PeTAL: Ensuring Access Control Integrity
against Data-only Attacks on Linux

Juhee Kim, Jinbum Park, Yoochan Lee,
Chengyu Song, Taesoo Kim, Byoungyoung Lee

Georgia Institute
Samsung Research m RIVERSIDE of Technology

Linux kernel is an attractive attack target

* Widely used

 Mobile devices, Servers, and loT devices
* Increasing number of vulnerabilities and exploit techniques

Vulnerabilities by types/categories

Year

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

Total

Overflow
18
13
36
=]
32
30
10

18

19
31

310

Memory
Corruption

31

17

76

86
70
124
40
54
149
166

1443

CVEdetails.com

Sql
Injection

0

Bad Binder: Android In-The-Wild Exploit

Posted by Maddie Stone, Project Zero

DirtyCred: Escalating Privilege in Linux Kernel

1

DirtyCred is a kernel exploitation concept that swaps n
unprivileged kernel credentials with privileged ones to i
escalate privilege. Instead of overwriting any critical data

fields on kernel heap, DirtyCred abuses the heap ! &
memory reuse mechanism to get privileged. Although -

the concept is simple, it is effective. See the Blackhat on
presentation or CCS paper for more details. - %

Kernel Privilege Escalation Attacks

Attacker

@® Privilege
8 :Low

Kernel /\

Access control

@/ \o

File File
/home/attacker/ Jetc/shadow
my_file

Attacker

Vulnerable
SYSCALLs
Kernel

/%truct cred MemO(y\

Corruption

i: modprobe_path
i: Estruct file

Access control-related

K kernel data /

Attacker
@ Privilege
&R :High

Kernel /\

Access control

@/ \@

File File
/home/attacker/ /etc/shadow
my_file

3

Protecting Access Control to Prevent Attacks

Attacker Attacker Attacker
©® Privilege |$) E:> ‘ Privilege
8 :Low A : Low
Vulnerable
Kernel Kernel SYSCALLs Kernel
N
N
9 Access control /9 \ Access control

7 struct cred

@/ \‘ . : modprobe_path @/ \.

File File struct file File File

Ihome/attacker/ fetc/shadow Access control-related home/attacker/ Jetc/shadow

my_file \ kernel data / my _file

4

PeTAL's Data Flow Integrity

DFI is known to be performance-heavy
« Selectively protect access confrol-related data
« Leverage hardware extensions : ARM for objects, PAC for pointers

4)
T [P
N \ T| MTE

. J

P| PAC

2
= 27 B— [?T
|— AN - Key questions:

P /
. 1. What should be protected?
T [2. How should they be protected?

Kernel objects — J i

Access Control System

[: Data defining the allowed access J

4)
Enforcement
: Code enforcing the access control
\ J
()
Resource
. Data being protected

Access Control System in the Linux Kernel

User ‘ o,
Kernel) open(/home/attacker/my_file’, write) — fd
|
4 l struct
task_struct
struct cred struct inode
cred > uid: attacker owner: attacker
: cred, uid, owner, mode ' mode : rw / r-
e \ DAC permission check (cred, inode, mode)
Enforcement _ :
_ . l, success: Grant file access
: DAC permission check : : :
L) by creating a file descriptor & return fd
() struct struct struct
i truct fil
Resource task_struct files_struct fdtable Srue e
: files, fdt, fd, mode, mappin : " / mode
L ppIng) files fdt / fd mapping

Access Control System in the Linux Kernel

Kernel User , open(‘/etc/shadow’, write) — -EACCES
|
4 l struct
task_struct
struct cred struct inode
cred 1. d: attack owner: root

: cred, uid, owner, mode HIc aRacker - 1 mode : rw / -

e \ DAC permission check (cred, inode, mode)
Enforcement .

: DAC permission check L fail: return ~-EACCES.
_ J
4 N\

Resource
: files, fdt, fd, mode, mapping

g J

Attack 1: Corrupting Policy

@ Vulnerable SYSCALLs
Attacker , , _
Kernel B open('/etc/shadow’ , write) — fd
|

4 l struct

task_struct

struct cred struct inode
Policy ’Vw; cred > iv% owner

uid

: cred, uid, owner, mode 7 mode

e N\ DAC permission check (cred, inode, mode)
Enforcemen :
oreceme t |, success: Grant file access

: DAC permission check . : :
L) by creating a file descriptor & return fd
() struct . struct struct .

