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ABSTRACT

A general prerequisite for a code reuse attack is that the attacker
needs to locate code gadgets that perform the desired operations
and then direct the control flow of a vulnerable application to those
gadgets. Address Space Layout Randomization (ASLR) attempts to
stop code reuse attacks by making the first part of the prerequisite
unsatisfiable. However, research in recent years has shown that
this protection is often defeated by commonly existing information
leaks, which provides attackers clues about the whereabouts of cer-
tain code gadgets. In this paper, we present ASLR-GUARD, a novel
mechanism that completely prevents the leaks of code pointers, and
render other information leaks (e.g., the ones of data pointers) use-
less in deriving code address. The main idea behind ASLR-GUARD
is to render leak of data pointer useless in deriving code address by
separating code and data, provide a secure storage for code point-
ers, and encode the code pointers when they are treated as data.
ASLR-GUARD can either prevent code pointer leaks or render their
leaks harmless. That is, ASLR-GUARD makes it impossible to over-
write code pointers with values that point to or will hijack the control
flow to a desired address when the code pointers are dereferenced.
We have implemented a prototype of ASLR-GUARD, including a
compilation toolchain and a C/C++ runtime. Our evaluation results
show that (1) ASLR-GUARD supports normal operations correctly;
(2) it completely stops code address leaks and can resist against re-
cent sophisticated attacks; (3) it imposes almost no runtime overhead
(< 1%) for C/C++ programs in the SPEC benchmark. Therefore,
ASLR-GUARD is very practical and can be applied to secure many
applications.
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Figure 1: The number of information leak vulnerabilities reported by CVE
Details'. There was a huge jump in 2014 to over 2,000 bugs that allow
attackers to bypass ASLR.

1. INTRODUCTION

Since WEX became a de-facto security mechanism in modern
operating systems, code injection is no longer a viable general attack
technique. In particular, attackers can no longer place arbitrary
shell code in the target process’ data space and hijack control to
start executing that shell code. Instead, attackers now rely on code
reuse attack that hijacks the control flow to existing code in the
target process (in an unintended manner). Ever since their first
introduction, code reuse attacks have evolved from simply jumping
to some sensitive library functions (a.k.a. return-to-libc) to chaining
up small snippets of existing code (a.k.a. gadgets) with mainly
returns and indirect calls/jumps to allow the attacker to perform
arbitrary computations [38]. However, there are two prerequisites
for these attacks: (1) a prior knowledge of the location of existing
code gadgets, and (2) the ability to overwrite some control data (e.g.
return addresses, function pointers) with the correct values so as to
hijack the control flow to the targeted gadgets.

Address Space Layout Randomization (ASLR) aims to make
the first prerequisite unsatisfiable by making the addresses of code
gadgets unpredictable. In theory, ASLR can complement WX and
stop code reuse attacks effectively. By randomizing the location of
different code modules, and even various instructions within code
modules [22, 27, 32, 43], attackers without a priori knowledge
of how the randomization is done will not know the location of
the code that they want executed. As a result, attempts to launch
code reuse attacks will likely direct the hijacked control to a wrong
location and cause the attack to fail (usually with a program crash).
It has been widely used in modern operating systems, and proven to
be extremely efficient.

However, research in recent years has shown that many implemen-
tations of ASLR fail to live up to its promises of stopping code reuse
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attacks [7, 17, 37, 39, 41]. In some cases, the ASLR implementa-
tions fail to provide enough entropy thus are subject to brute-force
attacks [7, 17, 39]. A more serious and fundamental problem for
randomization based protection mechanisms is information leak
vulnerabilities [37, 41], which breaks the implicit assumption that
attackers cannot learn the randomness. With information leak, the
attacker usually can obtain a “post-randomization” pointer to the
location of a known module (e.g. specific function in a particu-
lar library) [7, 17, 39]. For ASLR that works at a module-level
granularity (i.e., it does not modify the relative location of differ-
ent instructions within a module), this kind of leak will allow an
attacker to identify all target addresses within that module. Even for
instruction-level randomization, with a sufficiently powerful infor-
mation leak vulnerability, attackers can exploit a single code address
leak and repeatedly read code pages to eventually locate all the code
gadgets necessary to launch even the most sophisticated code reuse
attacks [40]. More devastating, information leak is quite prevalent
and the number of instances discovered is on the sharp rise. For
example, there are over 2000 information leak vulnerabilities found
in 2014 (Figure 1).

One way to solve this problem is to completely prevent code
address leak. However, detecting or preventing code address leak
is a very challenging problem. Due to the complexity of programs
written in low level programming languages, it is even not clear
about if one can find all pointers or data that can be leveraged to
infer the code address. Moreover, code pointer and data can be
inter-casted during the data propagation. And some code pointers
(e.g., return addresses) are frequently dereferenced. Therefore, it is
very challenging to correctly and efficiently protect code pointers.

In this paper, we propose ASLR-GUARD, a system that com-
pletely prevents code address leak to stop code reuse attack. The
main idea is to either prevent code pointer leak or render any leaked
code pointer useless in the construction of code reuse attack, so that
we can reclaim the benefits of ASLR and prevent code reuse attacks.
In particular, we propose three techniques: (1) completely decouple
code and data by remapping all code to a random address, so a data
pointer cannot be used to infer the location of code; (2) store all
sensitive code locators (Hereafter, we use the term code locator to
refer to any pointer or data that can be used to infer code address)
in a secure storage, and (3) whenever a code locator is going to be
propagated to the regular memory regions, we encrypt it to prevent
attackers from exploiting the value of this code locator or using this
code locator to hijack the control flow to arbitrary addresses.

We have implemented a prototype system ASLR-GUARD, which
consists of two main components, a modified compilation toolchain
that includes compiler, assembler and linker; and a modified dy-
namic loader. The first component is responsible for instrumenting
an input program (in source code) and all its libraries so that all code
locators can be identified and protected by our policies. The runtime
component allows us to perform necessary initialization of our envi-
ronment. Our evaluation results show that (1) ASLR-GUARD can
thwart all the code locator leaks we have tested, even if attackers can
dump all data regions; (2) with the capability of resisting against
code locator leak attacks, ASLR-GUARD can reinforce ASLR to
stop advanced code reuse attacks [7]; and (3) it incurs almost no
runtime overhead (< 1%) on the SPEC benchmark.

In summary, the contributions of this work are:

1. We perform a systematic analysis to identify all sources of
sensitive code locators, and implemented a memory checking
tool to verify that we did identify and protect all code locators.

2. We propose a hybrid approach that employs isolation to pro-
tect most code locators (for better performance and security),

and encrypt the remaining code locators that are hard to iso-
late.

3. We have implemented a prototype system, ASLR-GUARD,
and our evaluation shows that ASLR-GUARD incurs a negli-
gible runtime overhead on the SPEC benchmark and left no
single code locator unprotected.

A point worth noting is that protecting pointer by encryption
is a general approach, but the challenge is how to achieve both
security and efficiency. For example, PointGuard [12] sacrifices
security for performance by XORing all pointers using a single
key. Such scheme is not secure against chosen-plaintext attacks.
Further, PointGuard is also vulnerable to forgery attacks due to
missing integrity checks. AG-RandMap overcomes these problems
by proposing a novel and efficient encryption scheme ( Figure 3).
Furthermore, as we will show in §3, our work overcomes a major
technical challenge of identifying all the code locators that need to
be encrypted. Finally, our policy for handling code locators on stack
allows us to improve both the security and, very significantly, the
performance of ASLR-GUARD.

