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ABSTRACT

As the use of mobile devices increases, a location-based service
(LBS) becomes increasingly popular because it provides more con-
venient context-aware services. However, LBS introduces prob-
lematic issues for location privacy due to the nature of the service.
Location privacy protection methods based on k-anonymity and ℓ-
diversity have been proposed to provide anonymized use of LBS.
However, the k-anonymity and ℓ-diversity methods still can en-
danger the user’s privacy because location semantic information
could easily be breached while using LBS. This paper presents a
novel location privacy protection technique, which protects the lo-
cation semantics from an adversary. In our scheme, location se-
mantics are first learned from location data. Then, the trusted-
anonymization server performs the anonymization using the loca-
tion semantic information by cloaking with semantically heteroge-

neous locations. Thus, the location semantic information is kept
secure as the cloaking is done with semantically heterogeneous lo-
cations and the true location information is not delivered to the LBS
applications. This paper proposes algorithms for learning location
semantics and achieving semantically secure cloaking.
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1. INTRODUCTION
The use of mobile devices has increased dramatically in the last

decade. As mobile device technology has developed, context aware-
ness services have become available and mobile devices now sup-
port more convenient and user-friendly services. The representative
service of context awareness services is a location-based service
(LBS). LBS is an information and entertainment service based on
the geographical position of the mobile device. There are many
different kinds of LBS services, such as navigation services, re-
questing the nearest business locations, receiving traffic alerts or
notifications, and so on.

However, LBS services introduce problematic issues for location
privacy due to the nature of the service. The history of certain user’s
locations could be accumulated, and private information could be
exposed if an adversary has access to that history. For example,
support for a certain political party, or the whereabouts of a user at
a certain time could be handed to adversaries and abused by them.
This is a critical problem because most people are reluctant to use
LBS services if their location privacy is in danger in spite of its
convenience.

In order to protect location privacy, previous research has been
done using k-anonymity [23] and ℓ-diversity [19]. A cloaking area,
which is an extended area from the exact position of a mobile user,
is computed by the anonymization server and the anonymization
server delegates the LBS requests for a mobile user. For computing
a cloaking area, k-anonymity based location privacy [10, 6, 20, 3,
14, 26, 27] extends a cloaking area until ‘k-1’ other users are in-
cluded, and ℓ-diversity based location privacy [1, 24, 28] extends
until ‘ℓ-1’ different locations are included. As a result, an exact
position is abstracted with other users (k-anonymity) and other lo-
cations (ℓ-diversity), which makes it difficult for an adversary to
infer valuable information (see Section 7 for related work).

Although these previous methods guarantee some degree of loca-
tion privacy, both techniques have a critical limitation. The cloak-
ing area could breach location semantic information, which possi-
bly endangers the user’s privacy. To be specific, the cloaking area
could include only semantically similar locations even if it is mixed
with other users and locations, and the adversary would be able to
infer semantic meanings from the extended area. For example, if
the extended area only includes an elementary school, high school,
and university, then the adversary could infer that a mobile user is
doing work related to ‘teaching’ or ‘studying’.

In this paper, we propose a novel location privacy protection
technique, which protects the location semantics from an adver-
sary. In our scheme, location semantics are first learned from lo-
cation data. Then, the trusted-anonymization server performs the
anonymization using the location semantic information by cloak-
ing with semantically heterogeneous locations. Thus, the location
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semantic information is kept secure as the cloaking is done with
semantically heterogeneous locations and the true location infor-
mation is not delivered to the LBS applications.

Our primary novel contributions are summarized as follows.

• We propose a method for mining location semantics from the
perspective of location privacy. A staying duration feature is
presented to capture the location semantics from trajectory
data, and such mined location semantics are stored in an ab-
stracted graph to be efficiently used.

• We propose a method to obtain a cloaking area which pro-
tects location semantic leakages. An adversary’s prior and
posterior knowledge of location semantics is generally mod-
eled and the adversary’s information gain from a cloaking
area is restricted below a certain degree. According to the
experimental results, our method is much safer at the same
cost than k-anonymity and ℓ-diversity based location privacy
methods in terms of a semantic heterogeneity.

The remainder of this paper is organized as follows. Section 2
introduces the background of location privacy protection and points
out its limitations. Section 3 describes how to obtain location se-
mantic information and Section 4 presents how to compute an ex-
tended area with semantically heterogeneous locations. Section 5
shows the evaluation results of our proposed methods. Section 6
discusses the limitations and future work of our method, and Sec-
tion 7 surveys related work. Section 8 concludes the paper.

2. BACKGROUND AND LIMITATIONS
Many researchers have tried to guarantee location privacy in us-

ing LBS, but their attempts have limitations. In this section, we
first give the background of location privacy protection techniques
and then describe the limitations of such techniques.