Resource task_struct flles_struct fdtable struct fle
: files, fdt, fd, mode, mapping . " / mode

L) files fdt / fd mapping

Attack 2: Bypassing Enforcement & Corrupting Resource

. Vulnerable SYSCALLs

Attacker
Kernel \ — fd
|
4 !
[. cred, uid, owner, mode]
()
Enforcement - o
heck
: DAC permission check Bypass permission chec _ _
. J l, Grant file access by forging file descriptor
p ~ struct . struct truct _
Resource fask_struct files_struct fotable struct file
e - : mode
- files, fdt, fd, mode, mapping] ;E files P P = / o
\-

i

PeTAL's Access Control Integrity

1. What should be protected?

-

Policy Integrity
. Ensure

_

\

is not corrupted

J

/

Complete Enforcement
: Ensure enforcement is
always enforced when
resource is accessed

o

\

J

&)

should be protected

Q struct

task_struct

cred

struct cred

struct inode

uid
capabilities

owner
mode

Resource should also be protected

DAC permission check (cred, inode, mode)

struct . struct struct :
task struct files_struct tdtable struct file

' 7 mode
flles w1 fd mapping

\

11

Collecting Policy and Resource
from user interfaces

User
System calls e.q., SYSCALL open()
Pseudo filesystems e.g., /sys/kernel/modeprobe path
Kernel g ¢
User interface Error code
handler Deny Allow
[Access Control]

[Resource]

Collecting Policy and Resource
from user interfaces

Kernel

User

&

System calls e.q., SYSCALL open()
Pseudo filesystems e.g., /sys/kernel/modeprobe path

Policy

Error code

,()

Static Taint

Analysis

Fail

I

I

\

\
N

v
Enforcement] Success

copy_to/from_user()

raw data

Permission check J

Static Taint
Analysis

\
~

Yy v

E Resource]

PeTAL's Data Flow Integrity

2. How should they be protected?

« Selectively protect access confrol-related data

» Leverage hardware extensions : ARM for objects, PAC for pointers
4 N
= struct inode
inode hashtable —s———— T TJ MTE
i_uid
struct task_struct ~_Struct cred] e PJ PAC
=] e T \ J
current I/ uid
E c.red Ay ’ struct fil = D Heap object
C files > struct struct
files_struct fdtable f mode D Global Variable
) ~—
PJ fat P fd Pointer
T — T
\. J

ARM MTE and PAC

Memory Tagging Extensions (MTE) Pointer Authentication Code (PAC)

 Memory object protection « Pointer protection
« Hardware memory tagging/tag checking - Hardware pointer signing/authentication
 Dedicated tag storage in physical memory - PAC key + PAC context + Pointer value
- PAC Signiture
Pointer Object
= Access . = Pointer .
— &obj1 > obj1 7 Py, . Store Memory \ Confext
S \ T I~ Sign PACl
T2 r T2 d ~~< H
&obj2 ; . -
L ‘ obj2 <
T3 ® \ J = X o Auth |
: &other obj 4~
— &obj2 obj3 L Load

Tag Check Fault) Authentication Failure

Protecting Objects with ARM MTE

Privileged Objects:
Objects that contain , resource, or
their pointer

Rand g 1-14)
Enforce Pointer’s tag on access
Privileged Pointer Privileged object
T2 - T2
) |
13 - T3 *
2 s
! &Obj Obj3 :

Non-privileged Objects:

Other objects

Fixed Tag (Tag 0)
Enforce tag O on access

Non-privileged Non-privileged
Pointer object

T0 : (T0

%o obj1

TO) i T0

T0 . > TO
&obj2

= obj3

16

Protecting Pointers with ARM PAC

Privileged Pointers:
Pointers to privileged objects

PAC Sign/Authentication

Pointer storage address as PAC Context
- Bind PAC to the stored address

Privileged Pointer

v

-

&priv_obj

™~

~

&priv_obj

"

Memory
Store PN
Sign { PAC
M &priv_obj L/
ath) L A
Load U
Arbitrary

Authentication Failure

read/write

Non-privileged Pointers:
Other pointers

No PAC Sign/Authentication

Non-privileged Pointer

— &nonpriv_obj Store

~

’

— &nonpriv_obj |‘Load

Memory

[

-

&nonpriv_obj

.