In the rest of the paper, we will introduce our threat model (§2),
present the results of our effort to identify all code locators to be pro-
tect (§3), describe the design and implementation of ASLR-GUARD
(84, §5), evaluate our approach (§6), discuss the limitations of, and
future work for ASLR-GUARD (§7), compare ASLR-GUARD with
related work (§8) and conclude (§9).

2. THREAT MODEL

To make sure our solution is practical, we define our threat model
based on strong attack assumptions, which are commonly used
in projects related to code reuse attacks [7, 17, 39, 40]. As the
trusted computing base (TCB), we assume a commodity operating
system (e.g., Linux) with standard defense mechanisms, such as
non-executable stack and heap, and ASLR. We assume attackers are
remote, so they do not have physical access to the target system, nor
do they have prior control over other programs before a successful
exploit. We assume the platform uses 64-bit virtual address space,
as 32-bit address space cannot provide enough entropy and 64-bit
processors are widely available.

For the target program, we assume it is distributed through an
open channel (e.g., Internet), so attackers can have the same copy as
we do. This allows them to do any analysis on the program, such
as finding vulnerabilities and recomputing all possible code gad-
gets. We assume the target program has one or more vulnerabilities,
including control-flow hijacking or information leak vulnerability,
or both kinds at the same time. More specifically, we assume the
program contains at least one vulnerability that can be exploited to
grant attackers the capability to read from and write to an arbitrary
memory address. We further assume this vulnerability can be ex-
ploited repeatedly without crashing the target program, so attackers
can use the arbitrary memory read/write capability at will. Since
arbitrary memory read/write on the 64-bit virtual address space is
probabilistically impossible to achieve attacker’s goals, we assume
all arbitrary memory read/write will be based off on the memory
addresses leaked from the previous vulnerability (or second-order
guess based on the leaked code locator). Finally, we assume the
ultimate goal of the attackers is to divert the control flow and execute
arbitrary logic of their choice.

Although there are a few known explicit leak channels (e.g.,
/proc/self/maps), many security enhanced Linux distributions
such as PaX disable /proc-based pointer or layout leaks. We assume
there is no explicit leak through the platform itself.



Out-of-scope threats. Since we assume the OS as our TCB, we
do not consider any attack that tries to exploit an OS vulnerability
to gain control over the target program. Given our threat model, we
focus on preventing the attacks that exploit vulnerabilities to bypass
ASLR, and then overwrite control data to hijack control-flow. Non-
control-data attacks [10] (e.g., hijacking credential data or metadata
of code locators, like object pointers) are out of our scope. We also
do not consider information exfiltration attacks.

3. CODE LOCATOR DEMYSTIFIED

Since many kinds of data besides code pointer can be leveraged
to infer the address of code, such as the base address of text section
and offset in a jump table, we use the term code locator to refer
to any pointer or data that can be leveraged to infer code address.
Although many previous works like the JIT-ROP attack [40] have
shown that a single code locator leak may compromise the whole
ASLR protection, to the best of our knowledge, there was no existing
work that systematically discussed the composition of code locators.
In order to provide a comprehensive protection against information
leak, we first conduct a systematic analysis to discover all code
locators in a program, and discuss the completeness of coverage.

3.1 Discovery Methodology

When a program is starting, the kernel is responsible for creating
the address space of the process and loading the ELF binary and
dynamic linker, while the relocation of code pointers is left for dy-
namic linker. Dynamic linker then loads all required libraries and
performs necessary relocations before the loaded code is executed.
Once all relocations are done, the dynamic linker transfers the con-
trol to the program’s entry point. During execution, the program may
(indirectly) call function pointers, or interact with OS, e.g., signal
handling. We categorize code locators mainly based on the life cycle
of the program execution. Then we try to identify all code locators
at different program execution stages. More specifically, we first
thoroughly checked the source code of dynamic linker (1d. so), libc
libraries, and gcc to understand how code locators could be gener-
ated at load-time and runtime of the program execution. As for code
locators that are injected by the OS into the process’ address space,
we implemented a memory analysis tool to exhaustively check if
any 8-byte in readable memory points to any executable memory
in the target program or bases of modules, and we performed this
check before and after executing every system call. The memory
analysis tool also serves to validate our process for discovering code
locators injected by the dynamic linker and the program itself (e.g.,
checking the memory at the entry/exit points). Once our memory
analysis tool discovers new kinds of code locators, we manually
verify and categorize them. We then append the new “category” to
the identified code locator set, and run memory analysis tool again
to find more kinds of code locators. The iterative process ends until
no new code locators are reported. We summarize our results of
such exhaustive memory analysis in Table 1.

3.2 Code Locators at Different Stages
3.2.1 Load-time Code Locators

During load-time, there could be various kinds of code locators
computed and stored in the memory, e.g., static function pointer
and .gotplt entry, as shown in §3. Although it is hard to iterate all
code locators produced at load-time, we found the fact that, suppose
ASLR is fully enabled, all code locators must be relocated before
being dereferenced. With this fact in mind, we designed a general
approach to discover and protect all load-time code locators. We
control the relocation functions in dynamic linker, so that all load-

time code locators must go through our relocation, and therefore we
can enforce our protections for them, e.g., isolation and encryption.

3.2.2  Runtime Code Locators

Code locators can be generated at runtime by deriving from the
program counter (e.g., RIP). In x86_64 platform, the RIP value can
be loaded either by a call instruction or a lea instruction. call
instruction pushes return address on the top of stack, and when
the callee returns, the return address is dereferenced. Usually, peo-
ple believe call and ret are paired. In our analysis, we indeed
found some corner cases in which return address is not used by
ret. As the code locator type R3 shown in §3, setjmp loads re-
turn address using a mov instruction, and the return address is then
dereferenced as a function pointer by longjmp. Besides the re-
turn address, runtime code locators can also be generated by GetPC
(e.g., lea _offset(%rip), reg). For example, if there is a function
pointer that is assigned with an address of a local function, typically
GetPC will be used to get the function address. Since we have the
complete control of the compilation toolchain, we could properly
discover all runtime code locators (e.g., the ones introduced by
call or GetPC) and enforce the corresponding protections, which
are elaborated in §4.

3.2.3 OS-injected and Correlated Locators

As ASLR-GUARD is designed to work with unmodified com-
modity kernel, how the program interacts with kernel needs be
analyzed in order to discover code locators that might be injected
or transmitted by the kernel. We used our memory analysis tool to
check the memory right before and after a syscall. Based on our
analysis, we found that the program entry pointer can be stored on
the stack by kernel. Also kernel may save the execution environ-
ment, including RIP value, for signal/exception handling. Since
data sections and code sections are mapped together, the offsets
between them are fixed. Data pointers can be leveraged to infer code
addresses. We call such pointers the correlated code locators, which
we correctly handle to prevent intentional code address leaks.

3.3 Completeness of the Analysis

In an ASLR-enabled program, all static code locators (e.g., the
ones in .gotplt and virtual table) must be relocated at load-time.
As we can control the relocation routine, we can guarantee to cover
all such code locators. Another source of code locator at load-time is
that a code locator is calculated based on a base address. So we also
collect all cases in dynamic linker that access the base address stored
in link_map. In this way, we can cover all load-time code locators.
Note that we will remap all code sections to random addresses,
any missing code locator at load-time (although we did not meet
such case in our evaluation) will crash the program, which means
our analysis for load-time code locators is “fail-safe”. For runtime
code locators, as we have the control of whole toolchain, we can
easily guarantee to find all runtime code locators (i.e., we catch all
instructions that access return address or rip).

As for code locators that are injected by the OS, we take a dy-
namic analysis approach. While this dynamic analysis approach is
not necessarily complete in theory, we will argue that in practice
the way the OS setups a process’ address space (and thus all the
bookkeeping code locators it may inject into various user space data
structure) should be the same for every process; a similar argument
should apply for any code locator injected for signal handling.