2.1 Background: Location Privacy Protection
A primary cause of location privacy breaches in using LBS lies

in the fact that the exact position of a mobile device should be
used and known to LBS applications. Thus, in order to protect
exact position information, location privacy protection techniques
use a cloaking area instead of exact position information for LBS
requests. A cloaking area is defined as an area which includes
the current position of a mobile device for the purpose of hid-
ing an exact position. Based on using a cloaking area, the adver-
sary cannot easily breach a mobile user’s privacy since the exact
current position is abstracted. There are largely two approaches
for computing the cloaking area, each of which is based on well
known data publishing protection techniques, k-anonymity [23]
and ℓ-diversity [19]. Depending on which technique has been adopted
for location privacy, we refer to as location k-anonymity or location
ℓ-diversity.

The most well known approach is location k-anonymity [10, 6,
20, 3, 14, 26, 27], which provides at least a ‘k’ anonymity level.
In location k-anonymity, the cloaking area is extended until ‘k-1’
other users are included. This is a good starting point for protecting
location privacy because the adversary has to classify each person
among ‘k’ people to identify who actually submitted LBS requests.
Similar to k-anonymity, location ℓ-diversity [1, 18, 24, 28] extends
a cloaking area until ‘ℓ-1’ different locations are included. In loca-
tion ℓ-diversity, the adversary cannot simply tell which location a
mobile user actually visited since the cloaking area includes multi-
ple locations.

These location k-anonymity and ℓ-diversity techniques are per-
formed by a trusted-anonymization server for a mobile device and

Trusted-anonymization

server

Mobile 

User

Location Based Service

Applications

1. exact position 2. cloaking area

3. area results4. filtered results

Figure 1: Trusted-anonymization server based location privacy

architecture
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(a) k-anonymity (k=5)
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l
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(b) ℓ-diversity (ℓ=2)

Figure 2: An example of a location similarity attack against a

cloaking area

we call this model a trusted-anonymization server based model

hereafter. Figure 1 shows a trusted-anonymization server based
model. At first, a mobile user requests a service to the trusted-
anonymization server (line 1). In this request, the mobile user
specifies her exact current position. Then the anonymization server
computes the cloaking area using either a number of users (location
k-anonymity) or locations (location ℓ-diversity) nearby the user’s
position. The cloaking area is passed to LBS applications (line 2)
and the LBS applications return all results related to the cloaking
area (line 3). The anonymization server filters out unnecessary re-
sults and gives back the result corresponding to the mobile user’s
current location (line 4).

As a result, the exact position is not exposed to LBS applications
because a cloaking area is used instead of the position. Though
the delegating anonymization server knows the exact position of a
mobile device, LBS applications only see an abstracted range of an
area.

2.2 Limitations of Previous Location Privacy
Protection

Though location k-anonymity and ℓ-diversity approaches guar-
antee some degree of location privacy, both protection schemes are
vulnerable to a location similarity attack which possibly endangers
LBS user’s privacy. In other words, a cloaking area CA, which
contains n locations denoted as L(CA) = {S1, S2, ..., Sn}, is
vulnerable to a location similarity attack if all locations in CA are
semantically similar.

Figure 2 shows an example of a location similarity attack. As-
sume that each node from S1 to S3 represents a location; S1 and
S2 are hospitals and S3 is a library. Note that ‘x’ marked in the
center represents the current location of a mobile user. Based on
this setting, two rectangles, CAk and CAℓ, represent the cloaking
area under k-anonymity (k = 5) and ℓ-diversity (ℓ = 2) respec-
tively. CAk in Figure 2-(a) is vulnerable to a location similarity
attack since it only includes a single location, S1. Thus, the mobile
user using the cloaking area CAk for LBS requests would be highly
linked to hospitals and can be suspected of having treatment. CAℓ
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in Figure 2-(b) is also vulnerable because two locations in CAℓ are
similar in terms of the purpose of its visits. Similarly, a mobile user
using CAℓ would be suspected for the same reason.

What we actually desire would be to have a cloaking area with
semantically heterogeneous locations, which needs to include S3

in the above example. However, both location k-anonymity and
ℓ-diversity methods fail to protect a mobile user from a location
similarity attack. Location k-anonymity fails because it picks the
users without considering their locations and location l-diversity
fails because it picks the locations without considering the seman-
tics of locations.

3. MINING LOCATION SEMANTICS
In order to compute secure cloaking area based on location se-

mantics, we must be aware of location semantics beforehand. In
this paper, location semantics are interpreted as which type of ser-
vices are provided at locations. This interpretation makes sense
from the perspective of location privacy, because what people want
to secure in location privacy is what they did in a location.

Based on such an interpretation, this section describes how to
obtain location semantics. Locations are identified first (Section
3.1) and features for capturing location semantics are proposed next
(Section 3.2). Finally, a location semantic graph which represents
semantic relations between locations is constructed (Section 3.3).
The location semantic graph will be used to compute the cloaking
area with semantically heterogeneous locations (Section 4).

