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ABSTRACT

A render-update bug arises when a web browser produces an erro-
neous rendering output due to incorrect rendering updates. Such
render-update bugs seriously harm the usability and reliability of
web browsers. However, we �nd that detecting render-update bugs
is challenging because the render-update bug is a semantic bug—
given a rendering result, it is di�cult to determine if it is correct
due to the complex rendering speci�cation of DOM and CSS. Thus,
unlike memory corruption bugs, the incorrect rendering output
does not raise the violation or crash. In practice, render-update bug
detection relies on the time-prohibitive manual analysis of domain
experts to determine the bug.

This paper proposes Metamong, an automated framework to
detect render-update bugs without false positive issues via dif-
ferential fuzz testing. Metamong features two key components:
(i) page mutator, and (ii) render-update oracle. The page mutator
generates render-update operations, which change the content of
the web page, to trigger a render-update bug. The render-update
oracle exploits an HTML standard rule, so-called yielding, to pro-
duce the correct rendering result of a given web page. Combining
these components,Metamong creates two HTML �les where each
constructs the same web page, but only one of them induces the
render-update. It then uses di�erential testing to compare their
rendering outputs to determine a bug. We implemented a prototype
of Metamong, which performs di�erential fuzz testing on popular
browsers, Chrome and Firefox. By far,Metamong identi�ed 19 new
render-update bugs, 17 in Chrome and two in Firefox. All of those
have been con�rmed by each browser vendor and �ve are already
�xed, demonstrating the practical e�ectiveness of Metamong in
identifying render-update bugs.
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1 INTRODUCTION

The rendering performance has been the key requirement for the
web browsers. Traditional browsers were very slow because they re-
run the entire rendering process for every web page update. Unlike
traditional browsers, in order to speed up the browser’s rendering
process, modern browsers employ a new technique, render-update,
which re-renders only the updated part of the web page [16, 17].
This technique reuses previous rendering results and re-renders
only the region that needs to be updated for e�ciency. It is very
suitable and useful for most of modern web applications because
they frequently update their web page.

The problem is this technique introduces a bugwhere the browser
does not re-render the areas of the web page that should be updated,
generating an incorrect rendering output. We will call such a bug a
render-update bug in this paper. A render-update bug is a bug that
occurs when aweb browser generates an incorrect rendering output
due to an incorrect render-update of the browser. Render-update
bugs can severely harm the usability and reliability of the web page
and its service. In particular, this bug is very fatal to modern web
applications because it arises from render-update, and modern web
applications frequently invoke render-update to update their web
pages. As an example, a major electric car company, Tesla, had a
service interruption because of a render-update bug where Chrome
87 does not properly change the color of the car, disturbing users
from its service [19].

There are two key challenges to �nd render-update bugs. First,
it is challenging to generate javascript triggering render-update

bugs. This is because the render-update bugs can be triggered only
when the browser performs the incorrect render-update. Second,
it is challenging to automatically detect render-update bugs with-
out false positives. To be speci�c, there is no oracle that can de-
termine whether the visual appearance of the web page violates
HTML/CSS speci�cations [4, 10]. This is because it is di�cult to
translate complex HTML/CSS speci�cations into programmable
expressions, which allow automated validation. Moreover, as some
of the features for rendering in speci�cations are under-speci�ed,
the complete speci�cation translation is infeasible. To solve this
issue, previous works leveraged di�erential testing and proposed
two testing methods: cross-browser testing, and cross-version test-
ing [29, 30, 43, 49]. It is possible to adapt these methods to detect
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render-update bugs, but they have a critical limitation, a false posi-
tive issue. This is because the rendering outputs can be benignly
di�erent due to the under-speci�ed features (e.g., table width dis-
tribution [18]) or the new feature implementation (e.g., CSS has()
selector [1]).