4. DESIGN

In this section, we present the design of ASLR-GUARD. Based
on previous discussion and existing attacks [7, 35, 40], we know



Category Type Description

Applied protection

Load-time L1. Base address

locators L2. GOTPLT entry
L3. Static/global pointer
L4. Virtual function pointer

Base addresses of loaded modules by OS

Library function pointers or address of _d1_runtime_resolve
Contained in some data sections (e.g., .init_array)
Contained in C++ virtual tables

Encryption + Isolation
Isolation

Encryption + Isolation
Encryption + Isolation

Runtime R1. Return address Pushed on stack by call instructions Isolation
locators R2. GetPC A program counter address is loaded Encryption
R3. GetRet A return address is loaded as a function pointer Encryption
OS-injected  O1. Entry point Address of entry point (e.g., _d1_start_user) Encryption
locators 02. Signal/Exception handler  All registers including program counter are saved in memory Encryption
Correlated ~ C1. Jump table entry Offsets from jump table to code blocks Isolation
locators C2. Data pointer Any pointer pointing to data with fixed offset into code section Decoupling

data/code sections

Table 1: A summary of all code locators that can be used to infer code address. All of them are protected by ASLR-GUARD
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Figure 2: Register usage semantics in ASLR-GUARD. The usage of rsp
and gs will be securely regulated by ASLR-GUARD’s compiler, so never be
copied to the program’s memory, nor accessed by the program’s code.

that as long as attackers can exploit information leak vulnerabilities
to obtain a valid code locator, ASLR will continue to be nullified, no
matter how much we improve the granularity of the randomization.
So the goal of ASLR-GUARD is to: completely prevent leaks of
code locators.

Figure 2 demonstrates the high-level idea of ASLR-GUARD.
First, it decouples code sections and data sections. By doing so,
the process’ address space is virtually divided into two worlds: the
data world and the code world. This step eliminates all the implicit
relationship between data and code (C1). Second, ASLR-GUARD
acts as the gateway between these two worlds: whenever a code
address is about to be leaked to the data world, ASLR-GUARD
encrypts the address as a token; and whenever a token is used to
perform control transfer, ASLR-GUARD decrypts it. By doing so,
ASLR-GUARD eliminates all explicit code locator leaks.

To implement this scheme, we developed four key techniques:
safe vault, section-level randomization, AG-RandMap and AG-Stack.

4.1 Safe Vault

Safe vault is an “isolated” memory region where all the plaintext
code locators (except R1) listed in Table 1 are stored. We divide the
safe vault into two parts. The first part is for storing the information
of all remapped sections, which includes the base address for each
section before and after the remapping, as well as the size of each
section. The second part is the random mapping table used for code
locator encryption/decryption.

In ASLR-GUARD, we guarantee the isolation of the safe vault
with the following design. First, the base address of the safe vault
is randomized via ASLR. Second, the based address is stored in a
dedicated register that is never used by the program 2, and its content

20n x84-64 platform, the segmentation register gs is the most suit-
able candidate for this purpose.

is never saved to the data memory. As a result, one can only locate
the safe vault by brute-forcingly guessing its base address, which is
prohibited by ASLR on 64-bit systems.

4.2 Section-level randomization

The purpose of the section-level randomization is two-folded:
first, we use it to stop attackers from deducing the location of our
code using leaked data pointer; second, we would like to further
protect data structures that contain code locators (namely jump
tables, .gotplt tables and virtual function tables) without paying
the price of encrypting all the code locators in them.

For our first goal, we decouple code from data by remapping all
code sections (code sections can be identified by looking up ELF
header) to random addresses. Since the offset between code and
data is changed during this process, we further adjust the constant
offsets in all data-access instructions. This is done at load time
based on the relocation information generated by our linker. For our
second goal, we modified the compiler to make sure that: (1) jump
tables are always emitted in rodata sections, (2) addresses pointing
to, or derived from the content of, code locator tables like jump
tables and .gotplt tables always stay in registers and are never
saved to the memory. With these two guarantees, we can protect
code locators in these data structures by simply remapping them to
random addresses, without ever needing to encrypt the code locators
stored in these tables. One exception to our second rule is the virtual
function tables. Since we cannot guarantee that virtual function
pointers will never be stored to the unsafe data world, we encrypt
virtual function pointers after the virtual tables are remapped to
a random address. After the remapping, we use the safe vault to
store the remapping information for each of the protected section
so we can later patch up accesses to them. One final point to note
is that to make sure the remapped location of the various tables are
truly random, we wrapped the mmap() function to provide it random
base addresses. As the primary goal of ASLR-GUARD is to harden
ASLR, instead of to improve the entropy of ASLR, we set the same
entropy as in the default 64-bit Linux ASLR (28-bit). We acquire
the randomness from cryptographic secure source, i.e., the RdRand
instruction on modern Intel processors. There are alternatives from
/dev/random that could be used.

4.3 AG-RandMap-Locator Encryption

In this subsection, we define our encryption scheme for encrypt-
ing code locators. This encryption scheme is designed to achieve
two goals. First, it must be strong enough to stop code reuse attacks
even when some (or all) of the encrypted code locators are leaked.
We also assume that attackers can know what functions the leaked
code locators point to. In order to achieve this goal, our scheme
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Figure 3: Code locator encryption/decryption scheme.

need to prevent attackers from efficiently deriving valid encrypted
code locators that will be dereferenced to direct the control flow to
code gadgets. In particular, our encryption scheme should make
the task of deriving a valid encrypted code locator as difficult as
brute-forcingly guessing the gadgets under ASLR. The second re-
quirement for our encryption scheme is performance, especially for
the decryption operation. This is because code locator generation
is a relatively rare operation, but code locator dereferencing (e.g.,
indirect call) is much more frequent.

To achieve these goals, we propose AG-RandMap, an efficient
random mapping table mechanism, as our encryption scheme. The
main idea of AG-RandMap is illustrated in Figure 3. To encrypt
a code locator, we will randomly pick an unused 16-byte entry
in the mapping table. The first 8 bytes will be used to store the
plain code locator being encrypted; the next 4-bytes is zero that
is used to get the random offset with XORing during decryption,
and the last 4-bytes contains a random nonce (with 32-bit entropy)
for integrity check. As in 4.2, we acquire the randomness from
cryptographic secure source (i.e., the RdRand instruction provided
by modern Intel processors). After building the new table entry, the
4-byte random offset from the base of the mapping table to the new
entry is concatenated with the nonce, and returned as the encrypted
code locator. Note that AG-RandMap does not use any key for
encryption, but generates an entry in the mapping table and saves
the encrypted code locator in the corresponding register or memory
using “one-time” random value.

Decryption under our scheme is performed very efficiently and
involves only one extra xor operation on top of the original indi-
rect control transfer. The code locator decryption process is also
illustrated in Figure 3. Assuming the encrypted code locator is in
%rax, we first use %eax-plus-8 as an offset to read 4-bytes zero and
the nonce from the table, and xor it with the encrypted code locator.
If the nonce is correct, the result will be a valid offset within the
mapping table, which then decrypts %gs: (%¥rax) to the plain code
locator. Otherwise, the offset will be outside of the table, trans-
ferring the control to a random address that is highly likely to be
either unmapped or not executable, thus crashing the program. In
other words, for an attacker to forge a valid encrypted code locator
that will direct the control flow to a plaintext address stored in our
AG-RandMap, he will need to know the correct nonce to use for the
target table entry. To do so, he can either guess with a successful
chance of 2732; or try to locate our AG-RandMap, which is equiv-
alent to brute-forcing ASLR. Either way, our encryption scheme
satisfies the first requirement.