3.1 Identifying Locations
There are several methods for finding a location. The first one is

to utilize point of interest (POI) collections, which can be publicly
available through OpenStreetMap [11], etc. Since POI collections
provide information on locations that people may find useful or
interesting, locations including coordinate information can be ob-
tained. The second method, which we use in our experiments, is
to analyze trajectory data. The trajectory data contains coordinate
information (usually GPS points) and corresponding timestamps.
If a trajectory stays in a limited area over a time threshold value, it
indicates that someone stayed in that location and did some mean-
ingful job. Thus, locations can be discovered by identifying such
a limited area. For interested readers, please refer to [31] for more
details.

3.2 Features for Location Semantics
Our proposed method for discovering location semantics is based

on the following observations. People visit locations mostly with a
reason. We go to restaurants to have food, schools to attend classes,
or hospitals to see a doctor. Since we have reasons for a visit, we
stay for a while in a location for those reasons. Moreover, we spend
a different amount of time depending on these reasons. Motivated
by these observations, we propose two quantitative features for ex-
tracting location semantics, which are named staying duration, and
usage time context.

Staying duration: People spend different amount of time in a loca-
tion depending on what they do there. We call this amount of time
staying duration. Intuitively, having food in a restaurant generally
takes one or two hours, whereas students usually stay more than
six hours at school. In addition, restaurants themselves have differ-
ent staying duration distributions according to what they actually
serve. For example, eating at a fine dining restaurant takes much
longer time than at a fastfood restaurant. Thus visiting purposes of
each location can be captured by using the staying duration.
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Figure 3: PDF of features for location semantics

Usage time context: It is common to see that places have their own
active (popular) times. For example, most restaurants are full of
customers during lunch or dinner time. On the contrary, most bars
are full during the night but quiet in the morning. Relying on com-
mon sense, locations have differences in the distribution of usage
times depending on services provided.

The feature data can be acquired via trajectory or survey data
which contains such information. From the data, each feature’s
distribution is computed for each location. For example, hypothet-
ical distributions of each feature are plotted in Figure 3. Distri-
butions for locations such as school, fastfood restaurant, and cafe,
are represented according to each location’s characteristics. In Fig-
ure 3-(a), the x-axis represents staying duration and it reflects the
fact that people stay longer at school than a fastfood restaurant or
cafe. In Figure 3-(b), the x-axis represents usage time. A fastfood
restaurant and cafe are crowded during meal times, but a school is
active throughout the daytime.

Though the two features mentioned above can be used to char-
acterize semantics of locations, we choose to use staying duration
in our experiments. This is because the usage time context does
not capture location semantics in some cases. For instance, a cafe-
teria and a dining restaurant are difficult to distinguish based on
the usage time context because both places have similar crowded
times. However, the staying duration feature is able to distinguish
such places well because most people spend more time in a dining
restaurant than in a cafeteria.

3.3 Constructing Location Semantic Graph
In order to represent location semantics with a simplified data

structure, we present a location semantic graph. A distance be-
tween places (edge-weight) is computed first and a cluster of loca-
tions (node) are determined next. Finally, a location semantic graph
is built with edges and nodes.

3.3.1 Distance measure

The distance measure should be able to capture the semantic dif-
ferences between locations. Since all features can be represented in
distributions, Kullback-Leibler (KL) divergence could be a reason-
able choice to measure the distances between two distributions. KL
divergence measures the distances of two distributions P,Q with

DKL(P ||Q) =

∫

∞

−∞

p(x) log

{

p(x)

q(x)

}

dx.

However, KL divergence is not an appropriate measure to capture
semantic differences, which is explained in the following example.

Figure 4 shows three staying duration distributions P, Q, and R.
Intuitively, P is similar to Q than to R. That is, our desired result
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Figure 4: Example of staying duration distribution

is D(P ||Q) < D(P ||R). However, the actual result from KL
divergence is DKL(P ||Q) ≈ DKL(P ||R) because KL divergence
cannot capture that the semantic distance between 1 hour and 9
hours is bigger than that between 1 hour and 3 hours is.

In order to overcome this limitation of KL divergence, we use
Earth Mover’s Distance which has recently been adopted for pri-
vacy protection of publishing data [15].

Earth Mover’s Distance (EMD):1 A distribution can be interpreted
as an arbitrary arrangement of a mass of particles. In this view,
a distribution can be transformed to another distribution by mov-
ing particles. EMD captures the minimum costs of transporting
particles to equalize two distributions, which can be formally de-
fined using the transportation problem. Suppose P and Q can be
represented P = {p1, p2, . . . , pm}, Q = {q1, q2, . . . , qm}. The
workload, needed to make two distribution the same, is defined as
follows.

