
Type Casting Verification:
Stopping an Emerging Attack Vector

Byoungyoung Lee, Chengyu Song,
Taesoo Kim, and Wenke Lee

Georgia Institute of Technology

1

Vulnerability Trends

2

Microsoft vulnerability trends (2013)

Use-after-free Stack overflow

Heap overflow Bad casting (or type confusion)

Microsoft vulnerability trends (2013)

Stack Overflows

of Stack overflows is decreasing

Microsoft vulnerability trends (2013)

of Use-after-free is increasing
 Preventing Use-after-free with

Dangling Pointers Nullification [NDSS ’15]

Use-After-Free

5

Bad-casting

Bad-casting (or type confusion)
is still not solved.

Type Conversions in C++

• static_cast

– Compile-time conversions

– Fast: no extra verification in run-time

– No information on actually allocated types in runtime.

• dynamic_cast

– Run-time conversions

– Requires Runtime Type Information (RTTI)

– Slow: Extra verification by parsing RTTI

– Typically prohibited in performance critical applications

 6

Upcasting and Downcasting
• Upcasting

– From a derived class to its parent class

• Downcasting

– From a parent class to one of its derived classes

7

Upcasting and Downcasting
• Upcasting

– From a derived class to its parent class

• Downcasting

– From a parent class to one of its derived classes

7

Element

HTMLElement SVGElement

Upcasting and Downcasting
• Upcasting

– From a derived class to its parent class

• Downcasting

– From a parent class to one of its derived classes

Upcasting

7

Element

HTMLElement SVGElement

Upcasting and Downcasting
• Upcasting

– From a derived class to its parent class

• Downcasting

– From a parent class to one of its derived classes

Downcasting Upcasting

7

Element

HTMLElement SVGElement

Upcasting and Downcasting
• Upcasting

– From a derived class to its parent class

• Downcasting

– From a parent class to one of its derived classes

Downcasting Upcasting

Upcasting is always safe,
but downcasting is not!

7

Element

HTMLElement SVGElement

Downcasting is not always safe!

class P {
 virtual ~P() {}
 int m_P;
};

class D: public P {
 virtual ~D() {}
 int m_D;
};

8

Downcasting is not always safe!

vftptr for P

int m_P

class P {
 virtual ~P() {}
 int m_P;
};

class D: public P {
 virtual ~D() {}
 int m_D;
};

Access scope of P*

8

Downcasting is not always safe!

vftptr for P

int m_P

vftptr for D

int m_P

int m_D

class P {
 virtual ~P() {}
 int m_P;
};

class D: public P {
 virtual ~D() {}
 int m_D;
};

Access scope of P*

Access scope of D*

8

Downcasting can be Bad-casting

P *pS = new P();
D *pD = static_cast<D*>(pS);
pD->m_D;

9

Downcasting can be Bad-casting

P *pS = new P();
D *pD = static_cast<D*>(pS);
pD->m_D;

Bad-casting occurs: D is not a sub-object of P
 Undefined behavior

D *pD = static_cast<D*>(pS);

9

Downcasting can be Bad-casting

P *pS = new P();
D *pD = static_cast<D*>(pS);
pD->m_D; pD->m_D;

Memory corruptions

9

Downcasting can be Bad-casting

P *pS = new P();
D *pD = static_cast<D*>(pS);
pD->m_D; pD->m_D;

Memory corruptions

9

vftptr for P

int m_P

Downcasting can be Bad-casting

P *pS = new P();
D *pD = static_cast<D*>(pS);
pD->m_D; pD->m_D;

Memory corruptions

9

vftptr for P

int m_P

&(pD->m_D)

Downcasting can be Bad-casting

P *pS = new P();
D *pD = static_cast<D*>(pS);
pD->m_D; pD->m_D;

Memory corruptions

9

vftptr for P

int m_P

int m_D

&(pD->m_D)

Downcasting can be Bad-casting

P *pS = new P();
D *pD = static_cast<D*>(pS);
pD->m_D; pD->m_D;