C++ support.  To support polymorphism, C++ uses a virtual
function table (vtable) to store the pointers of virtual functions
for each class with virtual functions. And in each object of class
with virtual function, vtable pointer(s) (vptr) are used to point to the

right vtable. ASLR-GUARD generally protects the function pointers
inside vtable by encryption. However, as vtable pointers are stored in
objects in unsafe memory, leaking vptr may help attackers know all
encrypted virtual function pointers and allow COOP attack [35]. To
prevent such attack, ASLR-GUARD further encrypts vtable pointers
so that attack cannot even know the locations of encrypted virtual
function pointers, which is an essential step for COOP attack[35].

4.4 AG-Stack

As discussed in §3, some dynamic code locators are stored on the
stack, such as return addresses (R1) and OS injected code locators
(02). To prevent leaking return address through stack, one approach
is to apply the same encryption/decryption scheme in §4.3. However,
this approach is not suitable for protecting return address on the
stack. First of all, the return addresses are generated very frequently,
and our encryption scheme does not support frequent encryption
very well. Second, it will require extensive modification to support
encryption over OS injected code locators. For these reasons, we
propose an efficient alternative solution, namely AG-Stack to protect
R1 and O2.

Our approach is similar to the traditional shadow-stack tech-
niques [18, 34] that are used to prevent return addresses from being
modified by attacks. However, they protect return addresses by
costly instrumenting call/ret pairs. For example a single ret is
instrumented with at least 4 instructions that load return address
in the shadow stack, adjust the stack, check equivalence, and ret.
Therefore, traditional shadow-stack approaches face three problems:
(1) call/ret are frequently executed by CPU, instrumenting them
incurs significant performance overhead; (2) cases where call/ret
don’t come in matching pairs, e.g., GetPC, are difficult to handle;
(3) “return addresses” injected by the OS will not be automatically
protected. To address these issues with traditional shadow-stack
techniques, we propose a novel mechanism, namely AG-Stack.

Besides being much more efficient, AG-Stack has several advan-
tages: (1) it provides the capability to store more sensitive data; and
(2) it does not change the semantics of original code, so special cases
like unpaired call/ret instructions and signal handling can be natu-
rally supported. The high level idea of AG-Stack is to maintain two
stacks by re-arranging the usages of two registers. Specifically, we
use the ordinary stack (i.e., the one accessed through RSP, as shown
in Figure 2) as our AG-Stack to store sensitive on-stack data like
return addresses and function pointers used for exception handling.
All other data, like stack variables, register spilling and function
call arguments are stored on a regular stack that accessed through
R15, as shown in Figure 2. The security of AG-Stack is guaranteed
in a way similar to safe vault. As in safe vault, its base address is
randomized. Also, since AG-Stack does not store any program data,
there is no data pointer pointing to it, so attackers cannot derive
its address through memory traversal. Finally, whenever the stack
pointer is stored in memory (e.g., during setjmp), we will encrypt
it using the scheme in §4.3. As such, with AG-Stack, we achieve a
better performance but a guaranteed security for all code locators
saved on the stack.

AG-Stack is very similar to the safe-stack from CPI [26]. Both im-
pose no runtime overhead. The difference is that safe-stack performs
type-based analysis and intra-procedure analysis to find unsafe stack
objects. As shown in Section §3, type-based analysis may not cover
some non-pointer code locators. AG-Stack eliminates these analyses
by thoroughly re-arranging the register usages.

Multi-thread support. In Linux, multi-thread feature is enabled
with Native POSIX Thread Library (NPTL), which creates a new
thread with the clone system call. Specifically, to create new thread,
NPTL first allocates a new stack and stores thread descriptor at the



Component Tool Lines of code
Compiler gee-4.8.2 120 lines of C
Assembler as-2.24 900 lines of C
Linker 1d-2.24 180 lines of C
Dynamic Linker eglibc-2.19 1,200 lines of C
Memory analyzer 800 lines of Python
Total 3,200 lines of code

Figure 5: Toolchain modifications made for ASLR-GUARD.

end of the new stack. And then it saves the thread function pointer
and its arguments in the new stack. After that, clone system call
switches the context, and the thread function is called. Similarly,
to support multi-thread in ASLR-GUARD, for each new thread, we
allocate a regular stack (with the same size) whenever the new (safe)
stack is allocated, and release the regular stack when the thread exits.
The regular stack information (e.g., stack address and size) is saved
in thread descriptor that is stored in AG-Stack.

5. ASLR-Guarp TOOLCHAIN

In this section, we describe our prototype implementation of our
protection scheme. We first give an overview of our prototype, then
we discuss the detail of each component of ASLR-GUARD.

5.1 Architecture

Figure 4 shows the overview of ASLR-GUARD’s architecture. To
remove all code locator leaks, ASLR-GUARD requires instrument-
ing all loaded modules, including modules of the target program
as well as all shared libraries. In this paper, we assume the ac-
cess to the source code of the target program is available and the
instrumentations are done through re-compilation.

ASLR-GUARD consists of two major components: the static
toolchain and the runtime. The static toolchain is in charge of (1)
implementing the AG-Stack, which will be used to securely store
return address and OS injected code locators; and (2) instrumenting
the program to correctly encrypt runtime code locators and decrypt
all code locators. The ASLR-GUARD runtime contains three majors
parts. The first part is the dynamic loader, which is in charge of (1)
initializing the AG-Stack and the safe vault, (2) decoupling code
sections from data sections, and (3) encrypting all load-time code
locators. The second part is the standard C/C++ libraries that will
be linked into most programs. Among these libraries, some need
special care because they need to handle some OS-injected code
locators in special ways (e.g., setjmp).

We implemented our prototype based on the GNU toolchain:
gcc, binutils and glibe. Figure 5 summarizes the our efforts of
modifying the GNU toolchain.

5.2 Compiler

We modified the GNU compiler gcc to assist implementing the
code locators encryption and AG-Stack. For code locator encryp-
tion, we let gcc insert a flag for data-read instructions of global
data pointers to differentiate global function pointers in the gen-
erated assembly code. For AG-Stack part, we performed several
modifications in gcc. First, we need to reserve a register for the
unsafe stack. In gcc, this can be done through the -ffixed option.
But a more important question is, which register should be chosen.
In ASLR-GUARD, we choose this register using two criteria: (1)
it should be one of the least used general registers in handwritten
assembly code, and (2) it should be one of the callee-saved registers
(i.e., non-volatile). The first requirement is for that compiler can
only guarantee that the code generated by them does not use the

reserved register, however, any handwritten assembly (including in-
line assembly) may still use this register. They need to be modified
to use other registers (e.g., we found and modified about 20 cases in
glibc). So choosing the less frequently used register helps us mini-
mize the modifications. The second requirement is for compatibility
with legacy uninstrumented binary. Because we reserved the RSP
for AG-Stack, by using a callee-save register, it ensures that both
code can work correctly. Based on these criteria, we chose R15 as
the register for the regular stack on our target platform.