WORK(P,Q, F ) =
m
∑

i=1

m
∑

j=1

fijdij

with constraints

fij ≥ 0, 1 ≤ i, j ≤ m, pi −
m
∑

j=1

fij +

m
∑

i=1

fij = qi,

m
∑

i=1

m
∑

j=1

fij =
m
∑

i=1

pi =
m
∑

j=1

qj = 1,

where fij is a flow of mass (the amount of moving particles) from
i to j, dij is a ground distance from i to j, and all flows F = [fij ].
From this setting, EMD measures the minimum workload, defined
as

D
EMD

(P,Q) = min
F

WORK(P,Q, F ).

The virtue of EMD is in adjusting ground distance which en-
ables us to capture semantic differences. In our case, the ground
distance (dij) is set to be the normalized difference between stay-
ing durations, i.e., the difference of staying duration divided by the
maximum difference. Thus, 0 ≤ dij ≤ 1 for all i and j, which
results in 0 ≤ DEMD(P,Q) ≤ 1 [15]. When revisiting the ex-
ample in Figure 4, EMD performs DEMD(P,Q) < DEMD(P,R) as
desired since EMD sees (1 hour, 3 hours) pair has a much smaller
ground distance than (1 hour, 9 hours) pair has. As a result, EMD
is a better distance measure than KL divergence for our application
and we adopt EMD as the distance measure for location semantic
differences.

3.3.2 Location clustering

Based on EMD, locations are grouped into clusters before being
structured in a graph. The main reason for performing clustering
is that the data which would represent location semantics across all

1We do not present a detailed description of EMD. Interested read-
ers please refer to [22, 15].

locations is too complicated and huge. Because there are numer-
ous locations which are bases of people activities, computational
complexities and exchanging costs with such data would be con-
siderable burdens.

In this respect, k-means clustering is performed by grouping se-
mantically similar locations. Pair-wise distances between locations
are represented using EMD and the centroid of each cluster is up-
dated by computing the average of the distributions in the cluster.
Detailed explanations for k-means clustering can be found in [12].

3.3.3 Location semantic graph

After having clustered locations, all semantic information is rep-
resented by a graph based structure, which we call a location se-

mantic graph. In a location semantic graph, a node represents clus-
tered locations and an edge weight represents EMD between corre-
sponding nodes. EMD between cluster nodes is defined as

D(Ci, Cj) =
∑

li∈Ci

1

|Ci|

∑

lj∈Cj

DEMD(li, lj)

|Cj |

where Ci, Cj are clusters, |Ci|, |Cj | are the number of locations in
a cluster, and li, lj are the distributions of each location. Note that
D(Ci, Cj) is also normalized into [0,1] because 0 ≤ DEMD(li, lj) ≤
1 for all i, j.

Figure 5 shows an example of a location semantic graph. The
nodes indicate clustered locations, each of which is a group of se-
mantically similar locations. The edge weight indicates the seman-
tic differences between clusters computed by EMD. The number
beside the cluster is the normalized number of locations in the clus-
ter. Since all clusters have one location respectively, all clusters are
0.25.

4. θ-SECURE CLOAKING AREA
Obtaining a privacy preserving cloaking area is difficult because

the way of checking the safety of the cloaking area in terms of
location semantics is unexplored. In other words, it is difficult to
evaluate howmuch location semantic information an adversary will

gain from the cloaking area. To handle this, we propose methods
for evaluating the safety of cloaking areas (Section 4.1) and obtain-
ing a θ-secure cloaking area (Section 4.2).

4.1 Computing EMD of Cloaking Area
An adversary gains location semantic information from a cloak-

ing area only if it is different from what he/she already knew. In
other words, before seeing the cloaking area, the adversary’s knowl-
edge is the location semantics of an entire area since he/she has no
idea where a mobile user is located (a prior belief). After seeing the
cloaking area, the adversary obtains more specific location seman-
tics corresponding to the cloaking area (a posterior belief). Thus,
the information gain of the adversary from the cloaking area can
be the difference between such prior beliefs and posterior beliefs,
which is directly linked to the safety of the cloaking area. Moti-
vated by this observation, we aim at evaluating the differences of
the prior belief and the posterior belief.

The prior belief is the location semantic information of an arbi-
trary area since the adversary has no idea where a mobile user is
located. Thus, the prior belief is represented as a location seman-
tic graph in a hypothetically large area. For the posterior belief,
the adversary sees a cloaking area which possibly contains more
specific semantic information. Thus, the posterior belief is a more
elaborated location semantic graph which is built upon the prior
belief.
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Figure 6: A spatial snapshot of a mobile user and its location semantic graph

Figure 6 illustrates a spatial snapshot of a mobile user (a) and
its location semantic graph (b1) and (b2). Note that the location
semantic graph in Figure 5 is constructed based on Figure 6-(a) to
be a running example. In Figure 6, locations from S1 to S4 are
represented with their corresponding cluster labels. A mobile user
located at ‘x’ marked in the center has two choices for the cloaking
area, CA1 and CA2. The cluster weight of the location semantic
graph in (b1) and (b2) is changed because it only considers the
cloaking area. For example, (b1) shows 0.5 on C1, C3, and 0 on
C2, C4, because C1, C3 have one location respectively but C2, C4

have no location.
To measure the safety of a cloaking area by comparing the prior

belief and the posterior belief, we compute the EMD of location
semantic graphs between before and after seeing the cloaking area.
A node (clustered locations) in a location semantic graph is con-
verted into a discrete domain in EMD, and an edge weight (se-
mantic differences) is converted into a ground distance dij . Nu-
merical computational results of CA1 and CA2 are shown below as
DEMD(PCA1 , PE) and DEMD(PCA2 , PE) respectively.