Memory corruptions

9

vftptr for P

int m_P

int m_D

&(pD->m_D)

https://upload.wikimedia.org/wikipedia/commons/1/1c/Flag_icon_red_4.svg

Real-world Exploits on Bad-casting

Element

SVGElement HTMLElement

• CVE-2013-0912
– A bad-casting vulnerability in Chrome

– Used in 2013 Pwn2Own

HTMLUnknownElement

ContainerNode

10

Real-world Exploits on Bad-casting

Element

SVGElement HTMLElement

• CVE-2013-0912
– A bad-casting vulnerability in Chrome

– Used in 2013 Pwn2Own

HTMLUnknownElement

ContainerNode

1. Allocated
10

Real-world Exploits on Bad-casting

Element

SVGElement HTMLElement

• CVE-2013-0912
– A bad-casting vulnerability in Chrome

– Used in 2013 Pwn2Own

HTMLUnknownElement

ContainerNode

2. Upcasting

1. Allocated
10

Real-world Exploits on Bad-casting

Element

SVGElement HTMLElement

• CVE-2013-0912
– A bad-casting vulnerability in Chrome

– Used in 2013 Pwn2Own

HTMLUnknownElement

ContainerNode

2. Upcasting 3. Downcasting

1. Allocated
10

Real-world Exploits on Bad-casting

Element

SVGElement HTMLElement

• CVE-2013-0912
– A bad-casting vulnerability in Chrome

– Used in 2013 Pwn2Own

HTMLUnknownElement

ContainerNode

2. Upcasting 3. Downcasting

1. Allocated 96 bytes

160 bytes

10

Element

SVGElement HTMLElement

ContainerNode

11

Real-world Exploits on Bad-casting

PseudoElement

Node

EventTarget TreeShared<Node>

ScriptWrapperble NoBaseWillBeGarbageCollectedFinalized<>

VTTElement VTTElement

LabelableElement

HtmlTableElement

HTMLRubyElement

HTMLFontElement

HTMLMenuElement

HTMLLabelElement

…

HTMLUnknownElement

57 classes!

Element

SVGElement HTMLElement

ContainerNode

11

Real-world Exploits on Bad-casting

PseudoElement

Node

EventTarget TreeShared<Node>

ScriptWrapperble NoBaseWillBeGarbageCollectedFinalized<>

VTTElement VTTElement

LabelableElement

HtmlTableElement

HTMLRubyElement

HTMLFontElement

HTMLMenuElement

HTMLLabelElement

…

HTMLUnknownElement

57 classes!

Very complex class hierarchies
 Error-prone type casting operations

Existing Solutions and Challenges

• Replace all static_cast into dynamic_cast

• dynamic_cast on a polymorphic class (with RTTI)

– A pointer points to a virtual function table pointer

– Traversing a virtual function table leads to RTTI

vftptr

…

ptr &std::type_info

1st virtual function

Offset to the top

A class name

…
12

Existing Solutions and Challenges

• dynamic_cast on a non-polymorphic class

– A pointer points to the first member variable

– Simply traversing such a variable leads to a runtime crash

…

...

ptr

13

http://vignette1.wikia.nocookie.net/sqmegapolis/images/3/30/X-mark-3-256.png/revision/latest?cb=20130403220653

Existing Solutions and Challenges

• dynamic_cast on a non-polymorphic class

– A pointer points to the first member variable

– Simply traversing such a variable leads to a runtime crash

…

...

ptr

 C++ supports no reliable methods to resolve whether

a pointer points to polymorphic or non-polymorphic classes.

13

http://vignette1.wikia.nocookie.net/sqmegapolis/images/3/30/X-mark-3-256.png/revision/latest?cb=20130403220653

Existing Solutions and Challenges

• dynamic_cast on a non-polymorphic class

– A pointer points to the first member variable

– Simply traversing such a variable leads to a runtime crash

…

...

ptr

 C++ supports no reliable methods to resolve whether

a pointer points to polymorphic or non-polymorphic classes.