Second, we want to make sure that besides call/ret, there is no
implicit RSP modifications. On x86-64, such modifications can be in-
troduced by instructions, push/pop, enter/leave and call/ret [23,
Ch. 6.2]. Push/pop are for saving/restoring the target registers,
and enter/leave is a shortcut for saving/restoring the frame reg-
ister. Our elimination of push/pop is done in two steps. We first
leveraged existing compiler optimizations to reduce the usage of
push/pop. In particular, modern compilers like gcc in most scenar-
ios prefer using mov instruction for performance gain, as CPU can
do pipeline scheduling for mov instructions. So we modified gcc
to always prefer using mov instruction for passing arguments (as
if -maccumulate-outgoing-args and -mno-push-args are always
set) and saving/restoring registers at function prologue/epilogue.
For the remaining push/pop operations, our assembler will replace
them with corresponding mov operations on R15. The elimination of
enter/leave is done similarly

Finally, we need to re-align the stack. The System V AMD64
ABI uses XMM registers for passing floating point arguments. And
reading/writing these registers from/to memory requires the memory
address to be 16-byte aligned. As we split the stack into AG-Stack
and regular stack, the regular stack needs to be re-aligned. We
enforced the alignment by leveraging gcc’s supports for multiple
platforms. Specifically, on platforms like ARM, function invocations
do not automatically save the return address on stack, so gcc already
understands how to align stack when there is no return address
on stack. Using this support, we modified gcc to treat our target
platform as if it does not explicitly save the return address on stack
(by setting INCOMING_FRAME_SP_OFFSET = 0).

5.3 Assembler

We modified the GNU assembler gas to perform code instru-
mentations for code locator encryption/decryption and AG-Stack.
The first task is to encrypt every runtime code locator (type R2,
R3 in Table 1). For position-independent ELF executables, run-
time code locators are created through retrieving the PC value (e.g.,
mov (%rsp), %rax may load return address) or a PC-relative ad-
dress (e.g., lea offset(%rip), %rax). ASLR-GUARD uses these
signatures to identify all potential code locators. Specifically, we
perform a simple intra-procedure analysis (check if RSP points to
return address) to find all instructions that load return addresses.
And we find the instructions of loading “PC-relative” code locators
based on the metadata (e.g., indicating if a symbol is a function)
contained in the assembly files and the global data pointer flag in-
serted by our compiler 5.2. Note that, for handwritten assembly,
there is no easy way to distinguish the ones for global data access
and global code access at assemble time. To address this issue, our
assembler first conservatively instruments both of them, and defer
it to our linker to remove the false positive ones, as linker has code
boundary information to verify code locators. For each identified
instruction, our modified assembler will insert an encryption routine
to immediately encrypt the code locator, as shown in Figure 3

Next, we instrument the target program to correctly decrypt code
locators. Specifically, we first instrument every indirect call with
code address in register in the ways shown in Table 3. If the target
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Figure 4: An overview ASLR-GUARD’s architecture. It consists of two components: toolchain (e.g., compiler) and runtime (e.g., loader and libc). Code
locators will never be copied into the program’s data memory (see right). Therefore, the secured program will be free from memory leakage vulnerabilities that

might directly or indirectly break the applied ASLR hardening.

is stored in memory, we first save RAX and load the target into
RAX. Then we perform the decryption as the one in Table 3. One
difference is that, to recover RAX, we temporarily store the decrypted
code address in AG-Stack, do recovery, and call into the code pointer
in AG-Stack. Indirect jump for invoking function is instrumented in
the same way.

The third task is to replace all push/pop and enter/leave opera-
tions with explicit stack pointer operations. After this, ASLR-GUARD
will replace all RSP occurrences with R15, except when RSP is used
to access return address in handwritten assembly. Using the same
intra-procedure analysis mentioned above, we can find all such cases
and skip the replacements.

5.4 Static Linker

We modified the GNU static linker 1d to perform two tasks.
The first task is to provide relocation information to the dynamic
linker. This is necessary because once we decoupled code sec-
tions from data sections, existing data access instructions will no
longer work because the offsets have changed. To fix this prob-
lem, ASLR-GUARD creates a new relocation table similar to the
.rela.dyn to provide this information, i.e., which 4-bytes need to
be patched. The second task is to remove encryptions for global data
access in handwritten assembly, conservatively added by assembler.
This task is performed here because the linker has the information
of all static modules, so it can identify whether an instruction is for
accessing data or code.

5.5 Dynamic Linker

We modified the dynamic linker 1d. so of glibc to initialize the
runtime, decouple code sections from data sections, and encrypt
load-time code locators. When running an executable, Linux will
first load its interpreter (i.e., the dynamic linker), jump to the entry of
its entry and let the interpreter handle the target binary. This means
the dynamic linker is the very first module to be executed. For this
reason, we insert our runtime initialization code at the entry of the
dynamic linker (_d1_start()). The regular stack is initialized by
allocating a new memory region with a random base, and copying
all the arguments and environment variables from the initial stack.
Safe vault is setup by allocating another random memory region and
assigning the gs segment register to its base address. Once all the
initializations are done, the control is transferred to the remapped
code of dynamic linker, and the original one is unmapped.

The decoupling is done by remapping the corresponding sections
to random addresses as the way mentioned in Section 4.2. After
remapping, ASLR-GUARD will encrypt all load-time code locators
(see Table 1). This is done during the relocation patching. Specifi-
cally, after randomizing the base address, the original dynamic linker
already provides some relocation functions to patch all those load-

time code locators with correct code addresses. In ASLR-GUARD,
with the help of this feature, we modify these relocation functions
to patch the load-time code locators with encrypted values, instead
of patching them with the real code addresses.

5.6 Standard C/C++ Library

Protecting the standard C/C++ libraries is very important because
they are linked into every C/C++ program. Yet they contain hand-
written assembly that may need special care, to handle some corner
cases may have compatibility problems with the automated harden-
ing techniques. Unfortunately, many previous work did not show
enough discussions on handling these libraries. In this subsection,
we try to shed some light on this topic.

We first compile eglibc-2.19 and gcc-4.8.2 with our own
toolchain. Then we handle three main cases in handwritten as-
sembly code: (1) access to return address and stack parameter; (2)
stack layout mismatching; (3) indirect jump for invoking functions;
In the first case, we use our intra-procedure program analysis to find
instructions for loading return address (e.g., mov (%rsp), %rax).
For each identified instruction, we insert the encryption routine right
after it. However, because the regular stack does not contain the
return address any longer, the offsets used to access stack parameters
(x86_64 calling convention passes parameters via stack after the first
6 ones) are incorrect. We address this by manually adjusting the reg-
ular stack top at function prologue and epilogue. In total, we found
12 such cases in the handwritten assembly of glibc. The second
case happens when the caller is in handwritten assembly and callee
is in C code, or vice versa. For example, _d1_runtime_resolve
is written in assembly, at the end of which, its local variables, re-
turn address, and parameters are released at once by a stack-pivot
instruction (i.e., addq $72, %rsp), as it assumes there is only a
single stack. However, this is not correct as AG-Stack and regular
stack are supposed to be released separately. To handle this, we
manually change the assembly. In total, we handled 4 such cases
in libc. As mentioned in §4.2, indirect jumps for jump table will
not be instrumented, but the ones for invoking functions will be.
To differentiate them in handwritten assembly, we manually verify
if a jump instruction is used for function invocation or not, if yes,
we instrument them to go through the code locator decryption. We
found 1 case in glibc.

DWARF standard is adopted for C++ exception handler (EH). For
each throw statement, an exception is allocated and the stack un-
winding (i.e.,unwinder) is started. For each catch statement, g++
has already generated a EH table and a cleanup table during com-
pilation. And at runtime, the unwinder will walk through the stack
twice to handle the exception: (1) trying to find the correct excep-
tion handler based on EH table; (2) if a matching is found, walking
though the stack a second time for cleanup based on the cleanup



table. To support C++ exception handling in ASLR-GUARD, we
need to update these two tables and rewrite the unwinder to support
AG-Stack. Since doing so merely requires some engineering efforts
and many C++ programs do not use it (e.g., Chromium does not
use it and only two SPEC benchmark programs use it), we did not
support C++ exception handling in our current prototype yet, but
leave it for future work.