DEMD(PCA1 , PE) = min
f

∑

i

∑

j

fijdij

= f
∗

120.5 + f
∗

140.7 + f
∗

320.8 + f
∗

340.6

= 0.25 · 0.5 + 0 · 0.7 + 0 · 0.8 + 0.25 · 0.6

= 0.275

DEMD(PCA2 , PE) = min
f

∑

i

∑

j

fijdij = 0.075

where PCAk
indicates the posterior belief of cloaking area CAk,

PE indicates the prior belief. dij and fij is a ground distance
and a flow between clusters Ci and Cj respectively, and f∗

ij is an
optimal flow making two beliefs the same (see Section 6 for the
discussion on the time complexity of EMD computations). Note
that 0 ≤ DEMD(PCA, PE) ≤ 1 is satisfied, because 0 ≤ dij =
D(Ci, Cj) ≤ 1 holds.

Based on DEMD(PCA2 , PE) < DEMD(PCA1 , PE), we argue that
CA2 is more secure than CA1. This interpretation makes sense since
C1 and C2 have bigger semantic distances than C1 and C3 have.

4.2 Finding θ-Secure Cloaking Area
Based on the safety measure of the cloaking area, a θ-secure

cloaking area is defined below.

Definition 1. θ-Secure Cloaking Area. If a cloaking area CA

satisfies DEMD(PCA, PE) ≤ θ, we denote this cloaking area as a
θ-secure cloaking area.

In order to obtain a θ-secure cloaking area, a cloaking area is
extended until it satisfies θ-secure cloaking area. Algorithm 1 de-
scribes a greedy algorithm for finding a θ-secure cloaking area.

Note that all locations are mapped onto a 2n-by-2n grid for effi-
cient computation (n is selected by the user).

Algorithm 1. Finding θ-secure cloaking area

input : a grid map of location Map, a location semantic
graph G, a prior belief PE, a threshold value θ, and
a maximum number of iterations maxLoop.

output: θ-secure cloaking area

1 CA = getInitialCA () ;
2 for i=1 to maxLoop do

3 foreach dir ∈ getPossibleDirs (CA, Map) do
4 CAdir = extendCloakingArea (CA, Map,

dir) ;
5 PCAdir

= computePosteriorBelief (CA, G)
;

6 EMDCAdir
=DEMD(PCAdir

,PE) ;

7 (p, EMDmin) = findMinEMD () ;
8 CA = CAp;
9 if EMDmin ≤ θ then

10 break ;

11 return CA ;

In Algorithm 1, a single cell, which includes a current mobile
position, is chosen as an initial cloaking area (line 1). Next, obtain
possible directions from {North, East, South, West}, which would
make a rectangular form of a cloaking area (line 2). For each direc-
tion, the cloaking area is extended (line 4), and a posterior belief
and EMD are computed (line 5-6). After iterating over all possi-
ble directions, select a cloaking area which has the minimum EMD
value (line 7-8). Finally, if the minimum EMD value is less than
the threshold θ (line 9), then return the corresponding cloaking area
which is a θ-secure cloaking area (line 11).

5. EVALUATION

5.1 Experimental Setting
We extended a traffic simulator [2] to consider the human mo-

bility patterns, which enables us to evaluate the effectiveness and
performance of our proposed methods.2 As described in Section
3, people stay a while in a location according to the location se-
mantics. To be able to reflect such characteristics, the simulator
should be able to determine the staying duration of each location.
However, to the best of our knowledge, all known traffic simula-
tors do not consider location semantics but simply generate random

2All implementations and data sets used for the evaluation are
available on the project page, http://hpc.postech.ac.kr/locpriv.
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Table 1: Parameters for the traffic simulator
Parameters Nc tmin tmax Nl α β Nusers

Values 4 50 400 2000 10 10 4000

movements. Thus, we modify the state of the art traffic simulator,
Network-based Generator of Moving Objects [2], in order to reflect
realistic human movement patterns.

