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Linux kernel is an attractive attack target

* Widely used

 Mobile devices, Servers, and loT devices
* Increasing number of vulnerabilities and exploit techniques
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Bad Binder: Android In-The-Wild Exploit

Posted by Maddie Stone, Project Zero

DirtyCred: Escalating Privilege in Linux Kernel
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DirtyCred is a kernel exploitation concept that swaps n
unprivileged kernel credentials with privileged ones to i
escalate privilege. Instead of overwriting any critical data

fields on kernel heap, DirtyCred abuses the heap ! &
memory reuse mechanism to get privileged. Although -

the concept is simple, it is effective. See the Blackhat on
presentation or CCS paper for more details. - %




Kernel Privilege Escalation Attacks
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Protecting Access Control to Prevent Attacks
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PeTAL's Data Flow Integrity

DFI is known to be performance-heavy
« Selectively protect access confrol-related data
« Leverage hardware extensions : ARM for objects, PAC for pointers
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Access Control System
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Access Control System in the Linux Kernel
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Access Control System in the Linux Kernel
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Attack 1: Corrupting Policy
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Attack 2: Bypassing Enforcement & Corrupting Resource
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PeTAL's Access Control Integrity

1. What should be protected?

-

Policy Integrity
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Collecting Policy and Resource
from user interfaces
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Collecting Policy and Resource
from user interfaces
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PeTAL's Data Flow Integrity

2. How should they be protected?

« Selectively protect access confrol-related data

» Leverage hardware extensions : ARM for objects, PAC for pointers
4 N
= struct inode
inode hashtable —s———— T TJ MTE
i_uid
struct task_struct ~_Struct cred ] e PJ PAC
=] e T \ J
current I/ uid
E c.red Ay ’ struct fil = D Heap object
C files > struct struct
files_struct fdtable f mode D Global Variable
) ~—
PJ fat P fd Pointer
T — T
\. J




ARM MTE and PAC

Memory Tagging Extensions (MTE) Pointer Authentication Code (PAC)

 Memory object protection « Pointer protection
« Hardware memory tagging/tag checking - Hardware pointer signing/authentication
 Dedicated tag storage in physical memory - PAC key + PAC context + Pointer value
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Protecting Objects with ARM MTE

Privileged Objects:
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Protecting Pointers with ARM PAC

Privileged Pointers:
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Complementary Relationship of MTE and PAC
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Complementary Relationship of MTE and PAC
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PeTAL Implementation
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Performance Evaluation

 Evaluation setup
« Samsung Galaxy S22 — supports PAC and MTE*

* MTE was enabled with the assistance of Samsung Electronics

 Android kernel 5.10.136

» Kernel workloads
 LMBench 1.18x (MTE async) /1.32x (MTE sync)

» User workloads
* Nbench: 1.00x / LevelDB 1.03x / Apache httpd: 1.04x (MTE sync)

« Security evaluations in the paper



Summary

* PeTAL defines Access Control integrity for the Linux kernel.

* PeTAL proposes a novel way to identify protection targets
leveraging the kernel’s user interfaces.

 PeTAL's DFI solution based on ARM and PAC
demonstrates acceptable performance overhead.

22



Thank yout!

Samsung Research m RIVERSIDE

Georgia Institute
of Technology

23



Threat Model and Assumptions

« Hardware
AArch64, ARM MTE PAC

» Kernel
» State-of-the-art self-protections (e.g., ASLR, NX/DEP, SMAP, CFl)
* 1+ Memory coruption vulnerabilities

« Attack vector

« Memory corruption attack through vulnerable system calls
» Corrupting access control policies/resources

» Out of scope
» Access control system implementation error
» Page allocator error (e.g., GPU driver vulnerabilities)
* In-kernel executions (e.g., eBPF)
« Hardware side-channel attacks (e.g., Spectre, PACMAN, TikTag)



Correctness of the Static Analyses

« Static Taint Analysis
» Goal: Collect kernel objects/pointers used as policy or resource from
the user intefaces

» Evaluation: Manual inspection
» 3 false positives due to complex data flows
* No false negatives

» Coarse-grained Points-to Analysis
« Goal: Classify instructions to enforce the DFI
* Privileged / Non-privileged / Mixed
 Evaluation: Emperical verification
* The PeTAL-hardened kernel worked on QEMU and the Galaxy device



