E [10] is supposed to identify the offending input
satisfying the vulnerable condition. However, we found it
suffers from state explosion.
State Explosion Problem. We carefully adjusted S2E
to check the code (Figure 1) as a preliminary experiment
(§5.1). Due to state explosion, it took two hours while con-
suming up to 15 GB of memory to detect the vulnerability.
First, S2E explored all feasible paths of symbolic mem-
ory—a memory region a symbolic variable controls. The
code had at least two symbolic memory arrays: fn_table
and flag_table, where fn_table generated 37 states due
to the condition of buf[2] at Line 11, and flag_table
generated 125 states due to the condition of buf[1] at
Line 11. Second, S2E explored all possible paths of a
loop controlled by a symbolic variable. This code had a
loop controlled by buf[0] at Line 19, generating at least
247 states in our observation. In total, S2E generated
more than a million states just for two symbolic memo-
ries and a single loop.

Exploring all feasible paths of a program is difficult
in practice due to state explosion. Instead, CAB-FUZZ
prioritizes interesting paths that more likely trigger vul-
nerabilities. For example, the vulnerability in Figure 1 is
triggered when buf[2] has the upper-bound value 36. Fo-
cusing on such boundary states allows us to detect many
vulnerabilities while avoiding state explosion (§3.2).
2.3 Missing Execution Contexts

To avoid state explosion, concolic testing tools need to
check individual functions instead of the entire program
from the beginning. However, functions can have close
relationships with each other such that we cannot estab-
lish proper contexts when skipping some of them (e.g., a
function for initializing shared variables) [40].

Figure 1 also shows a crash example that context-
unaware concolic testing tools cannot detect (Lines 14, 16,
and 27). In fact, fn_table[buf[2]] will be executed only
after dispatch_device_io_control with 0x8fff23c4 as
ctrl_code has been called first since it depends on a
global array flag_table. When testing such a function,
existing concolic testing tools just treat its input parame-
ters as symbolic variables, ignoring context such as the
sequence of function calls. However, this cannot generate
a crash because no elements of flag_table have the value
required for the crash. Therefore, existing tools cannot
detect the bug in our example.

CAB-FUZZ targets COTS OSes such that it aims to
solve this problem without relying on any prior knowl-

❶�Symbolization
(synthetic or
on-the-fly)

COTS OSes
(e.g., Windows)

Vuln. info
(e.g., classification)

§ 3.2

❷�Concolic
execution

disk image

❸�Analyzing
crashes

BSOD
detector

Crash DB
(e.g., memory dump)

§ 3.1

Figure 2: An overview of CAB-FUZZ’s workflow.

edge (e.g., annotation). Our basic idea is to run a real
program, instead of a synthetic program, to let it construct
pre-contexts. Later, when the program is calling a target
function, CAB-FUZZ initiates concolic testing on-the-fly.
This allows us to get enough pre-contexts to test the target
function with minimal overhead (details are in §3.1.2.)
3 Design

In this section, we describe in detail CAB-FUZZ’s
design and the techniques that allow for concolic exe-
cution for COTS OSes. CAB-FUZZ is a full-fledged
vulnerability-detection system for COTS binaries, and
in particular, it aims to make concolic testing (see §2)
practical in the context of COTS OSes.

Figure 2 depicts an overview of CAB-FUZZ. First, it
takes a disk image of the targeted COTS OS as an in-
put. Then, it determines when to start symbolic execution
either by synthetic symbolization (§3.1.1) or on-the-fly
symbolization (§3.1.2). After deciding what to symbolize,
CAB-FUZZ performs the concolic testing. In order to ad-
dress the state explosion problem, CAB-FUZZ employs
two new techniques, namely, array-boundary prioritiza-
tion (§3.2.1) and loop-boundary prioritization (§3.2.2),
which focus on boundary states (§3.2). Once CAB-FUZZ
observes a kernel crash during the symbolic execution, it
attempts to generate concrete input and a crash report to
help reproduce the observed crash.
3.1 Symbolization for Kernel

The goal of CAB-FUZZ is to detect the vulnerabili-
ties in the kernel using concolic testing. In particular,
CAB-FUZZ symbolizes a certain memory location dur-
ing kernel execution such that any instruction involv-
ing this location is symbolically executed. Although
this procedure resembles generic concolic testing meth-
ods, we specialize CAB-FUZZ for handling COTS OSes
by considering two important issues: when to start the
symbolic execution and what memory regions to sym-
bolize. The kernel can be considered as a long-running
process or system service, and the majority of its func-
tional components depend on previous kernel execution
states. CAB-FUZZ takes two different approaches in this
regard: synthetic symbolization (§3.1.1) and on-the-fly
symbolization (§3.1.2). Overall, synthetic symbolization
launches a previously built user-space program and ex-
plicitly starts the symbolic execution phase. On the other
hand, on-the-fly symbolization retrofits the existing user-

space programs to better construct the legitimate kernel
execution contexts and seamlessly starts the symbolic
execution at a certain execution point.
3.1.1 Synthetic Symbolization

Synthetic symbolization launches a previously built
user-space program that initiates the symbolic execution.
This largely follows previous concolic execution tech-
niques in that CAB-FUZZ also launches synthetic pro-
grams to start the symbolic execution phase. The key
difference is that CAB-FUZZ tailors the user-space pro-
grams to test kernel device drivers. Our synthetic pro-
gram invokes a function controlling an IO device (i.e.,
NtDeviceIoControlFile) while symbolizing its parame-
ters.

Figure 3 shows example code to test
NtDeviceIoControlFile. In particular, for each
device driver, we obtain the corresponding device driver
handle at Line 17. Using this handle, CAB-FUZZ
invokes NtDeviceIoControlFile while symbolizing the
two parameters, ctrl_code and in_buf, which primarily
control the behavior of a device driver (see Figure 1). We
observed that symbolizing the size of in_buf resulted in
state explosion, leading us to decide not to symbolize it
(explained later). The memory symbolization is carried
out by utilizing existing runtime helper functions in the
concolic execution engine (i.e., s2e_make_symbolic).
Once these two parameters are symbolized, CAB-FUZZ
symbolically interprets these parameters while executing
NtDeviceIoControlFile.
State Explosion due to Input Buffer Size Symboliza-
tion. We explain why input buffer size symbolization
generates state explosion. Windows provides three meth-
ods to deliver a user-space input buffer to the kernel,
configured using the lowest two bits of ctrl_code [33].
The first method, buffered I/O, allocates a kernel memory
buffer whose size is the same as that of a user input buffer
and copies the input buffer’s content to the kernel buffer.
The buffered I/O, however, generates state explosion, as
shown in Figure 4. At Line 9, in_buf_size is used as
a condition of the for loop, so it generates 0x7FFF0000
states even with the constraint at Line 7.