In our modified simulator, staying duration patterns are modeled
relying on the Gaussian distribution with latent variables. First, we
sample Nc clusters which represent the group of semantically sim-
ilar locations. For a cluster Ck, the mean µck and the standard de-
viation σck of the cluster staying duration pattern are picked from
the uniform distributions, µck ∼ U(tmin, tmax) and σck ∼ U(0, α),
where tmax and tmin represent the maximum and minimum stay-
ing duration and α controls the variance of the cluster. Next, Nl

locations are sampled from the clusters. For a location lki from
the cluster Ck, the mean µlki

and the standard deviation σlki
of

a location staying duration pattern are picked from the Gaussian
distributions, µlki

∼ N (µck , β) and σlki
∼ N (σck , β), where β

controls the variance among the locations in each cluster. Once a
moving object reaches the location, an actual staying duration t is
determined from the Gaussian distribution t ∼ N (µlki

, σlki
). In

addition, a moving object chooses its next destination based on a
lévy-flight process that is known to be followed by human mobility
patterns according to a recent study [9]. Relying on the lévy-flight
process, the probability of visiting nearby locations is higher than
those of far away locations.

We generated trajectory data using our modified simulator. Nusers

objects were moved over a real road map of Oldenburg, Germany.
The road map contains 6,105 nodes and 7,035 edges, a city about
15×15 km2, which is presented in a 27-by-27 grid. Table 1 lists
the parameters used for simulating moving objects. It is assumed
that a LBS request is sent with a 2% probability from the reported
positions. A staying duration pattern for each location is obtained
from the trajectory and a location semantic graph is learned from
the staying duration patterns. Using the location semantic graph,
a θ-secure cloaking area is computed for each LBS request. In or-
der to compare with the proposed method, a cloaking area is also
computed based on k-anonymity and ℓ-diversity techniques as de-
scribed in Section 2.1.

5.2 Experimental Results

5.2.1 Evaluation on location semantic learning

From 2000 locations used for generating trajectory data, 1948
locations were identified. Some locations were missing because
a small number of moving objects passed by them. Among the

identified locations, k-means clustering was performed with a pa-
rameter k = 4, and the clustering result was close to the perfect;
i.e. F1 = 0.997. In order to measure the correctness of the loca-
tion semantic graph, we measured the normalized edge-weight dif-
ferences between the modeled location semantic graph (GM ) and
learned location semantic graph (GL) as

D(GM , GL) =
2

NC(NC − 1)

NC
∑

i=1

i−1
∑

j=1

∣

∣

∣
[AM ]

ij
− [AL]ij

∣

∣

∣
,

where NC denote the number of clusters, and AM and AL denote
the weighted adjacency matrix of GM and GL respectively. Since
the edge-weight is normalized into [0,1], the minimum and maxi-
mum of D(GM , GL) are 0 and 1. Moreover, to evaluate the good-
ness of D(GM , GL), we randomly created the location semantic
graph GR and the average is obtained from 30 times of running
D(GM , GR). From the experiments, we obtained D(GM , GL) =

0.084 and D(GM , GR) = 0.281, which shows much closer results
to the modeled location semantic graph.

5.2.2 Evaluation on θ-secure cloaking area

Attack models and measures: The adversary is assumed to have
location semantic information at best, e.g. the location seman-
tic graph of the model used for generating the trajectory. Conse-
quently, the adversary takes a better position than our method be-
cause our method uses the learned location semantic graph which
slightly deviates from the actual location semantic graph.

First of all, we checked how much location semantic information
the adversary would gain from a cloaking area, which is quantified
in EMD of a cloaking area. Since the adversary and our method
have a different location semantic graph, EMD computed from the
same cloaking area would be different. This implies that the θ-
cloaking area returned by our algorithm may not guarantee θ degree
of protection from the adversary’s view. To be clear, we denote θt
as a threshold for computing a cloaking area in our algorithm while
θa is the EMD from the adversary’s view.

To evaluate resistance against a location similarity attack launched
by the adversary, we measure the number of θa-insecure cloaking
areas. A θa-insecure cloaking area is a cloaking area which has
EMD higher than θa from the adversary’s point of view. It im-
plies that the adversary would gain θa degree or more of location
semantics information from the corresponding cloaking area.

The cost of using a cloaking area is measured by the size of
the cloaking area. Since a mobile user uses the cloaking area for
the anonymization, he/she needs to spend more network traffic and
computing costs proportional to the size of the cloaking area.
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Figure 10: The number of θa-insecure cloaking areas by varying k, l, θt. X-axis: Average size of cloaking areas; Y-axis: Number of

θa-insecure cloaking areas (×103).
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Figure 11: EMD of all cloaking areas by varying k, ℓ, and θt

Safety of a θ-secure cloaking area: Figure 7 shows the cumula-
tive distribution function (CDF) of all 4000 cloaking areas’ EMD
for θt = 0.05. When EMD is computed from our algorithm (method’s
view), 90% of the cloaking areas’ EMD is below 0.05, which im-
plies that our algorithm successfully returns θt-secure cloaking area
in most cases. Some cloaking area’s EMD is over 0.05 because
our algorithm failed to find θt-secure cloaking area under the given
number of extending steps. When it comes to the adversary’s view,
it shows slightly higher EMD value than the method’s view. Al-
though computed EMD is different, EMD of most cloaking areas is
below 0.06 from the adversary’s view, which is close to the model’s
view.

