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Code Reuse Attack

e Circumvent DEP or WAX

— Code reuse is usually the only way to launch
“remote code execution” attacks

— It is prevalent in real world
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Code Reuse Attacks Becoming
More Sophisticated

 More flexible, more automated, and more
difficult to detect and defend against
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It’s Easy to Launch Code Reuse Attacks

* Two typical requirements

1. Knowing address of 2. Overwriting control
existing code gadgets data with your address
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It’s Easy to Launch Code Reuse Attacks

* Two typical requirements

1. Knowing address of 2. Overwriting control
existing code gadgets data with your address
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Address Space Layout Randomization
(ASLR)

e Efficient, deployed in all modern OS
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A Fundamental Limitation:
Information Leak

. Code pointer leak = infer code address

- e.g., JIT-ROP, Blind ROP, “Missing the point”, etc.
. Such bugs are common, increasing!
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A Fundamental Limitation:
Information Leak

. Code pointer leak = infer code address

- e.g., JIT-ROP, Blind ROP, “Missing the point”, etc.
. Such bugs are common, increasing!
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Research Goal:
to prevent code pointer leaks

— Reclaim the benefits of ASLR

ASLR-Guard



Challenges

* Many ways to locate code gadgets
— Direct: Return addr, func pointer, vtable, etc.
— Indriect: jmp table, etc

* Code pointers are everywhere
— Propagated as data

e Performance!



ASLR-Guard

An extremely efficient scheme
to hide or obfuscate code pointers!

ASLR-Guard



Two Main Contributions

e Systematic way to discover code pointers
— Validated with memory snapshot comparisons

 Two techniques to prevent code pointer leaks
— Isolation
— Encryption



Systematic Code Pointer Discovery (1)

. How are code pointers created?

— By relocation: loader must relocate ALL static
pointers

. E.g., fn = base + offset
— From program counter (PC)

. E.g., lea offset(%rip), %rax
— From OS

. E.g., entry point, exception handler



Systematic Code Pointer Discovery (1)

. How are code pointers created?

— By relocation: loader must relocate ALL static
pointers

. E.g., fn = base + offset

— From program counter (PC)

. Fo lea nffcot(%rin) %rav

How to completely catch them?



Systematic Code Pointer Discovery (2)

Relocation-based code pointers

— Hook relocation with our custom loader

PC-based code pointers

—> Complete control of toolchains (e.g., gcc, gas ...)

OS-injected code pointers

- Tool to scan process memory

Data pointers?

- They are safe as we decouple code and data



Discovered Code Pointers

No propagation Propagated as data
e Return address e Base address
* GOTPLT entry e Static func pointer
e Jump table entry e Virtual func pointer
° ..  GetPC/GetRet

* Entry point

e Exception handler

More details can be found in the paper



How to protect all the discovered
code pointers?



Code Pointer Isolation

* Code pointers are saved in isolated memory
— attackers cannot touch

* |solation is achieved by randomization (x64)

— Fact: brute-forcingly guessing the randomized
address on x64 = crash
— Say 16 MB memory, 27228 entropy
* Phit=16M/(2728 * PageSize) = 1/32,768
* Entropy can be extended to up to 247



Code Pointer Isolation

 Safe vault and AG-Stack at random address
* Reserve register %GS and %RSP

AG-stack
Safe vault = (similar to safe-stack)@ _ _Reiulir Teino_ry_
e GOTPLT entry = . |
* Jump table entry e Return address I « Otherdata
I
7} . | - " - "=====

[ 2%GS %RSP J




Code Pointer Isolation

No propagation

Propagated as data
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Code Pointer Encryption

* When isolation is not sufficient
— E.g., propagated to outside safe vault or AG-stack

* Three requirements
— Confidentiality: cannot crack
— Integrity: cannot modify
— Efficiency



Encryption Scheme

void hello(); Assembly:
void (*fn)() = hello; lea 0x1234(%rip), %rax



void hello();

void (*fn)() = hello;

Encryption Scheme

Assembly:
lea 0x1234(%rip), %rax

%gs
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Random Mapping Table (in safe vault)