The other two methods (direct I/O and neither buffered
nor direct I/O) do not directly generate state explosion
since they let a kernel device driver access the user buffer
via a memory descriptor list (MDL) or virtual address.
However, since we focus on COTS OSes, we do not know
which method a target driver uses to access a user input
buffer. Consequently, CAB-FUZZ should symbolize the
for loop no matter which method the target driver uses.
3.1.2 On-the-Fly Symbolization

As shown in §2.3, existing concolic testing tools can-
not check individual target functions due to the lack of
context awareness. To this end, on-the-fly symbolization
retrofits the real user-space programs to better construct

1 HANDLE device_handle;
2 unsigned long in_buf[BUF_SIZE] = {0};
3 unsigned long out_buf[BUF_SIZE] = {0};
4 unsigned long ctrl_code = 0;
5 NTSTATUS status;
6 UNICODE_STRING device_name;
7 OBJECT_ATTRIBUTES object_attributes;
8 ACCESS_MASK max_allowed_access;
9 IO_STATUS_BLOCK io_status_block;

10

11 // get maximum access allowed for the target device driver
12 max_allowed_access = get_allowed_access(&device_name);
13

14 obect_attributes.ObjectName = &device_name;
15

16 // get handle of the target device driver
17 status = NtCreateFile(&device_handle, max_allowed_access,
18 &object_attributes, ...);
19

20 if (status)
21 return -1; //cannot get a handle
22

23 // initate concolic execution and symoblize params
24 cab_start_concolic_testing();
25

26 s2e_make_symbolic(&ctrl_code, sizeof(ctrl_code), "code");
27 s2e_make_symbolic(&in_buf, sizeof(in_buf), "buf");
28

29 // targeted call
30 NtDeviceIoControlFile(
31 device_handle, // handle to target device
32 NULL, // A handle to an event
33 NULL, // ApcRoutine procedure
34 NULL, // a pointer to pass to ApcRoutine
35 &io_status_block, // receive the final completion status
36 ctrl_code, // a control function to be executed
37 &in_buf, // input buffer
38 BUF_SIZE, // input buffer size
39 &out_buf, // output buffer
40 BUF_SIZE); // output buffer size
41

42 // terminate and generate a testcase
43 s2e_kill_state(0, "Successfully done");

Figure 3: Example code of the synthetic symbolization testing
the NtDeviceIoControlFile function (see §3.1.1 for explana-
tion). get_allowed_access() is related to the access permission
per the driver (see §4.1 for more details). The prototype of
NtDeviceIoControlFile function can be found in [35].

the legitimate kernel execution contexts and seamlessly
starts the symbolic execution at a certain execution point.
Specifically, unlike existing concolic testing tools, our
on-the-fly concolic testing tries to satisfy the pre-contexts
of a function to crash in our best effort by following the
real execution procedure of a COTS binary, as shown in
Figure 5. It (1) runs and monitors the execution of a user-
space program, (2) lets the program and kernel construct
pre-contexts, (3) monitors input values to a target func-
tion and selects some of them, and (4) performs runtime
concolic testing while designating the selected values as
symbolic variables.

For example, to test dispatch_device_io_control
in Figure 1, our tool runs a user-space program con-
taining the code, ensuring the initialization has been
called (i.e., ctrl_code = 0x8fff23c4) before other
NtDeviceIoControlFile calls. Since the pre-context is
now fulfilled, concolic testing can automatically generate
the value that results in a crash.

1 // ctrl_code, in_buf_size, and in_buf are given from
2 // a user-space process. kernel_mem is a kernel-space buffer
3

4 #define USER_ADDR_MAX 0x7fff0000
5

6 if (ctrl_code & 3 == 0) { // Buffered I/O
7 if (in_buf_size < USER_ADDR_MAX) {
8 ...
9 for (int i = 0; i < in_buf_size; i++) {

10 kernel_mem[i] = in_buf[i];
11 }
12 ...
13 }
14 }

Figure 4: Pseudo code showing why symbolizing an input
buffer size generates state explosion during concolic testing.

Program

Kernel

❶�Execute
a program ❷�Construct pre-contexts

 of a target function

❸�Call the function

❹�Initiate runtime
concolic testing

User-space Kernel-space

Kernel data
structures

Global
variables

Figure 5: Overall procedures of on-the-fly concolic test-
ing: 1 CAB-FUZZ executes a real user-space program; 2
CAB-FUZZ lets the program and kernel interact with each other
to construct the pre-contexts of a target function; 3 the pro-
gram calls a target function; 4 CAB-FUZZ hooks the event
and initiates runtime concolic testing from this point.

Furthermore, our on-the-fly concolic testing method
can work with COTS binaries that provide only partial
information. Many COTS binaries lack full documen-
tation, so we cannot obtain all the information to test
target functions. This makes existing concolic testing
tools ineffective in practice because it is difficult to pass
the sanitization routines without satisfying basic condi-
tions among inputs. Even in such a case, our on-the-fly
symbolization has a chance to bypass uninteresting saniti-
zation routines, yet effectively test the target function by
deriving input conditions from a real execution [46].

3.2 Boundary-state Prioritization
In this section, we introduce boundary-state prioritiza-

tion that attempts to overcome the state explosion due to
symbolic arrays and loops in COTS OSes. The key idea
of the boundary-state prioritization is to defer the analysis
of uninteresting states based on the likelihood of security
vulnerability (e.g., memory corruption and disclosure).
In other words, we focus on triggering security vulnera-
bilities via concolic execution while compromising the
completeness of testing for performance and scalability.

❶ Identify symbolic
variables and constraints ❷ Prioritize array boundaries ❸ Prioritize loop boundaries

buf[2] = 0

buf[2] = 36

buf[2] = 13

buf[0] = 0: no loop exec

buf[0] = 1

buf[0] = 246
(maximum)

...
if (buf[0] > 246
 && buf[1] > 124
 && buf[2] > 36)
 return -1;

if (flag_table[buf[1]])
 (*fn_table[buf[2]])();

for (int i = 1; i <= buf[0]; ++i) { ... }
...

...
if (flag_table[buf[1]])
 (*fn_table[0])();

for (int i = 1; i <= buf[0]; ++i) { ... }
...

...
if (flag_table[buf[1]])
 (*fn_table[13])();

for (int i = 1; i <= buf[0]; ++i) { ... }
...

...
if (flag_table[buf[1]])
 (*fn_table[36])();

for (int i = 1; i <= buf[0]; ++i) { ... }
...

...
if (flag_table[buf[1]])
 (*fn_table[36])();

for (int i = 1; i <= 0; ++i) { ... }
...

...
if (flag_table[buf[1]])
 (*fn_table[36])();

for (int i = 1; i <= 1; ++i) { ... }
...

...
if (flag_table[buf[1]])
 (*fn_table[36])();

for (int i = 1; i <= 246; ++i) { ... }
...

instantiation

defer

concretization

Figure 6: Overall procedures of boundary-state prioritization: 1 CAB-FUZZ identifies symbolic variables and constraints;
2 CAB-FUZZ selectively concretizes symbolic memories according to their boundary information; 3 CAB-FUZZ selectively
concretizes loops using their boundary information (in this example, we do not symbolized flag_table for simplicity.)

