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Vulnerability Trends 
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Microsoft vulnerability trends (2013) 

Use-after-free Stack overflow 

Heap overflow Bad casting (or type confusion) 



Microsoft vulnerability trends (2013) 

Stack Overflows 

# of Stack overflows is decreasing 



Microsoft vulnerability trends (2013) 

# of Use-after-free is increasing 
 Preventing Use-after-free with 

Dangling Pointers Nullification [NDSS ’15] 

Use-After-Free 
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Bad-casting 

Bad-casting (or type confusion) 
is still not solved. 



Type Conversions in C++ 

• static_cast 

– Compile-time conversions 

– Fast: no extra verification in run-time 

– No information on actually allocated types in runtime. 

 

• dynamic_cast 

– Run-time conversions 

– Requires Runtime Type Information (RTTI) 

– Slow: Extra verification by parsing RTTI 

– Typically prohibited in performance critical applications 
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Upcasting and Downcasting 
• Upcasting 

– From a derived class to its parent class 

• Downcasting 

– From a parent class to one of its derived classes 
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Upcasting and Downcasting 
• Upcasting 

– From a derived class to its parent class 

• Downcasting 

– From a parent class to one of its derived classes 

 
Downcasting Upcasting 

Upcasting is always safe,  
but downcasting is not! 
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Downcasting is not always safe! 

class P { 
    virtual ~P() {} 
    int m_P; 
}; 

class D: public P { 
    virtual ~D() {} 
    int m_D; 
}; 
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Downcasting can be Bad-casting 

P *pS = new P(); 
D *pD = static_cast<D*>(pS);  
pD->m_D; 

9 



Downcasting can be Bad-casting 

P *pS = new P(); 
D *pD = static_cast<D*>(pS);  
pD->m_D; 

Bad-casting occurs: D is not a sub-object of P 
 Undefined behavior 

D *pD = static_cast<D*>(pS);  
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vftptr for P 

int m_P 

&(pD->m_D) 
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Downcasting can be Bad-casting 
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Memory corruptions 
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vftptr for P 

int m_P 

int m_D 

&(pD->m_D) 

https://upload.wikimedia.org/wikipedia/commons/1/1c/Flag_icon_red_4.svg


Real-world Exploits on Bad-casting 

Element 

SVGElement HTMLElement 

• CVE-2013-0912 
– A bad-casting vulnerability in Chrome 

– Used in 2013 Pwn2Own 

 

HTMLUnknownElement 

ContainerNode 
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Real-world Exploits on Bad-casting 

Element 

SVGElement HTMLElement 
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1. Allocated 
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Real-world Exploits on Bad-casting 

Element 

SVGElement HTMLElement 

• CVE-2013-0912 
– A bad-casting vulnerability in Chrome 

– Used in 2013 Pwn2Own 

 

HTMLUnknownElement 

ContainerNode 

2. Upcasting 3. Downcasting 

1. Allocated 96 bytes 

160 bytes 
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Element 

SVGElement HTMLElement 

ContainerNode 
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Real-world Exploits on Bad-casting 

PseudoElement 

Node 

EventTarget TreeShared<Node> 

ScriptWrapperble NoBaseWillBeGarbageCollectedFinalized<> 

VTTElement VTTElement 

LabelableElement 

HtmlTableElement 

HTMLRubyElement 

HTMLFontElement 

HTMLMenuElement 

HTMLLabelElement 

… 

HTMLUnknownElement 

57 classes! 



Element 

SVGElement HTMLElement 

ContainerNode 
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Real-world Exploits on Bad-casting 

PseudoElement 

Node 

EventTarget TreeShared<Node> 

ScriptWrapperble NoBaseWillBeGarbageCollectedFinalized<> 

VTTElement VTTElement 

LabelableElement 

HtmlTableElement 

HTMLRubyElement 

HTMLFontElement 

HTMLMenuElement 

HTMLLabelElement 

… 

HTMLUnknownElement 

57 classes! 