13

Previous solutions including Undefined Behavior Sanitizer
relies on blacklists.

http://vignette1.wikia.nocookie.net/sqmegapolis/images/3/30/X-mark-3-256.png/revision/latest?cb=20130403220653

CaVer: CastVerifier

• CaVer: CastVerifier

– A bad-casting detection tool

• Design goals

– Easy-to-deploy: no blacklists

– Reasonable runtime performance

14

CaVer Overview

15

Emit THTable

Instrumentation

Source
code

Compile

CaVer Overview

15

Emit THTable

Instrumentation

CaVer
Runtime

Source
code

Compile

Link

CaVer Overview

15

Emit THTable

Instrumentation

CaVer
Runtime

Source
code

Compile

Link

Secured
executable

static_cast<D*>(ptr);

Technical Goal of CaVer

16

P *ptr = new P;

static_cast<D*>(ptr);

Technical Goal of CaVer

16

P *ptr = new P;
Allocated

static_cast<D*>(ptr);

Technical Goal of CaVer

16

P *ptr = new P;
Allocated

To be casted

static_cast<D*>(ptr);

Technical Goal of CaVer

16

P *ptr = new P;

Object (P)

ptr

Allocated

To be casted

static_cast<D*>(ptr);

Technical Goal of CaVer

16

P *ptr = new P;

Object (P)

ptr

Allocated

To be casted

Q. What are the class
relationships b/w P and D?
 THTable

static_cast<D*>(ptr);

Technical Goal of CaVer

16

P *ptr = new P;

Object (P)

ptr

Allocated

To be casted

Q. Is ptr points to P or D?
 Runtime type tracing

Q. What are the class
relationships b/w P and D?
 THTable

Type Hierarchy Table (THTable)

17

hash(“P”) hash(“D”)

…

… hash(“P”)

THTable (P) THTable (D)

• A set of all legitimate classes to be converted

– Class names are hashed for fast comparison

– Hierarchies are unrolled to avoid recursive traversal

Type Hierarchy Table (THTable)

17

hash(“P”) hash(“D”)

…

… hash(“P”)

THTable (P) THTable (D)

• A set of all legitimate classes to be converted

– Class names are hashed for fast comparison

– Hierarchies are unrolled to avoid recursive traversal

Hashed class names

Type Hierarchy Table (THTable)

17

hash(“P”) hash(“D”)

…

… hash(“P”)

THTable (P) THTable (D)

• A set of all legitimate classes to be converted

– Class names are hashed for fast comparison

– Hierarchies are unrolled to avoid recursive traversal

Unrolled linearly

Runtime Type Tracing

18

P *ptr = new P; P *ptr = new P;
trace(ptr, &THTable(P));

Runtime Type Tracing

18

P *ptr = new P;

Object (P)

ptr

P *ptr = new P;
trace(ptr, &THTable(P));

hash(“P”)

…

THTable (P)

Runtime Type Tracing

18

P *ptr = new P;

Object (P)

ptr

P *ptr = new P;
trace(ptr, &THTable(P));

hash(“P”)

…

THTable (P)

&THTable(P)

Runtime Type Tracing

18

P *ptr = new P;

Object (P)

ptr

P *ptr = new P;
trace(ptr, &THTable(P));

hash(“P”)

…

THTable (P)

&THTable(P)

Maintain an internal mapping
from objects to metadata
 Heap: Alignment based direct mapping
 Stack: Per-thread red-black tree
 Global : Per-process red-black tree

Runtime Type Tracing

18

P *ptr = new P;

Object (P)

ptr

P *ptr = new P;
trace(ptr, &THTable(P));

hash(“P”)

…

THTable (P)

&THTable(P)

Decoupled metadata
 Overcome RTTI’s limitation

Runtime Type Verification

19

static_cast<D*>(ptr);

To be casted

Runtime Type Verification

19

Object (P)

ptr

hash(“P”)

…

THTable (P)

&THTable(P)

static_cast<D*>(ptr);

To be casted

Runtime Type Verification

19

Object (P)

ptr

hash(“P”)

…

THTable (P)

&THTable(P)

static_cast<D*>(ptr);

To be casted

1. Locate metadata associated
 with the object

Runtime Type Verification

19

Object (P)

ptr

hash(“P”)

…

THTable (P)

&THTable(P)

static_cast<D*>(ptr);

To be casted

 2. Locate associated THTable

Runtime Type Verification

19

Object (P)

ptr

hash(“P”)

…

THTable (P)

&THTable(P)

static_cast<D*>(ptr);

To be casted

3. Enumerate THTable
 and check if hash(“D”) exists.

Runtime Type Verification

19

Object (P)

ptr

hash(“P”)

…

THTable (P)

&THTable(P)

static_cast<D*>(ptr);

To be casted

THTable(P) does not have D
 Bad-casting!