Figure 6 shows the overall procedures. First, it figures
out constraints that limit the range of symbolic variables
using KLEE’s range analysis function [6]. Second, it de-
tects symbolic memories controlled by the symbolic vari-
ables and selectively concretizes them according to their
boundary information (array-boundary prioritization).
Third, it detects loops and selectively iterates through
them using the boundary information (loop-boundary pri-
oritization). Without our prioritization techniques, the
total number of states exponentially increases according
to the number of symbolic memories and loops. If the
number of symbolic arrays and loops is n and the number
of possible states of each symbolic array or loop is si, the
total number of states to explore will be ∏

n
i=1 si. In con-

trast, our techniques test ∏
n
i=1 c = cn states first, where c

is a constant.

3.2.1 Array-boundary Prioritization

We explain our array-boundary prioritization technique
with two symbolic memories flag_table and fn_table
in Figure 1 and Figure 6. As we discussed in §2.2,
flag_table generates 125 states and fn_table generates
37 states, which result in 125×37 = 4,625 states total.

Exploring all states is challenging, especially when
the length of a target array is long and/or many sym-
bolic memories and loops are associated with it. Instead,
CAB-FUZZ drives symbolic execution to visit boundary
cases first, which highly likely have problems. Specifi-
cally, CAB-FUZZ creates two states for each symbolic
memory by solving the associated constraints: the lowest
memory address and the highest memory address. Note
that the two boundary states could result in exceptions
due to crashes or boundary checks. To proceed the test,

CAB-FUZZ additionally creates a state for an arbitrary
memory address between them.

The second step of Figure 6 shows array-boundary
prioritization for fn_table. CAB-FUZZ prioritizes three
states according to the associated symbolic variable’s
constraints: the lowest memory address fn_table[0], the
highest memory address fn_table[36], and an arbitrary
memory address between them, e.g., fn_table[13].
3.2.2 Loop-boundary Prioritization

Handling a loop can result in state explosion [18]. To
avoid it, CAB-FUZZ limits the number of state forks at
the same loop to focus on boundary states. Specifically, it
focuses on only three states: a state with no loop execu-
tion, a state with a single loop execution, and a state with
the largest number of loop executions. Figure 6 has a loop
whose number of iterations depends on buf[0]. Since
its values lie between 0 and 246, this loop generates 247
states. To avoid such state explosion, our loop-boundary
prioritization method focuses on three kinds of loop exe-
cutions: 0, 1, and maximum (246) times.

In total, our method generates only 27 states first,
flag_table (3) × fn_table (3) × the loop (3), including
the boundary condition causing a crash, buf[2] == 36.

4 Implementation
We implemented CAB-FUZZ by extending S2E [10].

In particular, we focused on crashing Windows device
drivers, which are popular and complex commodity
COTS kernel binaries. In total, we wrote around 2,000
lines of new code (mixed with C/C++, Lua, and Python).

4.1 Synthetic Symbolization
We used NtCreateFile to obtain the handlers for de-

vice drivers. As opposed to using the typical CreateFile,

this approach allowed us to access all device drivers, in-
cluding those of all internal and undocumented devices.

When opening or creating a file object using
NtCreateFile, we can specify 13 different access rights
for the file object [34]. Since we aimed to obtain and
test as diverse access rights as possible, we repeatedly
invoked NtCreateFile in get_allowed_access to obtain
all possibly allowed permission accesses.
4.2 On-the-fly Symbolization
Target API. To detect device driver bugs with on-the-fly
symbolization, we interpose the NtDeviceIoControlFile
function, which is the lowest user-level internal API for
communicating with the kernel devices. Any user-space
process attempting to access a device driver eventually
calls the function, so hooking it allows us to test all the
device drivers used during the on-the-fly symbolization
phase. The below half of Figure 3 shows the specification
of NtDeviceIoControlFile, and CAB-FUZZ symbolizes
in_buf and ctrl_code on-the-fly.
Fulfilling Pre-context. We inferred the pre-context
of NtDeviceIoControlFile by running real user-space
programs using this function during their normal execu-
tion. We tried to find such programs with an assumption:
system management and antivirus software would use it
because they frequently access device drivers. Finally, we
found 16 programs (e.g., dxdiag.exe and perfmon.msc)
accessing 15 different drivers (e.g., KsecDD and WMI-
DataDevice) during their execution1. We used these target
programs to test the corresponding device drivers during
the on-the-fly symbolization phase (§5.2).
4.3 Boundary-state Prioritization
Prioritizing Array Boundaries. For a symbolic mem-
ory array, CAB-FUZZ estimates its lower and upper
boundary addresses and one arbitrary address between
them. CAB-FUZZ uses the getRange method of the
klee::Solver to compute these boundary addresses [6].
This method receives an expression as input and returns
a pair of the minimum and maximum values of the ex-
pression. Since getRange is computationally heavy, in-
stead of invoking this function in every symbolic memory
access, CAB-FUZZ proceeds only if the targeted mem-
ory has triggered a state forking at one point in the past.
Specifically, if state forking has never been triggered,
CAB-FUZZ does not perform any prioritization for the
memory, as we found that such memory usually has only
one concrete value. If the state forking is triggered at the
same location, CAB-FUZZ performs prioritization when
it observes the memory again later.
Prioritizing Loop Boundaries. CAB-FUZZ focuses
on three states of each loop: no, single, and maximum
execution (§3.2.2). However, identifying how many times
a loop will be executed is difficult because it varies ac-

1Due to the space limit, we do not enumerate all of them.

cording to input variables and compiler optimization tech-
niques (e.g., loop unrolling [45]). We develop a practical
loop-boundary prioritization technique that does not suf-
fer from variable loop conditions. Whenever CAB-FUZZ
encounters a loop, it first generates two forking states: no
and single iteration of the loop. Then, to get the maximum
number of loop executions, it repeatedly forks and kills
states until it observes the last state forking, which would
be the maximum because CAB-FUZZ concretely and se-
quentially executes the loop until it terminates. During
state forking, CAB-FUZZ does not call the solver to min-
imize overhead; it calls the solver only when generating
test cases. Also, we confirmed that killing unnecessary
loop states had negligible performance overhead.

4.4 Analyzing Crashes
CAB-FUZZ generated many inputs that crashed the

Windows kernel, but a large portion of them may not be
unique vulnerabilities that require in-depth analysis. A
typical technique of classifying such crashes is to inspect
the call stack at the time of the crash, but it is difficult to
identify stack information without debug symbols. More
seriously, we found that many memory access violations
are delegated to the default exception handler, making it
even harder to uniquely identify the call stack information
of the kernel thread that actually raised the exception.