Figure 8 shows the number of θa-insecure cloaking areas while
changing θt. Overall, as θt increases the number of insecure cloak-
ing areas also increases, because a lower privacy level is enforced
for higher θt. In addition, an actual θa degree of anonymity is ob-
tained when θt < θa. For example, in 0.08-insecure case (θa =
0.08), there are about 3000 insecure cloaking areas when θt =
0.08, but fewer than 450 insecure cloaking areas when θt ≤ 0.06.
Since this difference between θt and θa is a relative difference be-
tween the model’s view and the adversary’s view, we believe this
does not indicate a weakness in our method. To achieve θa de-
gree of anonymity, a smaller θt can be used, e.g. using θt=0.06 to
achieve θa=0.08 degree of anonymity in this case.

Cost of a θ-secure cloaking area: Figure 9 shows the average size
of the cloaking area versus θt. As θt decreases the average size
of a cloaking area increases because a small θt implies more strict
anonymization degree and causes a larger cloaking area. In addi-
tion, the curve follows a negative exponential function, which can
be interpreted as follows. As θt approaches 1 (no location privacy
guarantee), the average size would approach zero (the size of an
exact position). On the contrary, as θt approaches zero (the maxi-

mum location privacy guarantee), the average size would approach
infinity (the size of the maximum area).

Comparison with k-anonymity and ℓ-diversity: The safety and
the costs of our method are compared with baseline methods, lo-
cation k-anonymity and ℓ-diversity. 4000 requests are anonymized
with our method as well as with baseline methods while changing
the parameter of each method’s privacy requirement (k, l, and θt).

Figure 10 plots the number of θa-insecure cloaking areas with
the average size of cloaking areas for each parameter setting. In
most cases, our method shows a lower number of θa-insecure the
cloaking areas when the average size of cloaking area is similar
to the others. For example, in Figure 10-(c), when k = 43, l =
18, and θt = 0.02, the number of insecure cloaking areas of θt is
much lower than k and ℓ. This signifies that our method provides
better safety when the costs for enforcing the location privacy are
the same.

Moreover, our method also shows better performances in costs
when the provided safety is the same. To be specific, when the
number of θa-insecure cloaking areas are the same, our method has
a lower average size of cloaking areas than the others. Such supe-
riority of our method becomes clearer as a safety requirement gets
strict. In other words, as the criteria for insecure cloaking areas (θa)
decreases, the gap between our method (θt) and baseline methods
(k and ℓ) remarkably increases as shown from Figure 10-(a) to Fig-
ure 10-(c). Thus, a mobile user would get more benefits if location
privacy preservation is the primary need.

In order to investigate more details, Figure 11 shows CDF of
EMD of all cloaking areas when the costs, the average size of cloak-
ing areas, are similar, e.g. (k=16, ℓ=7, θt=0.05) and (k=43, ℓ=18,
θt=0.02). In both cases, θt is always more concentrated to lower
EMD than k and l, which implies that our method guarantees better
protection of the location semantics against any level of a location
similarity attack.

Figure 12 illustrates the two-dimensional distribution of each
cloaking area’s size and its EMD, when the costs are similar. Over-
all, the distribution of the cloaking area from our method is con-
centrated in the bottom but the distributions from baseline methods
are dispersed upward, which indicates that our method provides
better location semantic protection at the same costs. Moreover,
the brightest cell in Figure 12-(b3) is located more left than in Fig-
ure 12-(b1) and (b2). As a result, a large portion of the cloaking
area in our method has a smaller size. However, since the aver-
age size of the cloaking area in these three figures is similar, some
cloaking areas of our method would have a bigger size. This sug-
gests that a mobile user using our method would enjoy low costs in
most cases, but in some cases would pay relatively high costs.
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Figure 12: Two-dimensional distribution of each cloaking
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quent the occurrence is. X-axis: Size of a cloaking area; Y-axis:

EMD.

6. DISCUSSION
Most previous work guarantees the anonymity and unlinkability

based on k-anonymity and ℓ-diversity. Since our work focuses on
protecting the location semantics using θ-secure cloaking area, the
anonymity and unlinkability could be unprotected in some cases.
For resolving this issue, all three parameters, θ-secure cloaking
area, k-anonymity, and ℓ-diversity, could be used together, simi-
larly PrivacyGrid [1] uses k-anonymity and ℓ-diversity together. In
addition, since our method does not have reciprocity [14], θ-secure
cloaking area may reveal the user location information caused by
outliers; i.e. in peripheral areas where there are few semantically
related locations, the cloaking area can become quite large and re-
veal that the user is in that peripheral area. To satisfy the reciprocity
property, HilbertCloak [14] algorithm could be used.

