TRUSTORE: Side-Channel Resistant Storage for SGX using Intel Hybrid CPU-FPGA

Hyunyoung Oh, Adil Ahmad, Seonghyun Park,

Byoungyoung Lee, Yunheung Paek

Motivation

- Intel SGX (Software Guard eXtension)
 - Processor extension providing shielded execution environment, called an *enclave*
 - Protected even from the privileged SWs (OS, hypervisor)

- However, SGX is vulnerable to various memory-based side-channels
 - Page-fault-based [S&P15], cache-based [WOOT17], branch-prediction [Security17], ForeShadow [Security18], RIDL [S&P19], Fallout [CCS19], ...

Motivation

- Conventional defense: ORAM (Oblivious RAM)
 - Cryptographically proven protection
 - Dummy objects are appended
 - Shuffled after each access.
 - Protection systems using ORAM for Intel SGX
 - ZeroTrace [Sasy et al., NDSS 2018]
 - data structures
 - Obliviate [Ahmad et al., NDSS 2018]
 - file systems
 - Obfuscuro [Ahmad et al., NDSS 2019]
 - blackbox-based program execution
 - Notorious for *high performance* overhead (100x~ slower in general)

Motivation

- Our approach: using **FPGA** as an external storage device
 - Flexible and efficient programmable hardware
 - Highly available
 - Pluggable PCIe cards (Intel PAC, Xilinx Alveo)

Design Overview of *TrustOre*

• Design overview

- Two major components
 - TrustLib: In-enclave library establishing and managing the communication channel
 - Various APIs: alloc/dealloc/access, open/close/read/write/fsync
 - TrustMod: HW module loaded to the FPGA

TrustOre Designs

• Secure Loading of FPGA module

Baking the keys inside FPGA during manufacturing

- k_{AES}^{bitstr} for bitstream encryption
- k_{Priv}^{bitstr} , k_{Pub}^{bitstr} for bitstream authentication

- Provisioning FPGA and signing *TrustMod* bitstream by trusted manufacturer
- Introducing k^{attest}_{Priv}, k^{attest}_{Pub} to remotely attest *TrustMod*

TrustOre Designs

Secure Channel Establishment

- Remote attestation
 - Sending random nonce
 - Verifying the returned nonce signed by k_{Priv}^{attest}

Secret key sharing

- Enhancing the security by augmenting authentication on Diffie-Hellman key exchange
- AES key is shared as session key

TrustOre Designs

- *TrustLib* ↔ *TrusMod* communication on secure channel
 - All requests/responses are transmitted in the form of encrypted transaction packet

• *TrustOre* guarantees

- Constant packet length: dummy padding
- Constant response time: TrustMod always takes worst-case cycle
- Constant address access pattern: repeatedly access on fixed MMIO/DMA
 - note) real address of object is concealed within the packet

Evaluation

- Environment
 - *TrustMod* on Xilinx Zynq-7000 ZC706
 - TrustLib on SGX-enabled Intel i7-6700 CPU
 - ZC706 card is plugged on the system via PCIe interface
- Compare *TrustOre*-based scheme with ORAM-based scheme:
 - ZeroTrace (for data arrays)
 - Obliviate (for files)
 - Obfuscuro (oblivious program execution system based on ORAM)

Evaluation

- Data array access (vs ZeroTrace)
 - 49x faster access for various data block sizes (8B~8KB)
 - Constant throughput when # of data blocks increases
- File access (vs Obliviate)
 - 10x faster access for 1GB file
 - TrustOre also shows constant throughput for file size
- Program obfuscation (vs Obfuscuro)
 - 10.85x faster at micro benchmarks (findmax, sum, matmul)
 - More faster when input data size is increased
- Nbench, key-value store application
 - 120x faster at oblivious nbench execution
 - 188x faster at oblivious key-value data access

Conclusion

- We proposed *TrustOre*
 - Side-channel resistant storage for SGX using Intel hybrid CPU-FPGA
 - Implemented on commodity FPGA PCIe card
- *TrustOre* avoids memory-based side-channel attacks
 - Security mechanisms making FPGA be securely isolated from rest of the system
 - Secure loading, secure channel establishment, remote attestation, side-channel mitigations
- *TrustOre* shows higher performance than ORAM-based schemes, scales well as the data size increases
 - 120 188 times faster for real-world workloads