-~ | Inffeormation
Ge?.-rg'ﬁ | SEecuUrity
echl Center

ASLR-Guard:
Stopping Address Space Leakage for Code Reuse Attacks

Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung,
Taesoo Kim, Wenke Lee

School of Computer Science
Georgia Tech

ASLR-Guard

Code Reuse Attack

e Circumvent DEP or WAX

— Code reuse is usually the only way to launch
“remote code execution” attacks

— It is prevalent in real world

Code Reuse Attack

e Circumvent DEP or WAX

— Code reuse is usually the only way to launch
“remote execution” attacks

— It is prevalent in real world
c\ Apache “‘ ’
' HTTP SERVER %
Servers
Browsers Kernels

Attackers

ASLR-Guard

A Code Reuse Example

Low address | Stack
Y
Vuln
buffer
Ret addr

params

A Code Reuse Example

Low address | Stack
—>
Filled
buffer
Original system()
ret address
exit()
“/bin/sh”

{

A Code Reuse Example

Low address Stack Loaded libraries
—
Filled
buffer Libc.so
Original s
ystem()
ret address . 1 system(){ }
exit()
“/bin/sh”

{

Code Reuse Attacks Becoming
More Sophisticated

 More flexible, more automated, and more
difficult to detect and defend against

<2001 2007 2010

Return-into-libc » Return-oriented }> JOP/ROP without }>
Programming returns
2013 2014 2015 P,

% JT-ROP)) SignalROP) ~ COOP)) e
PHP ROP Control Jujutsu

It’s Easy to Launch Code Reuse Attacks

* Two typical requirements

1. Knowing address of 2. Overwriting control
existing code gadgets data with your address

It’s Easy to Launch Code Reuse Attacks

* Two typical requirements

1. Knowing address of 2. Overwriting control
existing code gadgets data with your address
Stackguard,

Control flow integrity,
Code pointer integrity

It’s Easy to Launch Code Reuse Attacks

* Two typical requirements

1. Knowing address of 2. Overwriting control
existing code gadgets data with your address

|

Address space
Randomizations,
Re-randomizations

Address Space Layout Randomization
(ASLR)

e Efficient, deployed in all modern OS

4 Runl) 4 Run2)

/7 program
program / data
data

ibs —
libs

stack

heap stack

A Fundamental Limitation:
Information Leak

. Code pointer leak = infer code address

- e.g., JIT-ROP, Blind ROP, “Missing the point”, etc.
. Such bugs are common, increasing!

2500 ¢ -
2000
1500
1000

#info leaks

500

2000 2002 2004 2006 2008 2010 2012 2014
Year

http://www.cvedetails.com/vulnerabilities-by-types.php

A Fundamental Limitation:
Information Leak

. Code pointer leak = infer code address

- e.g., JIT-ROP, Blind ROP, “Missing the point”, etc.
. Such bugs are common, increasing!

2500 ¢ -
2000 |
1500 [-

Security guarantee of ASLR is gone!

leaks

http://www.cvedetails.com/vulnerabilities-by-types.php

Research Goal:
to prevent code pointer leaks

— Reclaim the benefits of ASLR

ASLR-Guard

Challenges

* Many ways to locate code gadgets
— Direct: Return addr, func pointer, vtable, etc.
— Indriect: jmp table, etc

* Code pointers are everywhere
— Propagated as data

e Performance!

ASLR-Guard

An extremely efficient scheme
to hide or obfuscate code pointers!

ASLR-Guard

Two Main Contributions

e Systematic way to discover code pointers
— Validated with memory snapshot comparisons

 Two techniques to prevent code pointer leaks
— Isolation
— Encryption

Systematic Code Pointer Discovery (1)

. How are code pointers created?

— By relocation: loader must relocate ALL static
pointers

. E.g., fn = base + offset
— From program counter (PC)

. E.g., lea offset(%rip), %rax
— From OS

. E.g., entry point, exception handler

Systematic Code Pointer Discovery (1)

. How are code pointers created?

— By relocation: loader must relocate ALL static
pointers

. E.g., fn = base + offset

— From program counter (PC)

. Fo lea nffcot(%rin) %rav

How to completely catch them?

Systematic Code Pointer Discovery (2)

Relocation-based code pointers

— Hook relocation with our custom loader

PC-based code pointers

—> Complete control of toolchains (e.g., gcc, gas ...)

OS-injected code pointers

- Tool to scan process memory

Data pointers?

- They are safe as we decouple code and data

Discovered Code Pointers

No propagation Propagated as data
e Return address e Base address
* GOTPLT entry e Static func pointer
e Jump table entry e Virtual func pointer
° .. GetPC/GetRet

* Entry point

e Exception handler

More details can be found in the paper

How to protect all the discovered
code pointers?