Very complex class hierarchies 
 Error-prone type casting operations 



Existing Solutions and Challenges 

• Replace all static_cast into dynamic_cast 

 

• dynamic_cast on a polymorphic class (with RTTI) 

– A pointer points to a virtual function table pointer 

– Traversing a virtual function table leads to RTTI 

 

 

vftptr 

… 

ptr &std::type_info 

1st virtual function 

Offset to the top 

A class name 

… 
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Existing Solutions and Challenges 

• dynamic_cast on a non-polymorphic class 

– A pointer points to the first member variable 

– Simply traversing such a variable leads to a runtime crash 

… 

... 

ptr 
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Existing Solutions and Challenges 

• dynamic_cast on a non-polymorphic class 

– A pointer points to the first member variable 

– Simply traversing such a variable leads to a runtime crash 

… 

... 

ptr 

   C++ supports no reliable methods to resolve whether  

a pointer points to polymorphic or non-polymorphic classes. 
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Previous solutions including Undefined Behavior Sanitizer 
relies on blacklists. 

http://vignette1.wikia.nocookie.net/sqmegapolis/images/3/30/X-mark-3-256.png/revision/latest?cb=20130403220653


CaVer: CastVerifier 

•  CaVer: CastVerifier 

– A bad-casting detection tool 

 

• Design goals 

– Easy-to-deploy: no blacklists 

– Reasonable runtime performance 
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CaVer Overview 
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CaVer Overview 
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Emit THTable 

Instrumentation 

CaVer 
Runtime 

Source 
code 

Compile 

Link 

Secured 
executable 



static_cast<D*>(ptr);  

Technical Goal of CaVer 
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P *ptr = new P; 
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 THTable 



static_cast<D*>(ptr);  

Technical Goal of CaVer 
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P *ptr = new P; 

Object (P) 

ptr 

Allocated 

To be casted 

Q. Is ptr points to P or D? 
 Runtime type tracing 

Q. What are the class 
relationships b/w P and D? 
 THTable 



Type Hierarchy Table (THTable) 
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hash(“P”) hash(“D”) 

… 

… hash(“P”) 

THTable (P) THTable (D) 

• A set of all legitimate classes to be converted 

– Class names are hashed for fast comparison 

– Hierarchies are unrolled to avoid recursive traversal 



Type Hierarchy Table (THTable) 
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hash(“P”) hash(“D”) 

… 

… hash(“P”) 

THTable (P) THTable (D) 

• A set of all legitimate classes to be converted 

– Class names are hashed for fast comparison 

– Hierarchies are unrolled to avoid recursive traversal 

Hashed class names 



Type Hierarchy Table (THTable) 
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hash(“P”) hash(“D”) 

… 

… hash(“P”) 

THTable (P) THTable (D) 

• A set of all legitimate classes to be converted 

– Class names are hashed for fast comparison 

– Hierarchies are unrolled to avoid recursive traversal 

Unrolled linearly 



Runtime Type Tracing 
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P *ptr = new P; P *ptr = new P; 
trace(ptr, &THTable(P)); 



Runtime Type Tracing 
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P *ptr = new P; 
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Runtime Type Tracing 
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Runtime Type Tracing 
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P *ptr = new P; 

Object (P) 

ptr 

P *ptr = new P; 
trace(ptr, &THTable(P)); 

hash(“P”) 

… 

THTable (P) 

&THTable(P) 

Maintain an internal mapping  
from objects to metadata 
    Heap: Alignment based direct mapping 
    Stack: Per-thread red-black tree 
    Global : Per-process red-black tree 



Runtime Type Tracing 
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P *ptr = new P; 

Object (P) 

ptr 

P *ptr = new P; 
trace(ptr, &THTable(P)); 

hash(“P”) 

… 

THTable (P) 

&THTable(P) 