6. EVALUATION

In this section, we present the evaluation of ASLR-GUARD. Our
evaluation tries to answer the following questions:

(1) How secure is the ASLR-GUARD’s approach in theory, com-
pared to general ASLR approach? (§6.1);

(2) How secure is the ASLR-GUARD’s approach against practi-
cal memory-based attacks, empirically? (§6.2);

(3) How much overhead does ASLR-GUARD impose, in particu-
lar runtime, loading time, and space? (§6.3)

Experimental setup. We carried out evaluations of ASLR-GUARD
to check its security enhancements and potential performance im-
pacts. Our evaluations are mainly performed on the standard SPEC

CPU2006 Benchmark suite. Beside that, we also applied ASLR-GUARD

to complex and real world programs, e.g., gcc, glibc and Nginx
web server. We compiled all above programs and their libraries
with the toolchain of ASLR-GUARD and enforced them to use the
dynamic linker of ASLR-GUARD. All programs were run on an
Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz machine with 128
GB RAM.

6.1 Security Analysis

In this subsection, we will present our analysis to determine the
probability for an attacker to hijack the control to a particular target
address (let’s say, x). For our discussion in this section, we will
assume the ASLR provided by the underlying OS (in our implemen-
tation, 64-bit Linux) provides 28-bit entropy for the address of any
section that has been randomized.

Referring to Table 1, we can see that if all code locators to x are
generated from sources L2, R1 or C1 (i.e. items only reachable
through .gotplt tables, return instructions or jump tables), the
attacker can only hijack the control to x by overwriting the content of
the safe vault. This is because ASLR-GUARD will never generate
any encrypted code locator for x, thus attackers cannot achieve
the goal by overwriting an encrypted code locator. As such, the
probability for successful hijacking is the same as that of breaking
ASLR, i.e. 2728, assuming the attacker knows the semantics, e.g.,
the offset of x in memory page.

On the other hand, if x can be reached through an encrypted
code locator (i.e. x is the address of items in the categories L1,
L3, L4, R2, R3, O1, O2 of Table 1), and assuming an encrypted
code locator for x exists in AG—RandMap3, attackers have a new
option by trying to overwrite some encrypted code locators residing
in the unsafe memory with a value that can “decrypt” the control
to x. For this kind of target, given a leaked encrypted code locator
other than x, as we have argued in §4.3, and the attacker cannot read
the content of AG-RandMap in safe vault, his chance of creating
the correct encrypted value of x is 2732, guaranteed by the random
nonce. Either way, the best chance of a successful attack is no more
than 2728, We discuss a case of that the encrypted value of x is
leaked in section 7.

3Otherwise, the situation will be the same as above, the attacker
will have to overwrite values in the safe vault.

6.2 Practical Security

To see how effective ASLR-GUARD is in practice, we performed
multiple empirical security analyses.
Memory snapshot analysis. As mentioned in §3, even it is un-
likely, we cannot guarantee kernel will never save code locators
in unsafe memory, as our current design did not instrument kernel
code. To make sure there is no single plain code locator left in
the unsafe memory by kernel, we did a thorough memory analysis
using our memory analysis tool 3. More specifically, we first ap-
plied ASLR-GUARD to SPEC benchmark programs. And then we
hooked the entry/exit points of the programs, as well as all points
right after syscalls, and dumped the whole memory core for memory
snapshot analysis. The analysis results are shown in Table 2. As
expected, there is no single plain code locator left in unsafe memory.
All code locators are either isolated or encrypted, which prevents
attackers knowing the address of any executable memory. Note that,
our memory analysis is conservative and may contain false positives
that some random data is falsely treated as code locator. Indeed,
we found two “code locators” that point to executable memory, in
sphinx3. However both code locators are eliminated due to they
actually point to the the middle of instructions, so we believe they
are false positives. Furthermore, we evaluated other numbers, e.g.,
the map table size, number of all encrypted code locators, number
of load-time code locators, size of .gotplt tables, etc. Out of them,
an interesting number is the one of encrypted code locators left in
the unsafe memory. To get this number, we check if any 8-bytes is
“pointing” to the random mapping table by decrypting it in the way
shown in Table 3. Note that such analysis is conservative, and the
actual number could be even less. As we can see in Table 2, in most
programs, less than 10% encrypted code locators are propagated
to unsafe memory. Many of them have less than 20 ones in unsafe
memory.
Nginx web server. We chose nginx to evaluate the effectiveness
of ASLR-GUARD, not only because it is one of the most popu-
lar web servers but also that it has been compromised by couple
of attacks [7, 17]. We took Blind Return Oriented Programming
(BROP) * as an example to show how ASLR-GUARD defeats the
return address leak, which is an essential step in BROP attack.
BROP attacks nginx 1.4.0 (64-bit) by exploiting a simple stack
buffer overflow vulnerability. This attack consists of three steps:
(1) guessing the return address on the stack; (2) finding enough
gadgets; and (3) building exploit. In step (1), BROP proposed using
stack reading approach to overwrite the return address byte-by-byte
with possible guess value, until the correct one is found. Naturally,
ASLR-GUARD can prevent such attack at the first step, as return ad-
dresses are not stored in regular stack at all. To verify it, we applied
ASLR-GUARD to nginx, and run the exploit again. As expected,
the exploit failed at guessing the return address. Moreover, we did
the memory analysis during this attack. We found there were 1,474
code locators encrypted, out of which, 361 ones were propagated
to unsafe memory. Again, no plain code locator was left in unsafe
memory.
Average indirect targets. If we conservatively assume the attack-
ers can read the whole unsafe memory and understand the semantics
of the memory (as will be discussed in §7), attackers may reused
the leaked encrypted code locators to divert control flow. Given this
conservative assumption, we want to know how many encrypted
code locators are left in unsafe memory. Also we define a metric
Average Indirect Targets (AIT) to measure the average number
of possible targets an indirect branch may have. The reason we do
not reuse AIR (Average Indirect target Reduction) metric proposed

“http://www.scs.stanford.edu/brop/



Programs Size of rand # all enc #load-time # PLT entries #fixedup #encCLin # plain CL in

map table(byte) code locators code locators PLT entries unsafe mem  unsafe mem
perlbench 14,144 884 967 131 34 603 0
bzip2 4,480 280 303 28 11 20 0
gcc 22,784 1,424 1,339 89 39 187 0
mcf 4,528 283 361 39 18 9 0
gobmk 32,720 2,045 2,104 66 26 1,771 0
hmmer 4,544 284 361 83 37 10 0
sjeng 4,592 287 365 42 21 27 0
libquantum 4,512 282 324 46 12 9 0
h264ref 4,736 296 341 64 37 16 0
astar 14,560 910 2,289 1,348 33 29 0
xalancbmk 141,696 8,856 10,275 1,449 184 258 0
milc 4,544 284 336 58 15 9 0
namd 14,880 930 2,262 1,353 36 44 0
dealll 54,784 3,424 4,884 1,473 310 81 0
soplex 21,472 1,342 2,717 1,377 254 89 0
Ibm 4,528 283 316 38 13 9 0
sphinx3 4,544 284 354 76 39 10 0
Average 21,062 1,316 1,759 456 66 187 0

Table 2: Code locator numbers. (1) Size of random map table, number of all encrypted code locators, number of fixed up .gotplt entries are collected when the
programs exit, as they are accumulated. (2) Number of all static code locators and number of GOTPLT entries are collected at the point of main() is called. (3)
Number of encrypted code locators in unsafe memory and number of plain code locators in unsafe memory are the maximum numbers among the ones collected

after each syscall and at the points of main() and exit() are called. If there are multiple commands in speccmds . cmd, we calculate the average numbers.