To solve this problem, CAB-FUZZ records and in-
spects the blue screen of death (BSOD) information when
the Windows kernel executes the KeBugCheck* function
to gradually bring down the computer [32]. Specifically,
CAB-FUZZ uses the function’s BugCheckCode value
representing a BSOD reason and instruction address
where the exception occurred to differentiate crashes.
CAB-FUZZ treats two crashes as different when (1) they
have different BugCheckCode values or (2) they have
the same BugCheckCode value, but their instruction ad-
dresses belong to different functions.

5 Evaluation
We evaluate the effectiveness of CAB-FUZZ in finding

security vulnerabilities in the Windows device drivers.
Table 1 summarizes all new unique crashes discovered
by CAB-FUZZ. In general, our evaluation consists of
two categories targeting synthetic symbolization (§5.1)
and on-the-fly symbolization (§5.2). In particular, our
evaluation aims at answering the following questions:

• Per synthetic symbolization, how efficiently did
CAB-FUZZ detect the known vulnerability (Fig-
ure 1) compared to the conventional concolic testing
tool? (§5.1.1)

• Per synthetic and on-the-fly symbolization, how
many new unique crashes did CAB-FUZZ discover?
(§5.1.2 and §5.2.1)

of Crashes

Total Synthetic (Prioritization) On-the-fly

Off On

NDIS†,§ 11 5 10 -
SrvAdmin†,§ 4 4 4 -
NSI§ 2 2 2 0
ASYNCMAC†,§ 1 1 1 -
FileInfo§ 2 0 0 2
ehdrv†,§ 1 0 0 1

Total 21 12 17 3
†: Windows 7, §: Windows Server 2008

Table 1: The list of newly discovered unique crashes by
CAB-FUZZ among the 274 drivers we tested. The total number
of discovered unique crashes is smaller than the summation of
the other three columns (two synthetic and one on-the-fly cases)
because we removed duplicate crashes and only counted the
unique crashes.

• Per synthetic and on-the-fly symbolization, what par-
ticular characteristics did newly discovered crashes
exhibit? (§5.1.3 and §5.2.2)

Experimental Setup. Our experiments were performed
on 3 GHz 8-core Intel Xeon E5 CPU with 48 GB of
memory. We ran CAB-FUZZ with the latest versions of
Windows 7 and Windows Server 2008 as of April 2016.
For example, two of the drivers for which CAB-FUZZ
found crashes, NDIS and SrvAdmin, were updated in
December 2015 and October 2015, respectively. The
detailed configuration setting for CAB-FUZZ is further
described in each subsection if required.
5.1 Synthetic Symbolization

To show the effectiveness of the synthetic symbol-
ization and boundary prioritization techniques, we car-
ried out the following two experiments. First, to see if
the implementation of CAB-FUZZ can address the chal-
lenges (especially in handling state explosion), we applied
boundary-state prioritization techniques to the known ND-
Proxy vulnerability and compared the result before ap-
plying (§5.1.1). Next, we describe our experiences in
applying CAB-FUZZ to discover new crashes in the Win-
dows kernel driver using synthetic symbolization tech-
niques (§5.1.2). Further, we manually analyzed all unique
crashes newly discovered by CAB-FUZZ (§5.1.3).
Configuration. We configured CAB-FUZZ to target
186 and 88 kernel device drivers on Windows 7 and Win-
dows Server 2008, respectively (274 drivers in total).
Among them, CAB-FUZZ detected six device drivers
with 21 unique crashes (Table 1). For each device driver,
we specified ctrl_code and in_buf as symbolic variables
(shown in Figure 3). It is worth nothing that due to the
space limit of this paper, we have only presented the
results with a random search strategy, which showed

Prioritization Time (s) #States

None 7,196 384,817
Loop boundary 516 30,604
Array boundary 2 78
Both 2 78

Table 2: The effectiveness of boundary-state prioritization tech-
niques (based on the synthetic symbolization) to detect the ND-
Proxy vulnerability: Time shows the elapsed time and #States
shows the number of explored states to detect the vulnerability.

the best performance overall compared to other depth-
first and breadth-first search strategies. Since the random
search algorithm may produce different evaluation results
due to its random nature, we ran it five times per evalu-
ation and computed the average. In addition, when we
found the same crash of the same driver in Windows 7 and
Windows Server 2008, we further tested it in Windows 7
only since it is the recent version.
5.1.1 Detecting Known Vulnerability

We measured the time taken to find the NDProxy vul-
nerability (Figure 1) before and after applying the pri-
oritization techniques. We also measured the number
of program states that need to be explored to find the
vulnerability.

When both array- and loop-boundary prioritization
techniques were applied, CAB-FUZZ found the NDProxy
vulnerability within 2 seconds (Table 2). It took 2 seconds
with the array-boundary prioritization and 516 seconds
with the loop-boundary prioritization if each technique
was individually applied. The array-boundary prioritiza-
tion is more effective than the loop-boundary prioritiza-
tion in the case of the NDProxy vulnerability because the
state related to the crash (i.e., buf[2] == 36) is quickly
created by the array-boundary prioritization technique, as
shown in Figure 1.

However, when none of prioritization techniques were
applied, it took 7,196 seconds to find the vulnerability.
This significant slowdown is caused by the huge num-
ber of states that need to be covered in order to find
the vulnerability—384,817 states in total, which is 4,934
times larger than the number of states when both were
applied.
5.1.2 Newly Discovered Crashes

To determine the effectiveness of our synthetic sym-
bolization with and without prioritization techniques, we
applied CAB-FUZZ to all kernel device drivers in Win-
dows 7 and Windows Server 2008. In total, CAB-FUZZ
found 18 new unique crashes from four different device
drivers, as shown in Table 1. Specifically, the prioritiza-
tion techniques allowed CAB-FUZZ to detect six more
unique crashes while missing one unique crash. Thus, we
believe this technique is effective in practice.

Driver No prioritization Prioritization

#Crash Time (s) #States Mem. (MB) Time (s) #States Mem. (MB)

NDIS 1 837 151 5,537 287 58 4,813
2 871 156 5,545 467 86 4,971
3 1,763 271 7,690 617 124 5,027
4 5,066 637 14,946 824 171 5,461
5 8,682 1,180 22,768 1,202 214 6,093
6 - - - 1,930 306 7,980
7 - - - 4,381 586 9,781
8 - - - 4,977 637 10,376
9 - - - 5,018 642 10,377
10 - - - 6,056 704 10,893

SrvAdmin 1 1 23 4,321 2 23 4,325
2 3 54 4,359 6 71 4,401
3 51 126 4,464 51 126 4,476
4 1,892 2,319 15,321 657 953 5,390

NSI 1 1 2 4,356 1 2 4,357
2 1,951 7,622 5,979 1,092 1,952 5,843

Table 3: Detailed experiment results of the four kernel device
drivers tested by CAB-FUZZ with and without prioritization
techniques: #Crash represents how many crashed observed
during experiments; Time represents the elapsed time; #States
represents the number of explored states; and Memory repre-
sents the consumed memory to detect each crash. All values are
averaged over five runs.