Code Pointer Isolation

* Code pointers are saved in isolated memory
— attackers cannot touch

* |solation is achieved by randomization (x64)

— Fact: brute-forcingly guessing the randomized
address on x64 = crash
— Say 16 MB memory, 27228 entropy
* Phit=16M/(2728 * PageSize) = 1/32,768
* Entropy can be extended to up to 247

Code Pointer Isolation

 Safe vault and AG-Stack at random address
* Reserve register %GS and %RSP

AG-stack
Safe vault = (similar to safe-stack)@ _ _Reiulir Teino_ry_
e GOTPLT entry = . |
* Jump table entry e Return address I « Otherdata
I
7} . | - " - "=====

[2%GS %RSP J

Code Pointer Isolation

No propagation

Propagated as data

(@)
Return address (! H
GOTPLT entry
Jump table entry

Isolated

ASLR-Guard

Base address

Static func pointer
Virtual func pointer
GetPC/GetRet
Entry point
Exception handler

Code Pointer Encryption

* When isolation is not sufficient
— E.g., propagated to outside safe vault or AG-stack

* Three requirements
— Confidentiality: cannot crack
— Integrity: cannot modify
— Efficiency

Encryption Scheme

void hello(); Assembly:
void (*fn)() = hello; lea 0x1234(%rip), %rax

void hello();

void (*fn)() = hello;

Encryption Scheme

Assembly:
lea 0x1234(%rip), %rax

%gs

>,

>

Random Mapping Table (in safe vault)

Mapping entries...

~N

Encryption Scheme

void hello(); Assembly:
void (*fn)() = hello; lea 0x1234(%rip), %rax

%gs >,
(Random Mapping Table (in safe vault) \
Random

offset

<— 16-bytes >

New entry

_ J

Stepl: create an entry with a random offset into table base

Encryption Scheme

void hello(); Assembly:
void (*fn)() = hello; lea 0x1234(%rip), %rax

%gs >,
(Random Mapping Table (in safe vault) \
Random

offset < 8-bytes — ¢ 4-bytes —sic— 4-bytes |

fn 0 nonce

_ J

Stepl: create an entry with a random offset into table base
Step2: save fn in first 8-bytes, followed by 4-bytes 0 and 4-bytes random nonce

Encryption Scheme

void hello(); Assembly:
void (*fn)() = hello; lea 0x1234(%rip), %rax

%gs >,
(Random Mapping Table (in safe vault) \
Random

offset <—— 8-bytes ——— i« 4-bytes —>ij«— 4-bytes —|
fn 0 nonce
rand. offset nonce —> %rax

Stepl: create an entry with a random offset into table base
Step2: save fn in first 8-bytes, followed by 4-bytes 0 and 4-bytes random nonce
Step3: save the 4-bytes random offset and nonce into %rax

Encryption Scheme

void hello(); Assembly:
void (*fn)() = hello; lea 0x1234(%rip), %rax
%gs >,
[Random Mapping Table (in safe vault) \
Random
offset

<——— 8-bytes ————>j«— 4-bytes -

< 4-bytes >

fn

0

nonce

_

J

printf(“%p”, fn) -2

rand. offset

nonce

Decrypt Code Pointer

fn(); Assembly:
call *%rax;

Decrypt Code Pointer

fn(); Assembly:
call *%rax;

Instrumentation :
call *%rax; ——» XOr %gs:8(%rax), %rax;

call %gs:(%rax)

Decrypt Code Pointer

fn(); Assembly:
call *%rax;

Instrumentation :
call *%rax; S xor %gs:8(%rax), %rax;
call %gs(%rax

Runtime:
0 nonce
(little-endian) E}—) random offset (in %rax)

ASLR-Guard

Decrypt Code Pointer

fn(); Assembly:
call *%rax;

Instrumentation :
call *%rax; ——» XOr %gs:8(%rax), %rax;

@%gs:(%rax))

Runtime:
0 nonce
(little-endian) 69—> random offset (in %rax)
Rand offset nonce

%gs:(%rax) points to ”fn” in random mapping table,
so, call %gs:(%rax) =2 call fn

Decrypt Code Pointer

fn(); Assembly:
call *%rax;

Instrumentation :
call *%rax; ——» XOr %gs:8(%rax), %rax;

call %gs:(%rax)>
Runtime:

0 honce —|

Extremely efficient decryption: only one XOR operation!

so, call %gs:(%rax) =2 call fn

More About Encryption Scheme

 |tis secure
— A secretless scheme
— Random mapping table is isolated

* [ntegrity guarantee
— Nonce per pointer
— Single bit change = segfault (out of table)

e Secure randomness
— Intel’s RdRand instruction

Comprehensive Protection

No propagation

Propagated as data

(@)
Return address (! H
GOTPLT entry
Jump table entry

Isolated

ASLR-Guard

o
Base address A l

Static func pointer
Virtual func pointer
GetPC/GetRet
Entry point
Exception handler

Encrypted

Implementation

* GNU Toolchain: gcc, gas, Id, Id.so
— ~3000 LoC changes

e Libraries: eglibc, libstdc++ ...

e Tested on Ubuntu 14.04 X86 64 and Ubuntu 15.04
X86 64

Performance Evaluation

<1% runtime overhead on SPEC benchmarks
No overhead for AG-Stack

6% binary size increase

>2 MB of memory overhead

27% load time

Security Evaluation

* Locating safe-vault/AG-Stack - 2728
* Breaking nonce - 2732

* Memory snapshot analysis

* No single plain code pointer found for all SPEC
benchmarks

* No plain locator found in Nginx and blind ROP is
defeated

Discussion & Limitation

. Reusing encrypted code pointers
1) Exploiting arbitrary read
2) Understanding semantics of leaked memory

3) Preparing parameters

. Dynamic code generation

. DWARF exception is not implemented yet

Conclusion

e ASLR-Guard: a fast defense mechanism to
prevent code pointer leaks for code reuse
attacks

- Benefits of ASLR can be reclaimed

Thanks!

Questions?