Programs  Original-CFI  bin-CFI/CCFIR AG

ret call | ret call | ret call
perlbench 1 7,722 28,066 7,722 1 603
bzip2 1 1,097 11,905 1,097 1 20
gce 1 16,697 65,519 16,697 1 187
mcf 1 1,234 12,935 1,234 1 9
gobmk 1 7,357 22,804 7,357 1 1,771
hmmer 1 1,473 16,898 1,473 1 10
sjeng 1 1,647 12,677 1,647 1 27
libquantum 1 1,184 13,405 1,184 1 9
h264ref 1 2,707 16,191 2,707 1 16
astar 1 3,398 27,301 3,398 1 29
xalancbmk 1 15,977 | 133,642 15,977 1 258
milc 1 1,814 14,435 1,814 1 9
namd 1 3,413 28,162 3,413 1 44
dealll 1 6,687 | 120,788 6,687 1 81
soplex 1 4,513 36,512 4,513 1 89
Ibm 1 1,171 12,926 1,171 1 9
sphinx3 1 1,316 15,608 1,316 1 10
AIT 1 4,671 | 34,692 4,671 | 1 187

Table 3: Comparison of numbers of average indirect branches between
ASLR-GUARD and CFI works. The evaluations are all performed on SPEC
CPU2006. AG: ASLR-GUARD

in [45] is that even the AIR is 99.9%, the number of possible targets
is still huge, especially for some large programs. As we can see
in Table 3, ASLR-GUARD only left a small portion (4%) function
pointers in unsafe memory, which is much smaller than the ones
of CFI implementations. Recently, some CFI variants make use
of type to further reduce the AIT numbers [31, 42]. As shown in
[31], the AIT number can be dramatically reduced to less than 1%
compared with original one. So we believe AIT of ASLR-GUARD
can also be further reduced once we consider type in the future.

6.3 Performance

In this subsection, we evaluate the performance overhead of
ASLR-GUARD using the SPEC CPU2006 benchmarks. The results
are shown in Table 4. Note that, for fairly comparison, we used the
same basic compilation options (e.g., -maccumulate-outgoing-args
and -mno-push-args) and only added “-aslrguard” and “-ffixed-r15”

options in ASLR-GUARD build. The results are the average num-
bers over 10 executions. On average, ASLR-GUARD almost im-
posed no runtime (< 1%). In particular, 7 of them have even better
performance than the original ones. gcc intensively calls the encryp-
tion routine of ASLR-GUARD, so its performance overhead is about
10%. Compared with existing solutions for preventing code reuse
attacks, ASLR-GUARD is more efficient. For examples, the origi-
nal CFI imposes 21%( [1]), bin-CFI imposes 8.5%( [45]), CCFIR
imposes 3.6%( [44]), readactor imposes 6.4% ( [14]), and CPI im-
poses 8.4%( [26]) overhead. Compared with safe-stack of CPI [26],
performance of AG-Stack is slightly better, which is even better than
the original one. With this negligible runtime overhead, we believe
ASLR-GUARD is a practical system to harden programs with infor-
mation leaks. We also performed load-time overhead evaluation for
ASLR-GUARD, which is shown in Table 4. The load-time overhead
is as expected, as ASLR-GUARD performs remapping, relocation,
and encryption in load-time. However the absolute time, i.e., 1 us,
is quite small. For space overhead, we measured the file size, which
is 6% increased in ASLR-GUARD. The memory space overhead
has two megabytes more for safe vault.

7. DISCUSSION AND FUTURE WORK

Sophisticated attack defense. There are several sophisticated at-
tacks proposed recently, e.g., “missing the point” [17] and COOP [35].
As the size of safe vault in ASLR-GUARD is only 2MB, there is no
“always allocated” memory in ASLR-GUARD. Also offsets between
sections remapped by ASLR-GUARD are randomized. Provided
these two features, “missing the point™ attack is not applicable to
ASLR-GUARD. Regarding the COOP attack, as mentioned in §4.3,
all virtual table pointers are encrypted as code locators, so attackers
cannot know the locations of encrypted virtual function pointers to
find vfgadgets, and thus ASLR-GUARD can eliminate the COOP
attack.

Reusing encrypted code locators. An astute reader may point
out that in theory, all the encrypted code locators that are stored
in unsafe memory can leaked and reused to construct code reuse
attacks. However, to reuse these code locators, attackers have to
conquer the following challenges: (1) exploiting an arbitrary read



Programs Runtime Load-time Space (file size)
Orig AG-Stack AG-Stack Full AG Full AG | Orig AG AG Orig AG AG
(s) (s) Overhead (s) Overhead | (us) (us) Overhead (KB) (KB) Overhead
perlbench 4.17 4.20 0.72% 4.32 3.60% 1.1 1.8 62.8% 2563 2891 12.80%
bzip2 12.2 12.3 0.82% 12.1 -0.82% 0.8 09 16.6% 171 182 6.43%
gcc 1.75 1.74 -0.57% 1.93 10.29% 5.5 6.5 17.9% 8174 8863 8.43%
mcf 3.14 3.10 -1.27% 3.10 -1.27% 24 32 30.8% 56 56 0.00%
gobmk 25.6 25.5 -0.39% 25.7 0.39% 32 54 67.9% 5936 6218 4.75%
hmmer 8.07 8.06 -0.12% 8.04 -0.37% 36 4.1 13.8% 690 710 2.90%
sjeng 5.48 541 -1.28% 5.56 1.46% 27 39 41.8% 285 339 18.95%
libquantum 0.161 0.165 2.48% 0.165 2.48% 24 25 4.7% 94 103 9.57%
h264ref 31.5 31.2 -0.95% 32.3 2.54% 30 3.8 25.6% 1487 1636 10.02%
astar 15.1 14.9 -1.32% 14.5 -3.97% 34 40 17.3% 177 181 2.26%
xalancbmk  0.592 0.600 1.35% 0.615 3.89% 9.9 10.2 2.9% | 40127 40454 0.81%
milc 12.6 12.0 -4.76% 12.0 -4.76% 1.0 1.6 58.9% 317 355 11.99%
namd 22.0 21.1 -4.09% 21.1 -4.09% 35 5.2 45.9% 3548 3692 4.06%
dealll 73.1 76.3 4.38% 73.6 0.68% 4.1 5.1 24.2% | 25001 25187 0.74%
soplex 0.070 0.071 1.43% 0.071 1.43% 36 5.1 42.7% 2848 2897 1.72%
Ibm 3.16 3.12 -1.27% 3.16 0.00% 24 32 35.1% 53 57 7.55%
sphinx3 2.39 2.37 -0.84% 2.38 -0.42% 2.5 32 24.2% 469 485 3.41%
Average -0.33% 0.65 % | 31.35%1(0.865) 6.26 %

Table 4: Evaluation for: runtime performance with only AG-Stack and full ASLR-GUARD protection, load-time overhead, and increased file size.

vulnerability to leak the whole unsafe memory; (2) understanding
the semantics of leaked memory, e.g., recovering object boundaries,
types and which functions the leaked encrypted code locators point
to; and (3) preparing parameters for the target function. Step (1)
is relatively easy, if the vulnerability can be repeatedly exploited
without crashing the program. However, step (2) is non-trivial.
Previous works that tries to reverse engineer the data structures
in a memory snapshot either require an un-randomized anchor to
bootstrap the traverse [8]; or require execution traces [28]. But
neither requirement is satisfiable under our attack model. Step
(3) is also challenging in x86-64 platform, where parameters are
passed via registers. Although a recent research has demonstrate
using forged C++ object to pass parameters, as discussed in §6.2,
ASLR-GUARD can defeat such attack.