5.1.3 Effectiveness of Boundary-state Prioritization
To clearly understand the effectiveness of our prioritiza-

tion techniques, we manually analyzed why CAB-FUZZ
without our prioritization techniques cannot detect the six
unique crashes and what is the root cause of its slowdown.
Note that our prioritization techniques were ineffective
to ASYNCMAC (elapsed time and memory consump-
tion were almost the same,) so we skipped analyzing it in
depth. Also, we were not able to test their effectiveness
with other device drivers because CAB-FUZZ was not
able to detect their crashes. Table 3 represents how many
crashes were observed during our evaluation along with
elapsed time, the number of tested states, and consumed
memory. All results are averaged over five runs. Note that,
because we use a random search strategy, it is difficult to
directly compare each crash.
NDIS. The six crashes that the prioritization technique
detected were due to input buffers whose values were used
as offsets of a symbolic array. When there were no rou-
tines to check the range of input buffer values or the values
were incorrect, crashes were generated due to invalid off-
sets. However, without prioritization, CAB-FUZZ was
unable to reproduce it due to memory exhaustion.

Among the five crashes that CAB-FUZZ with pri-
oritization was able to generate but CAB-FUZZ with-
out prioritization was unable to do, we explain a crash
at ndisNsiGetNetworkInfo function of ndis.sys in de-
tail. The function had a symbolic memory array using
in_buf[5] as an offset, but did not have any routine to
check its value. As a result, when the symbolic array
pointed to invalid memory and there was a write attempt

to the memory, a crash occurred. This happened when
the value of in_buf[5] was at the boundary condition:
whether it was larger than or equal to 0xbc0, but, without
prioritization, CAB-FUZZ could not generate this state
due to a lack of available memory (it concretized ∼30
values of in_buf[5] before termination.)

On the other hand, the single crash that CAB-FUZZ
with prioritization could not detect was due to the
loop-boundary prioritization technique. We found
that the ndisNsiGetInterfaceRodEnumObject function
of ndis.sys generated a crash when it ran a loop four times
with a specific condition. Note that our loop-boundary
prioritization technique runs a loop 0, 1, or a maximum
number of times, so it cannot cover such a specific case.
To confirm it, we applied CAB-FUZZ only with the array-
boundary prioritization to NDIS. We could trigger the
specific case also, though it took about one hour longer.
SrvAdmin. We analyzed SrvAdmin and confirmed that
the 2.9× slowdown of CAB-FUZZ without prioritiza-
tion was due to the state explosion caused by a specific
loop located at the SvcAliasEnumApiHandler function of
srvnet.sys. This loop was not related to the crash we
found, but it generated 8,285 states that were approxi-
mately 20% of the entire states (41,279) of SrvAdmin.
With the loop-boundary prioritization, CAB-FUZZ could
postpone less important states, so it detected the crash
earlier.
NSI. We analyzed NSI and confirmed that our prioritiza-
tion techniques made CAB-FUZZ detect the two unique
crashes 1.8× faster. While symbolic arrays or loops were
not directly related to these crashes, we found that priori-
tization techniques helped concolic testing avoid the state
explosion, so that it kept exploring the program states and
finally reached the vulnerable program state.

5.2 On-the-Fly Symbolization
We evaluate the effectiveness of on-the-fly symbol-

ization. We summarize the new crashes the on-the-fly
technique detected (§5.2.1) and analyze them in detail to
show how this technique was able to detect them (§5.2.2).
5.2.1 Newly Discovered Crashes

Overall, CAB-FUZZ identified three unique crashes
using on-the-fly symbolization (Table 1). Note that the
crashes found by the two techniques were not overlapped
because (1) the on-the-fly technique was unable to test
some drivers (NDIS, SrvAdmin, and ASYNCMAC) be-
cause we had no reference applications accessing them
and (2) some crashes (in NSI) were triggered only if they
had improper pre-contexts. Therefore, we believe both
techniques are complementary to each other.
5.2.2 Effectiveness of On-the-fly Symbolization

To figure out how the on-the-fly technique helps find
a vulnerability, we manually analyzed three crashes that
CAB-FUZZ found in FileInfo and ehdrv device drivers.

of Crashes

Total Synthetic On-the-fly

WMIDataDevice 2 1 1
TCP 3 3 0

Total 5 4 1

Table 4: The crashes of Windows XP CAB-FUZZ found.

FileInfo. We found two reasons why the on-the-fly tech-
nique was able to find these cases and why synthetic sym-
bolization was not. First, FileInfo was loaded only when
a certain application started (e.g., perfmon.msc). Second,
FileInfo sanitized an input buffer size at an early stage; it
should be 12. Running perfmon.msc satisfied both condi-
tions for the on-the-fly technique, but a synthetic program
was unable to do that.
ehdrv. ehdrv was a third-party driver installed by ESET
Smart Security 9, which was used by SysInspector.exe
of the vendor. The on-the-fly technique detected a mem-
ory corruption crash of ehdrv on Windows 7 by running
SysInspector.exe before symbolization. In contrast, the
synthetic technique cannot detect it because ehdrv had a
security feature: it was only accessible by an authorized
process like SysInspector.exe, which cannot be satisfied
by a synthetic program.

5.3 Fourteen-Year-Old Bugs
We applied CAB-FUZZ to the latest version of Win-

dows XP (April 2014) and found five unique crashes
(Table 4). Among them, a crash of WMIDataDevice and
all three crashes of TCP were also observed in the initial
version of Windows XP (August 2001), implying nobody
detected them for about 14 years.

6 Discussion
In this section we explain some limitations of

CAB-FUZZ.
Boundary-state Prioritization. Our boundary-state pri-
oritization methods assume that the symbolic memory
under consideration stores data such that values between
boundaries are less important; that is, we sacrifice some
completeness for efficient detection. However, if the sym-
bolic memory is related to control flow (e.g., jump table
and virtual function table), we should consider all the
values to maintain code coverage. To solve this problem,
we plan to adopt static analysis in our system. Whenever
it detects a symbolic memory array, it performs static
analysis to know whether the symbolic array stores in-
struction addresses for indirect calls or jumps. In such
a case, it checks all the values of the symbolic array to
enhance code coverage. Also, our methods cannot handle
data structures with undefined size. We plan to enhance
CAB-FUZZ to support this in the future. For example,
we can adopt UC-KLEE [14, 39, 40]-like approaches.

On-the-fly Symbolization. Our on-the-fly approach is
a best-effort approach. If we cannot find programs con-
structing pre-contexts for vulnerable functions, it cannot
crash them. Thus, this approach is not suitable for detect-
ing the security vulnerabilities of rarely used functions.
To detect vulnerabilities in such functions, one would
need to run synthetic and on-the-fly testing in parallel.
Manual efforts. Currently, we manually specify a tar-
get API, NtDeviceIoControlFile, for the both synthetic
and on-the-fly symbolizations, and programs construct-
ing pre-contexts for the on-the-fly symbolization. In the
future, we will explore how to automate both phases for
enhancing CAB-FUZZ’s scalability.