In this paper, we proposeMetamong, a framework tailored for
detecting render-update bugs in modern browsers without the false
positive issue. In order to address the aforementioned challenges, we
design two key components: 1) page mutator, and 2) render-update
oracle. The page mutator is used to trigger render-update bugs. As
the render-update bug can be triggered only when the browser runs
the render-update, the page mutator only generates render-update
operations, which change the content of a web page such as DOM
tree and CSS styles. By executing the render-update operations,
Metamong makes the browser run render-update and enhances
the chance of triggering render-update bugs. The render-update

oracle can identify the render-update bugs without the false positive
issues. The key insight of render-update oracle is each web page
has exactly one rendering output regardless of whether it is created
by the whole or partial rendering (i.e., render-update). To leverage
this key insight, we exploit an HTML standard rule, yielding [10].
By exploiting yielding, Metamong can change the web page while
preventing the browser from running render-update. By using these
components, Metamong creates two HTML �les that both build
an identical web page, but only one of them causes a render-update.
Metamong then uses di�erential testing to verify whether their
rendering outputs are the same. Finally,Metamong determines a
render-update bug if their rendering outputs are di�erent.

We implemented the prototype ofMetamong and conducted the
evaluation on two popular browsers, Chrome and Firefox. During
the evaluation,Metamongwas able to detect all 28 previous render-
update bugs that were reported within two years at Chrome and
Firefox bug trackers (all 15 Chrome and all 13 Firefox bugs). More
importantly, Metamong has found 21 render-update bugs (17 in
Chrome and four in Firefox). All of the bugs were con�rmed by
the respective browser vendors, 19 of them were new bugs, and
�ve of them were �xed, revealingMetamong’s practical capability
to detect render-update bugs without false positives.

To summarize, this paper makes the following contributions:
• Design.We designedMetamong, a framework to automatically
detect browser render-update bugs without false positives. It
features two components for render-update bugs: (i) a render-
update oracle to detect render-update bugs and (ii) a pagemutator
to trigger render-update bugs.
• PromisingResults.While performing the evaluation,Metamong

can detect all of 28 previous render-update bugs obtained from
Chrome and Firefox bug trackers. Importantly, it found 19 new
render-update bugs in Chrome and Firefox. All of these were
con�rmed by the respective developers and �ve have already
been �xed. These results suggest the strong practical aspects of
Metamong for detecting render-update bugs in browsers.

2 BACKGROUND

2.1 Fuzzing and Di�erential Testing

Fuzzing. Fuzzing is a popular bug-�nding method. It continually
executes a target program with the randomly generated testcases

to see if the target program’s behavior is incorrect (e.g., crashing).
Since fuzzing does not require domain expert knowledge of a target
program, it is widely used in many software applications to detect
bugs. Most fuzzers are developed to hunt for memory corruption
bugs [2, 3, 5, 7, 8, 21–23, 25, 26, 36, 42, 50, 52, 53]. This is because the
bug cannot be discovered by a fuzzer on its own; rather, a particular
bug condition must be observed during fuzzing. Because of this,
most fuzzing approaches have been presented to uncover memory
corruption vulnerabilities, which are operated with memory error
detectors that clearly de�ne bug situations (or conditions) (e.g.,
ASAN [48] and UBSAN [20]).

Di�erential Testing. Due to the di�culty of expressing semantic
bugs as a bug condition and the requirement for domain expert
knowledge to identify them, fuzz testing alone is ine�ective for
detecting semantic bugs. In this sense, di�erential testing methods
are widely used for detecting semantic bugs. More speci�cally,
di�erential testing employs a number of programs, each of which
is meant to get the same result for the same input. If the results
are di�erent for each program, we can determine that the program
might include a semantic bug. As di�erential testing describes the
bug condition of the semantic bugs, recent research have employed
di�erential testing with fuzzing to uncover many types of semantic
bugs. For instance, it is used to discover semantic bugs in CPU RTLs,
SSL/TLS implementations, web browsers, debuggers, compilers, and
Java virtual machines (JVM) [24, 27–30, 33–35, 39, 43, 47, 49, 54].