Furthermore, our method relies on an EMD computation both in
an offline step (clustering semantic locations) and an online step
(computing a θ-secure cloaking area). Thus, it is vital for our
method to be able to efficiently compute EMD, especially in the
online stage. The time complexity for computing EMD can be
formalized using a minimum cost network problem, and it can be
solved in O(n3 log n) [22], where n is either the number of loca-
tions or clusters in our method. Because the number of clusters
would be quite small, we believe this is not the serious load for the
online stage. For the offline stage, approximation algorithms can
be adopted, which empirically lead to O(n) or O(n2 log n) [17,
21] with error bounds. Note that each approximation algorithm
requires a specific setting for the ground distance; i.e. L1 dis-
tances [17] or thresholded distances [21]. Since the ground distance
in our method is on the non-euclidean space, more investigations
should be done to adopt approximation algorithms.

7. RELATEDWORK

Anonymization for publishing relational database: In order to pro-
tect published relational database data such as medical data, k-
anonymity [23] was developed. k-anonymity guarantees the ad-
versary cannot distinguish an individual record from at least ‘k-1’
other tuples. However, since ‘k-1’ other tuples may be the same
sensitive values, ℓ-diversity [19] was proposed which enforces tu-
ples in the same group have at least ‘ℓ-1’ diverse sensitive values.

Ninghui et al. proposed t-closeness [15] to resolve the semantic
breaches of k-anonymity and ℓ-diversity. t-closeness guarantees
tuples in the same group are statistically similar to the entire data
using EMD.

Anonymization for location based services: Gruteser et al. first
proposed location privacy technique based on the k-anonymity con-
cept and trusted-anonymization server [10]. The cloaking area,
which is extended until ‘k-1’ other users are included, is com-
puted through a trusted anonymization server and used for LBS re-
quests instead of exact coordinates. A series of work has improved
the computation of a cloaking area under k-anonymity. Clique-

Cloak [6] and Casper [20] proposed personalized location anonymiza-
tion. CliqueCloak locates a clique in a graph to compute the cloak-
ing area and Casper uses a quadtree-based pyramid data structure
for fast computation of the cloaking area. Probabilistic Cloak-

ing [3] proposed imprecise LBS requests which yield probabilistic
results. The HilbertCloak [14] algorithm utilizes Hilbert space-
filling curve and its cloaking area is independent of mobile user
distribution. To reduce the size of the cloaking area, historical lo-
cations of mobile nodes are used for computing the cloaking area
instead of the current mobile node’s location [26]. Feeling-based
location privacy [27] sets ‘k’ using the location where a mobile user
feels safe enough to disclose her location.

Using the k-anonymity based technique, the cloaking area may
include only one meaningful location (e.g. a specific hospital or
school) and disclose strong relationships to such a location. Thus,
PrivacyGrid [1] proposed location ℓ-diversity, which extends the
cloaking area until ‘ℓ-1’ different locations are included. Priva-

cyGrid used both location k-anonymity and ℓ-diversity so that the
anonymization into different persons and locations can be done to-
gether. Similarly, XSTAR [24] attempted to achieve the optimal bal-
ance between high query-processing efficiency and robust inference-
attack resilience while considering k-anonymity and ℓ-diversity to-
gether. Several works [28, 25, 5] have identified semantic breach is-
sues, but impractical assumptions were made to resolve such issues.
Location diversity [28] assumed that location semantics are pre-
labeled and ℓ-diversity is able to protect the semantic breaches, and
PROBE [5] also assumed the pre-labeled location semantics and
requires many profile parameters for each user. p-sensitivity [25]
assumed that a LBS request is classified into a sensitive or insensi-
tive request.

In architectural perspectives, previous location privacy protec-
tion schemes mostly follow the trusted-server-based model in which
an anonymization server delegates all LBS requests for mobile users.
However, SpaceTwist [29] proposes an client-based model which
uses a fake location instead of using ‘exact location’ for computing
a cloaking area. [7] also proposes the client-based model based on
Private Information Retrieval (PIR) with cryptographic techniques.
The peer-to-peer model [4, 8, 13] attempts to remove trusted anonymiza-
tion server. Based on a decentralized cooperative peer-to-peer model,
location information among nearby peers is shared and used for
computing the cloaking area.

Location data mining: A recommending system for travelers is
proposed in [31, 30]. Trajectory data is analyzed and interesting
locations are mined based on visited frequencies on each location.
In [16], a similarity between users is mined based on the sequence
property of people’s movement behaviors, which also enables to
identify correlations among locations. To the best of our knowl-
edge, our research is the first to discover location semantics using
staying duration and utilize it for computing semantically hetero-
geneous cloaking areas.
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8. CONCLUSION
This paper proposes novel location privacy protecting techniques.

Our proposed methods protect the location semantics from the LBS
applications by performing the cloaking with semantically hetero-

geneous locations. Experimental results validate our proposed meth-
ods.
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