7 Related Work
In this section, we introduce previous work related to

CAB-FUZZ. Among a large number of studies on sym-
bolic and concolic execution, we focus on four research
topics closely related to CAB-FUZZ: (1) binary-level
symbolic execution, (2) kernel and device driver testing,
(3) boundary value analysis, (4) overflow detection, and
(5) lazy initialization.
Binary-level Symbolic Execution. Symbolic exe-
cution was originally designed to work with source
code [4, 7, 12, 16, 29, 30], and extended to test binary pro-
grams lacking source code and detailed debug information
(e.g., proprietary software and malware). SAGE [3, 17] is
the earliest effort to apply symbolic execution to binary
programs and many schemes such as SmartFuzz [36],
LESE [42], IntScope [47], S2E [10], FuzzBALL [2, 31],
Mayhem [9], MegaPoint [1], and DIODE [44] follow it.
Among them, only S2E and FuzzBALL are designed to
test OS kernels, while FuzzBALL does not support Win-
dows binaries. Consequently, S2E is the only scheme that
we can directly compare with CAB-FUZZ.
Kernel and Device Driver Testing. CAB-FUZZ is de-
signed to test COTS OSes and device drivers. To the best
of our knowledge, only a few studies apply concolic ex-
ecution to OSes and device drivers. Yang et al. [50] use
their EXE system [7] to create a symbolic disk for Linux
file system testing. Their system relies on file system code
instrumentation to create the symbolic disk, so it cannot
be applied to COTS OSes directly.

DDT [27] is a QEMU-based system to test closed-
source binary device drivers for Windows, which became
a part of S2E [10]. It can test device drivers without real
hardware by creating symbolic hardware (e.g., network
interface card and sound card). However, without manual
annotations and configurations, it neither identifies device
driver interfaces due to lack of kernel symbols nor meets
conditions to initialize them.

SymDrive [41] is an S2E-based system to test Linux
and FreeBSD drivers without devices, while overcoming
the limitation of DDT. It uses a static analysis to auto-

matically identify driver code’s key features such as entry
point and loop, so, unlike DDT, it can correctly initialize
device drivers without requiring manual effort. However,
it also relies on source code instrumentation, so it cannot
be applied to COTS OSes lacking debug information.

Trinity [24] and IOCTL Fuzzer [15] are system call
fuzzers based on Linux and Windows, respectively. Be-
fore fuzzing a certain system call, they also try to con-
struct pre-contexts, which is similar to CAB-FUZZ’s
on-the-fly technique. The key difference here is that
CAB-FUZZ symbolizes the input, but these previous ef-
forts randomly mutate input values only once. Thus, they
have difficulties in detecting sophisticated conditions to
trigger vulnerabilities.

Unlike the other systems described here, CAB-FUZZ
does not rely on source code analysis or instrumentation,
so it can be freely applied to COTS OSes. Furthermore, it
does not suffer from the initialization problem thanks to
its on-the-fly concolic testing.

Boundary Value Analysis. Several researchers have
proposed boundary value analysis techniques [22, 23,
26, 38] to maximize branch coverage. For example,
ADSE [22, 23] checks constraints at every path and loop
and augments conditions to figure out which conditions
generate maximum test cases. These approaches can de-
tect the correct boundary conditions; however, the overall
conditions will easily explode if we apply them to com-
plex software, e.g., OSes. In contrast, CAB-FUZZ creates
only two boundary states plus one arbitrary state for each
symbolic array and loop such that it practically mitigates
the state explosion problem.

Overflow Detection. CAB-FUZZ focuses on the bound-
aries of symbolic memories and loops because such
boundaries could trigger stack or heap over/underflows.
Several studies attempt to specialize symbolic execution
to detect overflow and underflows. IntScope [47] and
SmartFuzz [36] use symbolic execution to detect inte-
ger overflows. In addition, SmartFuzz covers integer
underflows, narrowing conversions, and signed/unsigned
conversions. Dowser [19] considers a buffer in a loop
to detect its overflows and underflows. DIODE [44]’s
goal is to find integer overflow errors at target memory
locations. It uses a fine-grained dynamic taint analysis to
identify all memory allocation sites, extracts target and
branch constraints from instrumented execution, solves
the constrains, and performs goal-directed conditional
branch enforcement.

Although these methods work well, they rely on heavy
static analysis and/or taint analysis to detect specific in-
tegers or buffers that could result in overflows. In con-
trast, CAB-FUZZ does not use such complicated analy-
sis techniques when detecting boundaries, so it is more
lightweight and practical than the previous techniques.

Lazy Initialization. CAB-FUZZ’s on-the-fly concolic
testing is a kind of lazy initialization technique [25, 49]
that defers the initialization of memory or a data structure
until it is actually used. Firmalice [43] is a binary analysis
framework to analyze the firmware of embedded devices.
It uses a lazy initialization technique to test memory be-
cause it does not know which code needs to be executed
to initialize specific memory regions. When Firmalice
detects a memory read from uninitialized memory during
analysis, it pauses the execution and conducts the fol-
lowing procedures. First, it identifies other procedures
that contain direct writes to the memory. Next, it labels
the procedures as initialization procedures. Last, it du-
plicates the state: (1) resumes the execution without any
modification to avoid possible crashes and (2) runs the
initialization procedures before resuming the execution.
However, a static program analysis is necessary to detect
such initialization procedures.

UC-KLEE [14, 39, 40] directly tests individual func-
tions instead of the whole program to improve scalability.
To cope with missing pre-contexts of individual functions,
it automatically generates symbolic inputs using lazy ini-
tialization. However, it still suffers from false positives
due to invariants of data structures, state machines, and
APIs, so it relies on manual annotations to reduce them.

On the contrary, CAB-FUZZ’s on-the-fly concolic test-
ing neither requires sophisticated static program analysis
nor suffers from false positives. Also, it can be fully auto-
mated because it uses the real execution procedures of a
target program.
8 Conclusion

In this paper, we presented a practical concolic testing
tool, CAB-FUZZ, to analyze COTS OSes. CAB-FUZZ
introduced two new memory symbolization techniques—
synthetic symbolization and on-the-fly symbolization—
allowing us to analyze COTS OSes without debug infor-
mation and pre-contexts. It employed two boundary-state
prioritization techniques: array- and loop-boundary prior-
itization, allowing us to prioritize potentially vulnerable
paths. Evaluation results showed that CAB-FUZZ can
detect 21 undisclosed unique crashes on Windows 7 and
Windows Server 2008 while avoiding the state explosion
problem.
Acknowledgements. We thank the anonymous review-
ers and our shepherd, Mihai Christodorescu, for their
helpful feedback. This research was supported by the
NSF award DGE-1500084, CNS-1563848, CRI-1629851
ONR under grant N000141512162, DARPA TC program
under contract No. DARPA FA8650-15-C-7556, DARPA
XD3 program under contract No. DARPA HR0011-16-C-
0059, and ETRI MSIP/IITP[B0101-15-0644].