2.2 The Rendering of a Web Browser

Rendering is turning the content (e.g., HTML, CSS, and javascript)
into the pixels (i.e., screen output) [11]. To render the content, mod-
ern browsers such as Chrome and Firefox build the data structure
called a page. The page is the browser-speci�c memory object rep-
resenting the HTML document. Each page consists of HTML, CSS,
and javascript and has its own rendering output according to DOM
and CSS speci�cations [4, 10]. We will call the rendering output
as render in this paper. The page can be modi�ed by various ac-
tions such as javascript and mouse clicks, and its rendering output
also changes according to the updated page. Traditional browsers
re-do the whole rendering process whenever a web page is modi-
�ed (or updated). However, they have a critical limitation re-doing
the whole rendering process is very heavy and increases the la-
tency. This limitation seriously degrades the performance of the
browsers and it also impacts most (modern) web applications as
they frequently update their page.

To address this limitation, modern browsers build the rendering
process into two phases: 1) render-initial, and 2) render-update
[16, 17]. Render-initial is the �rst rendering phase that a browser
loads (or parses) an HTML �le, builds a page with it, and draws the
page’s corresponding output. To be speci�c, the render-initial is

?8=8C ← �D8;3%064 (ℎ)

A 8=8C ← �=8C'4=34A (?8=8C )
(1)

where (i) �D8;3%064 builds the initial-page ?8=8C based on the HTML
�le ℎ, and (ii) �=8C'4=34A draws the initial-render A 8=8C based on
the initial-page ?8=8C . Note that the render-update is not triggered
in this phase.
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n.setAttribute("class", "b");
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Figure 1: The example of the browser rendering process.

Render-update is the second rendering phase that the browser
re-renders only the changed areas of the page whenever the page is
updated. This approach reuses previous rendering results and only
re-renders the changed parts of the page to e�ciently generate the
page’s corresponding output. To be speci�c, the render-update is

?D?30C4 ← %064*?30C4 (?8=8C , 9 )

AD?30C4 ← '4=34A*?30C4 (A 8=8C , ?D?30C4 )
(2)

where (i) %064*?30C4 executes the javascript 9 and updates the

initial-page ?8=8C to the updated-page ?D?30C4 , and (ii)'4=34A*?30C4

updates the initial-render A 8=8C to the updated-render AD?30C4 which

is the corresponding rendering output of ?D?30C4 . As render-update
does not render the entire area yet only re-renders the part of
the area which should be updated, the browser can signi�cantly
decrease the performance overhead of the rendering with it. Be-
sides, the render-update can be also performed on the updated-page

?D?30C4 to e�ciently generate the rendering output when the page
is updated again through the javascript.

An example of the browser rendering process is shown in Fig-
ure 1. In phase 1, the browser loads the HTML �le ℎ and builds
the initial-page ?8=8C 1 . It produces the initial-render A 8=8C based
on the initial-page ?8=8C 2 . Then, when the javascript code is ex-
ecuted, the browser conducts the second rendering phase. In this
example, the javascript code changes the class attribute of <p> ele-
ment node from “a” to “b” 3 . As the value of the class attribute is
changed to “b”, the background color of the <p> node changes from
"plum" to "aqua" and the initial-page becomes the updated-page

?D?30C4 4 . Finally, the browser performs render-update based on

the updated-page ?D?30C4 and the initial-render A 8=8C to generate

the updated-render AD?30C4 . As only the background color of the
<p> node is changed, the browser re-renders only the area of <p>
node (i.e., plum rectangle) to change to the aqua color and it does
not re-render the rest of the area 5 .

