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Motivation

• Intel SGX (Software Guard eXtension)

▪ Processor extension providing shielded execution environment, called an enclave

▪ Protected even from the privileged SWs (OS, hypervisor)

• However, SGX is vulnerable to various memory-based side-channels

▪ Page-fault-based [S&P15], cache-based [WOOT17], branch-prediction [Security17], ForeShadow 

[Security18], RIDL [S&P19], Fallout [CCS19], …
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Motivation

• Conventional defense: ORAM (Oblivious RAM)
▪ Cryptographically proven protection

▪ Dummy objects are appended

▪ Shuffled after each access.

▪ Protection systems using ORAM
for Intel SGX 
- ZeroTrace [Sasy et al., NDSS 2018]

• data structures

-Obliviate [Ahmad et al., NDSS 2018]

• file systems

-Obfuscuro [Ahmad et al., NDSS 2019]

• blackbox-based program execution

▪ Notorious for high performance
overhead (100x~ slower in general)

3

[Fletcher et al., 2015]



Motivation

• Our approach:
▪ Flexible and efficient programmable hardware 

▪ Highly available
- Pluggable PCIe cards (Intel PAC, Xilinx Alveo)

- Commercial clouds such as Amazon, Microsoft

▪ Separate from CPU that is vulnerable to various side-channel attacks
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Design Overview of TrustOre

• Design overview

• Two major components
▪ TrustLib: In-enclave library establishing and managing the communication channel
- Various APIs: alloc/dealloc/access, open/close/read/write/fsync

▪ TrustMod: HW module loaded to the FPGA
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TrustOre Designs

• Secure Loading of FPGA module
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TrustOre Designs

• Secure Channel Establishment

▪ Remote attestation
- Sending random nonce

- Verifying the returned nonce signed
by kPriv

attest

▪ Secret key sharing
- Enhancing the security by augmenting

authentication on Diffie-Hellman key exchange

- AES key is shared as session key
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TrustOre Designs

• TrustLib ↔ TrusMod communication on secure channel
▪ All requests/responses are transmitted in the form of encrypted transaction packet

• TrustOre guarantees
▪ Constant packet length: dummy padding

▪ Constant response time: TrustMod always takes worst-case cycle

▪ Constant address access pattern: repeatedly access on fixed MMIO/DMA
- note) real address of object is concealed within the packet
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Evaluation

• Environment
▪ TrustMod on Xilinx Zynq-7000 ZC706

▪ TrustLib on SGX-enabled Intel i7-6700 CPU

▪ ZC706 card is plugged on the system via PCIe interface

• Compare TrustOre-based scheme with ORAM-based scheme:
▪ ZeroTrace (for data arrays)

▪ Obliviate (for files)

▪ Obfuscuro (oblivious program execution system based on ORAM)
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Evaluation

• Data array access (vs ZeroTrace)
▪ 49x faster access for various data block sizes (8B~8KB)

▪ Constant throughput when # of data blocks increases

• File access (vs Obliviate)
▪ 10x faster access for 1GB file

▪ TrustOre also shows constant throughput for file size

• Program obfuscation (vs Obfuscuro)
▪ 10.85x faster at micro benchmarks (findmax, sum, matmul)

▪ More faster when input data size is increased

• Nbench, key-value store application
▪ 120x faster at oblivious nbench execution

▪ 188x faster at oblivious key-value data access
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Conclusion

• We proposed TrustOre
▪ Side-channel resistant storage for SGX using Intel hybrid CPU-FPGA

▪ Implemented on commodity FPGA PCIe card

• TrustOre avoids memory-based side-channel attacks
▪ Security mechanisms making FPGA be securely isolated from rest of the system

▪ Secure loading, secure channel establishment, remote attestation, side-channel mitigations

• TrustOre shows higher performance than ORAM-based schemes, scales well as 
the data size increases
▪ 120 – 188 times faster for real-world workloads
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