References
[1] AVGERINOS, T., REBERT, A., CHA, S. K., AND BRUMLEY, D.

Enhancing Symbolic Execution with Veritesting. In Proceedings
of the 36th International Conference on Software Engineering
(ICSE) (Hyderabad, India, May–June 2014).

[2] BABIĆ, D., MARTIGNONI, L., MCCAMANT, S., AND SONG,
D. Statically-Directed Dynamic Automated Test Generation. In
Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA) (Toronto, Canada, July 2011).

[3] BOUNIMOVA, E., GODEFROID, P., AND MOLNAR, D. Billions
and Billions of Constraints: Whitebox Fuzz Testing in Production.
In Proceedings of the 2013 International Conference on Software
Engineering (ICSE) (2013), pp. 122–131.

[4] BOYAPATI, C., KHURSHID, S., AND MARINOV, D. Korat: Au-
tomated Testing Based on Java Predicates. In Proceedings of
the International Symposium on Software Testing and Analysis
(ISSTA) (2002).

[5] BUGRARA, S., AND ENGLER, D. Redundant State Detection
for Dynamic Symbolic Execution. In Proceedings of the 2013
USENIX Annual Technical Conference (ATC) (San Jose, CA, June
2013).

[6] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unassisted
and Automatic Generation of High-coverage Tests for Complex
Systems Programs. In Proceedings of the 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI) (San
Diego, CA, Dec. 2008).

[7] CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L.,
AND ENGLER, D. R. EXE: Automatically Generating Inputs of
Death. In Proceedings of the 13th ACM Conference on Computer
and Communications Security (CCS) (Alexandria, VA, Oct.–Nov.
2006).

[8] CADAR, C., AND SEN, K. Symbolic Execution for Software
Testing: Three Decades Later. Communications of the ACM 56, 2
(2013), 82–90.

[9] CHA, S. K., AVGERINOS, T., REBERT, A., AND BRUMLEY,
D. Unleashing Mayhem on Binary Code. In Proceedings of the
33rd IEEE Symposium on Security and Privacy (Oakland) (San
Francisco, CA, May 2012).

[10] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E: A
Platform for In Vivo Multi-Path Analysis of Software Systems.
In Proceedings of the 16th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (Newport Beach, CA, Mar. 2011).

[11] CVE. CVE-2013-5065, 2013. http://www.cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2013-5065.

[12] DENG, X., LEE, J., AND ROBBY. Bogor/Kiasan: A k-bounded
Symbolic Execution for Checking Strong Heap Properties of Open
Systems. In IEEE/ACM International Conference on Automated
Software Engineering (ASE) (2006).

[13] DOLAN-GAVITT, B., HULIN, P., KIRDA, E., LEEK, T., MAM-
BRETTI, A., ROBERTSON, W., ULRICH, F., AND WHELAN, R.
LAVA: Large-scale Automated Vulnerability Addition. In Pro-
ceedings of the 37th IEEE Symposium on Security and Privacy
(Oakland) (San Jose, CA, May 2016).

[14] ENGLER, D., AND DUNBAR, D. Under-Constrained Execution:
Making Automatic Code Destruction Easy and Scalable. In Pro-
ceedings of the International Symposium on Software Testing and
Analysis (ISSTA) (London, UK, July 2007).

[15] ESAGE LAB. IOCTL Fuzzer: Windows Kernel Driver Fuzzer.
https://code.google.com/archive/p/ioctlfuzzer/.

[16] GODEFROID, P. Compositional Dynamic Test Generation. In
Proceedings of the 34th ACM Symposium on Principles of Pro-
gramming Languages (POPL) (Nice, France, Jan. 2007).

[17] GODEFROID, P., LEVEN, M. Y., AND MOLNAR, D. Automated
Whitebox Fuzz Testing. In Proceedings of the 15th Annual Net-
work and Distributed System Security Symposium (NDSS) (San
Diego, CA, Feb. 2008).

[18] GODEFROID, P., AND LUCHAUP, D. Automatic Partial Loop
Summarization in Dynamic Test Generation. In Proceedings of
the International Symposium on Software Testing and Analysis
(ISSTA) (Toronto, Canada, July 2011).

[19] HALLER, I., SLOWINSKA, A., NEUGSCHWANDTNER, M., AND
BOS, H. Dowsing for Overflows: A Guided Fuzzer to Find Buffer
Boundary Violations. In Proceedings of the 22th USENIX Security
Symposium (Security) (Washington, DC, Aug. 2013).

[20] INTEL. Introduction to Intel Memory Protection Ex-
tensions. https://software.intel.com/en-us/
articles/introduction-to-intel-memory-protection-
extensions.

[21] “J00RU” JURCZYK, M. Windows X86-64 System Call Ta-
ble (NT/2000/XP/2003/Vista/2008/7/2012/8). http://j00ru.
vexillium.org/ntapi_64/.

[22] JAMROZIK, K., FRASER, G., TILLMAN, N., AND DE HALLEUX,
J. Generating Test Suites with Augmented Dynamic Symbolic
Execution. In Proceedings of International Conference on Tests
and Proofs (2013).

[23] JAMROZIK, K., FRASER, G., TILLMANN, N., AND HALLEUX,
J. D. Augmented Dynamic Symbolic Execution. In Proceedings
of IEEE/ACM International Conference on Automated Software
Engineering (ASE) (2012).

[24] JONES, D. Trinity: A Linux System Call Fuzz Tester. http:
//codemonkey.org.uk/projects/trinity/.

[25] KHURSHID, S., PĂSĂREANU, C. S., AND VISSER, W. Gen-
eralized symbolic execution for model checking and testing. In
Proceedings of the 9th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS)
(2003).

[26] KOSMATOV, N., LEGEARD, B., PEUREUX, F., AND UTTING,
M. Boundary Coverage Criteria for Test Generation from Formal
Models. In Proceedings of 15th International Symposium on
Software Reliability Engineering (ISSRE) (2004).

[27] KUZNETSOV, V., CHIPOUNOV, V., AND CANDEA, G. Testing
Closed-Source Binary Device Drivers with DDT. In Proceedings
of the 2010 USENIX Annual Technical Conference (ATC) (Boston,
MA, June 2010).

[28] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-Pointer Integrity. In Proceed-
ings of the 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (Broomfield, Colorado, Oct. 2014).

[29] MAJUMDAR, R., AND SEN, K. Hybrid Concolic Testing. In
Proceedings of the 29th International Conference on Software
Engineering (ICSE) (Minneapolis, MN, May 2007).