Mapping entries...
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Encryption Scheme
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Stepl: create an entry with a random offset into table base



Encryption Scheme

void hello(); Assembly:
void (*fn)() = hello; lea 0x1234(%rip), %rax

%gs >,
( Random Mapping Table (in safe vault) \
Random
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Stepl: create an entry with a random offset into table base
Step2: save fn in first 8-bytes, followed by 4-bytes 0 and 4-bytes random nonce



Encryption Scheme

void hello(); Assembly:
void (*fn)() = hello; lea 0x1234(%rip), %rax

%gs >,
( Random Mapping Table (in safe vault) \
Random

offset <—— 8-bytes ——— i« 4-bytes —>ij«— 4-bytes —|
fn 0 nonce
rand. offset nonce —> %rax

Stepl: create an entry with a random offset into table base
Step2: save fn in first 8-bytes, followed by 4-bytes 0 and 4-bytes random nonce
Step3: save the 4-bytes random offset and nonce into %rax



Encryption Scheme

void hello(); Assembly:
void (*fn)() = hello; lea 0x1234(%rip), %rax
%gs >,
[ Random Mapping Table (in safe vault) \
Random
offset

<——— 8-bytes ————>j«— 4-bytes -

< 4-bytes >

fn
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\_

J

printf(“%p”, fn) -2

rand. offset

nonce




Decrypt Code Pointer

fn(); Assembly:
call *%rax;



Decrypt Code Pointer

fn(); Assembly:
call *%rax;

Instrumentation :
call *%rax; ——»  XOr %gs:8(%rax), %rax;

call %gs:(%rax)



Decrypt Code Pointer

fn(); Assembly:
call *%rax;

Instrumentation :
call *%rax; S xor %gs:8(%rax), %rax;
call %gs(%rax

Runtime:
0 nonce
(little-endian) E}—) random offset (in %rax)

ASLR-Guard



Decrypt Code Pointer

fn(); Assembly:
call *%rax;

Instrumentation :
call *%rax; ——»  XOr %gs:8(%rax), %rax;

@%gs:(%rax))

Runtime:
0 nonce
(little-endian) 69—> random offset (in %rax)
Rand offset nonce

%gs:(%rax) points to ”fn” in random mapping table,
so, call %gs:(%rax) =2 call fn



Decrypt Code Pointer

fn(); Assembly:
call *%rax;

Instrumentation :
call *%rax; ——»  XOr %gs:8(%rax), %rax;

call %gs:(%rax)>
Runtime:

0 honce —|

Extremely efficient decryption: only one XOR operation!

so, call %gs:(%rax) =2 call fn



More About Encryption Scheme

 |tis secure
— A secretless scheme
— Random mapping table is isolated

* [ntegrity guarantee
— Nonce per pointer
— Single bit change = segfault (out of table)

e Secure randomness
— Intel’s RdRand instruction



Comprehensive Protection

No propagation

Propagated as data

(@)
Return address (! H
GOTPLT entry
Jump table entry

Isolated
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Implementation

* GNU Toolchain: gcc, gas, Id, Id.so
— ~3000 LoC changes

e Libraries: eglibc, libstdc++ ...

e Tested on Ubuntu 14.04 X86 64 and Ubuntu 15.04
X86 64



Performance Evaluation

<1% runtime overhead on SPEC benchmarks
No overhead for AG-Stack

6% binary size increase

>2 MB of memory overhead

27% load time



Security Evaluation

* Locating safe-vault/AG-Stack - 2728
* Breaking nonce - 2732

* Memory snapshot analysis

* No single plain code pointer found for all SPEC
benchmarks

* No plain locator found in Nginx and blind ROP is
defeated



Discussion & Limitation

. Reusing encrypted code pointers
1) Exploiting arbitrary read
2) Understanding semantics of leaked memory

3) Preparing parameters

. Dynamic code generation

. DWARF exception is not implemented yet



Conclusion

e ASLR-Guard: a fast defense mechanism to
prevent code pointer leaks for code reuse
attacks

- Benefits of ASLR can be reclaimed



Thanks!

Questions?