Performance Optimization

• Selective object tracing

– Not all objects are involved in downcasting

– Statically identify such objects, and skip tracing them

• Reusing verification results

– A verification process has to be the same for same class

– A verification result is cached for reuses

20

Implementation

• Based on LLVM Compiler suites

–Added 3,540 lines of C++ code

• Currently support Linux x86-64

• CaVer can be activated with one extra compiler flag

21

Evaluation

• How much efforts are required to deploy CaVer?

• How effective is CaVer in detecting bad-casting?

• What is the overall runtime overhead of CaVer?

22

Deployment Efforts

• Build configuration changes

– 21 and 10 lines were changed in Chromium and Firefox

– No blacklists are required

• CaVer successfully

– Build both browsers

– Run both browsers without runtime crashes

23

CaVer Report Example

24

== CaVer : Bad-casting detected
@SVGViewSpec.cpp:87:12
 Casting an object of “blink::HTMLUnknownElement”
 from “blink::Element”
 to “blink::SVGElement”
 Pointer 0x60c000008280
 Alloc base 0x60c000008280
 Offset 0x000000000000
 THTable 0x7f7963aa20d0
#1 0x7f795d76f1a4 in viewTarget SVGViewSpec.cpp:87
#2 0x7f795d939d1c in viewTargetAttribute V8SVGViewSpec.cpp:56
...

CaVer Report Example

24

== CaVer : Bad-casting detected
@SVGViewSpec.cpp:87:12
 Casting an object of “blink::HTMLUnknownElement”
 from “blink::Element”
 to “blink::SVGElement”
 Pointer 0x60c000008280
 Alloc base 0x60c000008280
 Offset 0x000000000000
 THTable 0x7f7963aa20d0
#1 0x7f795d76f1a4 in viewTarget SVGViewSpec.cpp:87
#2 0x7f795d939d1c in viewTargetAttribute V8SVGViewSpec.cpp:56
...

Detailed casting information

CaVer Report Example

24

== CaVer : Bad-casting detected
@SVGViewSpec.cpp:87:12
 Casting an object of “blink::HTMLUnknownElement”
 from “blink::Element”
 to “blink::SVGElement”
 Pointer 0x60c000008280
 Alloc base 0x60c000008280
 Offset 0x000000000000
 THTable 0x7f7963aa20d0
#1 0x7f795d76f1a4 in viewTarget SVGViewSpec.cpp:87
#2 0x7f795d939d1c in viewTargetAttribute V8SVGViewSpec.cpp:56
...

Detailed casting information

Runtime call stacks

New vulnerabilities

• CaVer discovered 11 new vulnerabilities

– 2 cases in Firefox (won bug bounty awards)

– 9 cases in GNU libstdc++

– All reported to and fixed by vendors

25

Runtime Overhead

26

0%

20%

40%

60%

80%

100%

120%

140%

Octane SunSpider Dromaeo-JS Dromaeo-DOM

Chromium

Firefox

On average,
Chromium: 7.6%

Firefox: 64.6%

Applications of CaVer

• A back-end bug detection tool

• A runtime attack mitigation tool

– Limitations of previous mitigations techniques

• Focusing on certain attack methods

–e.g., CFI or ROP techniques

• Not effective if an exploit relies on other attack
methods

–e.g., non-control data attack

– CaVer tackles the root cause of bad-casintg.

27

Conclusions

• Proposed CaVer, a new runtime bad-casting
detection mechanism

• Discovered 11 new bad-casting vulnerabilities in
Firefox and libstdc++

28

Thank you!

29