Decoupled metadata 
 Overcome RTTI’s limitation 



Runtime Type Verification 
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static_cast<D*>(ptr);  

To be casted 
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Object (P) 

ptr 

hash(“P”) 

… 

THTable (P) 

&THTable(P) 

static_cast<D*>(ptr);  

To be casted 



Runtime Type Verification 
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Object (P) 

ptr 

hash(“P”) 

… 

THTable (P) 

&THTable(P) 

static_cast<D*>(ptr);  

To be casted 

1. Locate metadata associated  
   with the object 



Runtime Type Verification 
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Object (P) 

ptr 

hash(“P”) 

… 

THTable (P) 

&THTable(P) 

static_cast<D*>(ptr);  

To be casted 

 
 
 
 
  2. Locate associated THTable 



Runtime Type Verification 
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Object (P) 

ptr 

hash(“P”) 

… 

THTable (P) 

&THTable(P) 

static_cast<D*>(ptr);  

To be casted 

3. Enumerate THTable  
  and check if hash(“D”) exists. 



Runtime Type Verification 
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Object (P) 

ptr 

hash(“P”) 

… 

THTable (P) 

&THTable(P) 

static_cast<D*>(ptr);  

To be casted 

THTable(P) does not have D 
 Bad-casting! 



Performance Optimization 

• Selective object tracing 

– Not all objects are involved in downcasting 

– Statically identify such objects, and skip tracing them 

 

• Reusing verification results 

– A verification process has to be the same for same class 

– A verification result is cached for reuses 
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Implementation 

• Based on LLVM Compiler suites 

–Added 3,540 lines of C++ code 

 

• Currently support Linux x86-64 

 

• CaVer can be activated with one extra compiler flag 
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Evaluation 

• How much efforts are required to deploy CaVer? 

 

• How effective is CaVer in detecting bad-casting? 

 

• What is the overall runtime overhead of CaVer? 
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Deployment Efforts 

• Build configuration changes 

– 21 and 10 lines were changed in Chromium and Firefox 

– No blacklists are required 

 

• CaVer successfully  

– Build both browsers 

– Run both browsers without runtime crashes 
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CaVer Report Example 
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== CaVer : Bad-casting detected 
@SVGViewSpec.cpp:87:12 
  Casting an object of “blink::HTMLUnknownElement” 
      from “blink::Element” 
      to “blink::SVGElement” 
 Pointer   0x60c000008280 
 Alloc base   0x60c000008280 
 Offset    0x000000000000 
 THTable   0x7f7963aa20d0 
#1 0x7f795d76f1a4 in viewTarget SVGViewSpec.cpp:87 
#2 0x7f795d939d1c in viewTargetAttribute V8SVGViewSpec.cpp:56 
... 
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Detailed casting information 
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== CaVer : Bad-casting detected 
@SVGViewSpec.cpp:87:12 
  Casting an object of “blink::HTMLUnknownElement” 
      from “blink::Element” 
      to “blink::SVGElement” 
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 Offset    0x000000000000 
 THTable   0x7f7963aa20d0 
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Detailed casting information 

Runtime call stacks 



New vulnerabilities 

• CaVer discovered 11 new vulnerabilities 

– 2 cases in Firefox (won bug bounty awards) 

– 9 cases in GNU libstdc++ 

– All reported to and fixed by vendors 
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Runtime Overhead 
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Applications of CaVer 

• A back-end bug detection tool 

• A runtime attack mitigation tool 

– Limitations of previous mitigations techniques 

• Focusing on certain attack methods 

–e.g., CFI or ROP techniques 

• Not effective if an exploit relies on other attack 
methods 

–e.g., non-control data attack 

– CaVer tackles the root cause of bad-casintg. 
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Conclusions 

 

• Proposed CaVer, a new runtime bad-casting 
detection mechanism 

 

• Discovered 11 new bad-casting vulnerabilities in 
Firefox and libstdc++ 
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Thank you! 
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