2.3 Render-Update Bug

The browser developers try to optimize the render-update by max-
imizing the reuse of previous rendering results and minimizing
the areas to be re-rendered as possible. However, while making
render-update e�cient, the browser developers can introduce a bug
that the browser incompletely re-renders the areas of the page
that should be updated. We will call such a bug a render-update

bug. A render-update bug is a bug where the browser incorrectly
performs render-update on an updated page and generates an in-
correct rendering output of the page, di�erent from the DOM and

1 <!DOCTYPE html>

2 <script>

3 function update_page() { box.innerHTML = "Important text"; }

4 </script>

5 <style> #box { transform: rotateY(0deg); height: 30px; } </style>

6 <body> Example of render-update bug <div id="box"></div></body>

(a) PoC HTML code

Execute update_page()

(b) Actual Result (Incorrect).

Execute update_page()

(c) Expected Result (Correct).

Figure 2: A render-update bug example (Chrome Issue

#1167352).

(a) Actual Result (Incorrect). (b) Expected Result (Correct).

Figure 3: A render-update bug (Chrome Issue #1132218) trig-

gered on Tesla’s homepage. The car color does not change to

white even after the user clicks the white-color button.

CSS speci�cations. It is worth noting that the render-update bug
and the rendering bug have di�erent root-causes although both
generate the incorrect rendering outputs which violate DOM/CSS
speci�cations. Render-update bugs can harm users and web ap-
plication developers in many ways. For instance, if the browser
has a render-update bug and it is triggered on the web application,
important elements that should be displayed may become distorted
or invisible, severely harming the service quality. Furthermore, if
elements are placed at awkward locations, users may not under-
stand the contents or may be misguided. In addition, render-update
bugs introduce unnecessary challenges to the web application de-
velopers. Suppose the developer found a certain bug in their web
application. Then the developer starts to manually debug the issue,
but such a debugging process is typically performed under the as-
sumption that the underlying browser has no bugs. If this bug is a
render-update bug, the developer will need to spend quite a time to
�nally notice it is a browser’s issue or often fail to triage the bug.

We explain the example of a render-update bug with the HTML
code shown in Figure 2. In this example, the Chrome browser �rst
opens the HTML code and generates its rendering output (i.e.,
initial-render). It then executes update_page() at line 3 to modify
the page by setting the text of <div> element with Important text.
Afterward, the Chrome browser performs render-update on the up-
dated page and generates its rendering output (i.e., updated-render).
If the Chrome browser works correctly, the text Important text
(highlighted with the red box) should be drawn below the text
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1 <!DOCTYPE html>

2 <style> body {font-size: 30px;} </style>

3 <script>

4 function update_page() {

5 document.styleSheets[0].insertRule("ul:has(li) {background: plum;}")

6 }

7 </script>

8 <body><ul><li>Hello World</li></ul></body>

(a) PoC HTML code

update_page()

(b) Actual Result of Chrome 104

(Correct)

update_page()

(c) Actual Result of Chrome 105

(Correct)

Figure 4: A false positive example of cross-version testing.

Example of render-update bug as shown in Figure 2c. However,
the Chrome browser incorrectly performs render-update–it does
not re-render the highlighted area because it determines that the
highlighted area (which should be re-rendered) does not need to
be re-rendered. As a result, the Chrome browser does not draw the
text Important text and produces the incorrect rendering result
as shown in Figure 2b.

The render-update bug can severely harm the usability and relia-
bility of the page and its service if such a page is for commercial
services. We explain such a case with a real-world example where
the render-update bug was triggered on Tesla’s homepage as shown
in Figure 3. Initially, the black button on the homepage was se-
lected, so the color of the car was black as well. Then the user can
select the color to change the car color. When the user selects the
white color, the browser should change the car color from black to
white. However, the problem was that even though the user selects
the white color (or other colors), the color does not change to white
and remains black due to a render-update bug.

3 CHALLENGE AND APPROACH

3.1 Challenge

We elaborate on two challenges in triggering and detecting the
render-update bugs.