J

17

Complementary Relationship of MTE and PAC

Object1

T1

.

-

&priv1

\

J

Reuse

T1

\.

T

&priv1

\

=

Object2 No Tag Check

Fault

Use ptr

f

J

Leak pointh dupt pointer

T1

1

&priv1

Prevent with PAC

: PAC is bound to the pointer stored address

7

Object2

Authentication

\.

Object1
T1 : PAS1
)

T1

\.

-

&priv1

z J Failure
PAC1| Use ptr

;

J

Leak pointe\ Arrupt pointer

T1

-

&priv1

PAC1

18

Complementary Relationship of MTE and PAC

PAC Reuse (Temporal) |:> Prevent with
T4 _
&obj2 N\ Oblect2 Sobje \ Object2
&obj1 { Freed— | LE v Bih-'g
- L
. PAC — ~_[PA
Leak Pointer % &privli —F Leak Pointer _/__ &priv2 T
PAC PAC
&priv1 Corrupt _ y &priv1 Corrupt
pointer Use ptr pointer
Y Tag check fault
No Authentication T3] /= [T

Failure

PeTAL Implementation

Linux kernel
source code

PeTAL

<> Clang/LLVM IR Pass

e
)

/

PeX - indcall resolution
wllvm

)

\ 4

vmlinux.bc

A 4

b

Inter-procedural
Points-to Analysis

- Static Taint Analysis
> User Interfaces
Syscalls Pseudo-fs
|]
Privileged "_r"‘ -—rlj Privileged
) Objects I"’I/- L(Pointers
‘ Struct Types, GV Names
J

\ 4

Priv/Non-priv Obj access
Priv/INon-priv Ptr access

L

[~ Data Flow Integrity

Instrumentation

]

AArch64

=

R

MTE

PAC

\ 4

J

'}

J

PeTAL-
hardened
Kernel

_

J

Performance Evaluation

 Evaluation setup
« Samsung Galaxy S22 — supports PAC and MTE*

* MTE was enabled with the assistance of Samsung Electronics

 Android kernel 5.10.136

» Kernel workloads
 LMBench 1.18x (MTE async) /1.32x (MTE sync)

» User workloads
* Nbench: 1.00x / LevelDB 1.03x / Apache httpd: 1.04x (MTE sync)

« Security evaluations in the paper

Summary

* PeTAL defines Access Control integrity for the Linux kernel.

* PeTAL proposes a novel way to identify protection targets
leveraging the kernel’s user interfaces.

 PeTAL's DFI solution based on ARM and PAC
demonstrates acceptable performance overhead.

22

Thank yout!

Samsung Research m RIVERSIDE

Georgia Institute
of Technology

23

Threat Model and Assumptions

« Hardware
AArch64, ARM MTE PAC

» Kernel
» State-of-the-art self-protections (e.g., ASLR, NX/DEP, SMAP, CFl)
* 1+ Memory coruption vulnerabilities

« Attack vector

« Memory corruption attack through vulnerable system calls
» Corrupting access control policies/resources

» Out of scope
» Access control system implementation error
» Page allocator error (e.g., GPU driver vulnerabilities)
* In-kernel executions (e.g., eBPF)
« Hardware side-channel attacks (e.g., Spectre, PACMAN, TikTag)

Correctness of the Static Analyses

« Static Taint Analysis
» Goal: Collect kernel objects/pointers used as policy or resource from
the user intefaces

» Evaluation: Manual inspection
» 3 false positives due to complex data flows
* No false negatives

» Coarse-grained Points-to Analysis
« Goal: Classify instructions to enforce the DFI
* Privileged / Non-privileged / Mixed
 Evaluation: Emperical verification
* The PeTAL-hardened kernel worked on QEMU and the Galaxy device