Despiting raising the bar for attacks, we think ASLR-GUARD
can be further improved in two directions: (1) reducing AIT. Accord-
ing to MCFI [31], binding code locator with type can significantly
reduce the AIT to less 1% of original one. (2) code locator lifetime.
We observe that many of the remaining code locators should only
be dereferenced under a very specific context (e.g. pointers gener-
ated by setjump() should only be used in longjump()), and their
lifetime should be limited and easy to determine.

Timing side-channel attacks. Timing attacks [17, 36] can infer
the bytes at a relative address in unsafe memory or a guessed random
address. ASLR-GUARD does not rely on the default OS ASLR,
instead it generates new random base addresses and specifies them
in mmap, so code sections are always randomized independently,
which thus has 28-bits effective entropy [21]. As the size of safe
fault and code sections are small (say 100 MB), rewriting the data
pointer with a guessed random value only has a probability of 1/2"*
to hit the mapped code or safe vault. The probability can be further
reduced by improving the entropy of the generated random base.
Also, since all code locators in unsafe memory are encrypted, such
timing attacks can only obtain the encrypted code locators. More
importantly, our encryption scheme has the same computation costs
for different locators, so it is resistant against timing attacks.

Dynamic code generation. Besides static code, recent research
also showed the feasibility of launching code reuse attack targeting
dynamically generated code [4]. Our current implementation of
ASLR-GUARD cannot prevent such attacks. However, we believe
our current design can be naturally extended to protect dynamically

generated code. Specifically, since the code cache used to store the
generated code is already randomized (as code sections), we only
need to identify pointers that may point to the code cache. This can
be done through a combination of our memory analysis tool and
analyzing the code of the JIT engine.

8. RELATED WORK

Pointer integrity. The most related work to ASLR-GUARD is
PointGuard [12], which also employed the idea of encrypting code
pointers. However, it uses a single key to encrypt all code pointers
with XORing, which is vulnerable to chosen-plaintext attack and
forgery attack. Moreover, its type-based analysis cannot cover non-
pointer code locators. AG-RandMap overcomes all these problems
without sacrificing performance.

Code pointer integrity [26] employed type-based analysis to iden-
tify code pointers and unsafe stack objects, which misses non-pointer
code locators. The 64-bit implementation of CPI also relies on
randomization to protect its safe region. Because its safe region
contains metadata of all recursively identified code pointers and safe
stack, its size is so huge that there is an “always allocated” memory.
In addition, the mapped sections in CPI have fixed offsets to each
other. Due to these two issues, CPI is demonstrated to be bypassable
by the “missing the point” attack [17]. On the contrary, the size
of safe vault in ASLR-GUARD is much smaller (22! vs 242?) and
section-level randomization is performed 4.2. And thus “missing
the point” is mitigated by ASLR-GUARD.

Fine-grained randomizations. Under the standard ASLR de-
ployed in commodity OS, the leak of a single address allows attacker
to derive addresses of all instructions. To address the shortcoming,
many finer-grained randomization schemes have been proposed.
[22, 32] work at instruction level, [25, 43] work at basic block
level, and [5] works at page level. Unfortunately, as demonstrated
in [40], all these fine-grained randomization schemes are vulner-
able to attacks that leverage a powerful information leak. Since
ASLR-GUARD aims to overcome the weakness against information
leak, it is orthogonal to these work and can be deployed together to
protect them from information leak based attacks.

Dynamic randomization and re-randomization. JIT-ROP [40]
circumvents all fine-grained code randomizations by continually
disclosing the code pages, assuming the code memory layout is



fixed at runtime. To break this assumption, Isomeron [16] and
Dynamic Software Diversity [13] dynamically choose targets for
indirect branches at runtime to reduce the probability for adversary
to predict the correct runtime address of ROP gadgets. However, the
security of such scheme depends on the number of gadgets required
to perform a ROP attack. If a small number (say 2) of gadgets is
enough to perform the attack (e.g., calling mprotect()), the attack
still has a high chance to survive (e.g., it is 25% in Isomeron). OS-
ASR [19] prevents memory disclosures by live re-randomization.
However, the effectiveness and performance are dependent on the
frequency of re-randomization. For example, JIT-ROP can finish
the attack as fast as 2.3s. To prevent such attack, OS-ASR need
provide a re-randomization with interval less than 2.3s. Based on its
evaluation, an interval with 2s will impose about 20% runtime over-
head. In ASLR-GUARD, we completely prevent attackers reading
the code sections and code pointers, which provides a better security.
Also ASLR-GUARD imposes a negligible overhead.
Execute-only memory. Another approach to defeat information
leak attacks is to combine fine-grained randomization and execute-
only memory [6, 14]. However, they all require modification to
the operating system. As a comparison, ASLR-GUARD does not
require any OS modification thus is more practical. Moreover, leak-
ing the address of trampoline table in Readactor may decrease the
security provided by it to the one of coarse-grained CFI, as all en-
tries in the table may be reused. To mitigate this issue, Readactor
performs register allocation randomization and callee-saved reg-
ister reordering. However the semantic of the whole function are
remained the same. So return-into-libc attack still works under
Readactor. ASLR-GUARD prevents all code reuse attacks, includ-
ing return-into-libc.

Control flow integrity. Control flow integrity (CFI) [1] is con-
sidered as a strong defense against all control-flow hijacking at-
tacks. Recent works mainly focused on making this approach more
practical, eliminating the requirement of source code, reducing the
performance overhead, providing modular support, or integrating
into standard compiler toolchain [31, 42, 44, 45]. Unfortunately,
many of these CFI implementations are bypassable [9, 15, 20].
Furthermore, CFI-like code reuse attack detections (e.g. [11, 33])
have also been found to be bypassable [15]. Compared with these
works, ASLR-GUARD’s encryption scheme can provide similar or
better effectiveness for reducing the possible code reuse targets §6.2,
and has lower performance overhead §6.3.

Type-based CFIs [2, 24, 31, 42] reduce the average indirect tar-
gets (AIT) by checking indirect branches with type. In particular,
MCEFI [31] checks type and number of parameters, Forward-edge
CFI [42] checks the number of parameters, Safedispatch [24] and
vfGuard [2] check class type for virtual function calls. All these
protections are orthogonal and inspiring to ASLR-GUARD. In the
future, we will also bind type to indirect branches to further reduce
AIT. Opaque CFI [30] relies on static analysis to identify targets for
indirect branches, and insert checks to limit each branch in the range
from the lowest address to the highest address of all targets. So
the security is various based on the range of bounds. Another very
related work is Crypto-CFI [29] which encrypts all code pointers
and return addresses. As a result, it imposes a significant overhead
(45%). On the contrary, ASLR-GUARD leverages efficient protec-
tion techniques for stack and encryption, thus has a much lower
performance overhead (< 1%). HAFIX [3] achieves fine-grained
backward-edge CFI in hardware with a reasonable performance
overhead (2%). ASLR-GUARD not only protects return address but
also function pointer without the need of hardware support, and its
performance is even better.

9. CONCLUSION

In this paper, we presented ASLR-GUARD, a system designed to
prevent information leak from being used to bypass ASLR and
launch code reuse attacks. To achieve this goal, we first con-
ducted a systematic study on discovering all data that can be used
to infer code gadgets. Then we present two techniques to pro-
tect the discovered code locator: (1) a complete decouple of code
regions and data regions; and (2) novel approaches to isolate or
encrypt found code locators. We have implemented a prototype
of ASLR-GUARD, and our evaluation results over the prototype
showed that ASLR-GUARD supports normal operations, stops code
reuse attacks, and incurs very low runtime overhead (< 1% for the
SPEC CPU2006 benchmarks).
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