[30] MARINESCU, P. D., AND CADAR, C. make test-zesti: A Sym-
bolic Execution Solution for Improving Regression Testing. In
Proceedings of the 34th International Conference on Software
Engineering (ICSE) (Zurich, Switzerland, June 2012).

[31] MARTIGNONI, L., MCCAMANT, S., POOSANKAM, P., SONG,
D., AND MANIATIS, P. Path-Exploration Lifting: Hi-Fi Tests for
Lo-Fi Emulators. In Proceedings of the 17th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (London, UK, Mar. 2012).

[32] MICROSOFT. KeBugCheckEX routine (Windows Drivers).
https://msdn.microsoft.com/en-us/library/windows/
hardware/ff551961(v=vs.85).aspx.

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5065
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5065
https://code.google.com/archive/p/ioctlfuzzer/
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://j00ru.vexillium.org/ntapi_64/
http://j00ru.vexillium.org/ntapi_64/
http://codemonkey.org.uk/projects/trinity/
http://codemonkey.org.uk/projects/trinity/
https://msdn.microsoft.com/en-us/library/windows/hardware/ff551961(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff551961(v=vs.85).aspx

[33] MICROSOFT. Methods for Accessing Data Buffers.
https://msdn.microsoft.com/en-us/library/windows/
hardware/ff554436(v=vs.85).aspx.

[34] MICROSOFT. NtCreateFile Function (Windows). https:
//msdn.microsoft.com/en-us/library/bb432380(v=vs.
85).aspx.

[35] MICROSOFT. NtDeviceIoControlFile function (Win-
dows). https://msdn.microsoft.com/en-us/library/
ms648411(v=vs.85).aspx.

[36] MOLNAR, D., LI, X. C., AND WAGNER, D. A. Dynamic Test
Generation To Find Integer Bugs in x86 Binary Linux Programs.
In Proceedings of the 18th USENIX Security Symposium (Security)
(Montreal, Canada, Aug. 2009).

[37] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M. K., AND
ZDANCEWIC, S. SoftBound: Highly Compatible and Complete
Spatial Memory Safety for C. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI) (Dublin, Ireland, June 2009).

[38] PANDITA, R., XIE, T., TILLMANN, N., AND DE HALLEUX, J.
Guided Test Generation for Coverage Criteria. In Proceedings of
IEEE International Conference on Software Maintenance (ICSM)
(2010).

[39] RAMOS, D., AND ENGLER, D. Practical, Low-effort Verification
of Real Code using Under-constrained Execution. In Proceed-
ings of the 23rd International Conference on Computer Aided
Verification (CAV) (Snowbird, UT, July 2011).

[40] RAMOS, D. A., AND ENGLER, D. Under-Constrained Symbolic
Execution: Correctness Checking for Real Code. In Proceedings
of the 24th USENIX Security Symposium (Security) (Washington,
DC, Aug. 2015).

[41] RENZELMANN, M. J., KADAV, A., AND SWIFT, M. M. Sym-
Drive: Testing Drivers without Devices. In Proceedings of the
10th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI) (Hollywood, CA, Oct. 2012).

[42] SAXENA, P., POOSANKAM, P., MCCAMANT, S., AND SONG,
D. Loop-Extended Symbolic Execution on Binary Programs. In
Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA) (Chicago, IL, July 2009).

[43] SHOSHITAISHVILI, Y., WANG, R., HAUSER, C., KRUEGEL, C.,
AND VIGNA, G. Firmalice - Automatic Detection of Authentica-
tion Bypass Vulnerabilities in Binary Firmware. In Proceedings
of the 2015 Annual Network and Distributed System Security Sym-
posium (NDSS) (San Diego, CA, Feb. 2015).

[44] SIDIROGLOU-DOUSKOS, S., LAHTINEN, E., RITTENHOUSE,
N., PISELLI, P., LONG, F., KIM, D., AND RINARD, M. Targeted
Automatic Integer Overflow Discovery Using Goal-Directed Con-
ditional Branch Enforcement. In Proceedings of the 20th ACM In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (Istanbul, Turkey,
Mar. 2015).

[45] SLOWINSKA, A., STANCESCU, T., AND BOS, H. Howard: A
Dynamic Excavator for Reverse Engineering Data Structures. In
Proceedings of the 18th Annual Network and Distributed System
Security Symposium (NDSS) (San Diego, CA, Feb. 2011).

[46] STEPHENS, N., GROSEN, J., SALLS, C., DUTCHER, A., WANG,
R., CORBETTA, J., SHOSHITAISHVILI, Y., KRUEGEL, C., AND
VIGNA, G. Driller: Augmenting Fuzzing Through Selective
Symbolic Execution. In Proceedings of the 2016 Annual Network
and Distributed System Security Symposium (NDSS) (San Diego,
CA, Feb. 2016).

[47] WANG, T., WEI, T., LIN, Z., AND ZOU, W. IntScope: Auto-
matically Detecting Integer Overflow Vulnerability in X86 Binary
Using Symbolic Execution. In Proceedings of the 16th Annual

Network and Distributed System Security Symposium (NDSS) (San
Diego, CA, Feb. 2009).

[48] WANG, X., ZHANG, L., AND TANOFSKY, P. Experience Report:
How is Dynamic Symbolic Execution Different from Manual
Testing? A Study on KLEE. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA) (Baltimore,
MD, July 2015).

[49] XIE, Y., AND AIKEN, A. Scalable Error Detection using Boolean
Satisfiability. In Proceedings of the 32nd ACM Symposium on
Principles of Programming Languages (POPL) (Long Beach, CA,
Jan. 2005).

[50] YANG, J., SAR, C., TWOHEY, P., CADAR, C., AND ENGLER, D.
Automatically Generating Malicious Disks using Symbolic Exe-
cution. In Proceedings of the 27th IEEE Symposium on Security
and Privacy (Oakland) (Oakland, CA, May 2006).

https://msdn.microsoft.com/en-us/library/windows/hardware/ff554436(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff554436(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb432380(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb432380(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb432380(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms648411(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms648411(v=vs.85).aspx

	Introduction
	Challenges for COTS OSes
	Binary
	State Explosion
	Missing Execution Contexts

	Design
	Symbolization for Kernel
	Synthetic Symbolization
	On-the-Fly Symbolization

	Boundary-state Prioritization
	Array-boundary Prioritization
	Loop-boundary Prioritization

	Implementation
	Synthetic Symbolization
	On-the-fly Symbolization
	Boundary-state Prioritization
	Analyzing Crashes

	Evaluation
	Synthetic Symbolization
	Detecting Known Vulnerability
	Newly Discovered Crashes
	Effectiveness of Boundary-state Prioritization

	On-the-Fly Symbolization
	Newly Discovered Crashes
	Effectiveness of On-the-fly Symbolization

	Fourteen-Year-Old Bugs

	Discussion
	Related Work
	Conclusion