Challenge #1: Triggering Render-Update Bugs. It is challeng-
ing to generate javascript that triggers render-update bugs. This is
because the render-update bugs can be triggered only when the
browser performs the render-update. If the javascript does not
change the page, the browser never performs render-update, which
is the origin of render-update bugs. To trigger the render-update
bugs, the javascript needs to change the page and make the browser
perform the render-update. Thus, to increase the chance to trigger
render-update bugs, the generated javascript should induce the
complex page and render change from the browser.

Challenge #2: Detecting Render-Update Bugs without False

Positives. In order to detect render-update bugs, there should be an
oracle that can tell the correctness of the render-update. However,
it is very challenging to build such a render-update oracle because

the render-update bug is a semantic bug. To be more speci�c, the
render-update bug is triggered due to the semantically incorrect
behavior of render-update. It entails incorrect rendering outputs,
which violate DOM and CSS speci�cations [4, 6]. However, it is
di�cult to automatically validate their semantic correctness, be-
cause, unlike the memory corruption bug, the incorrect rendering
output does not trigger the violation or crash. This means that it is
impossible to detect whether the browser violates DOM and CSS
speci�cations. Hence, detecting render-update bugs relies on the
manual analysis of domain experts or the bug reports from the
users and web application developers.

To resolve this issue, several studies leverage di�erential testing
that compares the result of two di�erent browsers for detecting
rendering bugs. To be speci�c, the research area has proposed
two testing methods by using di�erential testing: (i) cross-browser
testing [29–31, 43] and (ii) cross-version testing [49]. Both methods
can be used to �nd the render-update bugs, but they have a critical
limitation–they su�er from the false positive issue on �nding render-
update bugs.

Cross-browser testing can be used to detect the render-update
bugs by comparing the result of two independently-implemented
browsers (e.g., Chrome and Firefox). It determines there is a render-
update bug when two browsers generate di�erent results from
the same input consisting of HTML/CSS with javascript (which is
used to trigger render-update). This method can be easily employed
to detect render-update bugs because it does not require domain
knowledge. However, R2Z2 [49] has shown that the result of two
independently-implemented browsers can be di�erent due to the
benign browser incompatibilities (e.g., di�erent feature support) so
the cross-browser testing alone can trigger many false positives.

The cross-version testing compares the result of two di�erent
versions of the same browser (e.g., Chrome version 104 and 105)
to detect the render-update bugs. It determines there is a render-
update bug when two browsers generate di�erent results from
the same input consisting of HTML/CSS with javascript. Unlike
cross-browser testing, it does not su�er from benign incompati-
bilities such as di�erent supported features and di�erent designs.
This is because such incompatibilities are introduced when two
browsers are independently-implemented. However, this approach
still su�ers from the false positive issue–the result of two di�erent
versions of the same browser can be benignly di�erent due to the
feature update or the bug �x. In other words, it is still challenging
to determine which one is correct when two results are di�erent.

We explain an example of a false positive case that can be caused
by the feature update (i.e., CSS pseudo-class :has()) as shown in Fig-
ure 4. CSS pseudo-class :has() is not supported before Chrome 105
and it is �rst introduced in Chrome 105. In this example, Chrome
104 and 105 produce the same rendering outputs when opening PoC
HTML code. After they execute update_page() to insert the CSS
rule, their rendering outputs become di�erent where only Chrome
105 paints the plum background on the <li> node. This is because
:has() is not supported by Chrome 104 so Chrome 104 ignores
the inserted CSS rule. The problem here is that even though both
browsers produce the correct rendering outputs, the cross-version
testing approach determines this case as render-update bug, leading
to a false positive.
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<style> 
#before{ background: plum; } 
#after { background: aqua;} 

</style> 
<body>
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Figure 5: The overall work�ow ofMetamong.

Summary: Both cross-browser and cross-version testings

trigger many false positives. This is a very critical problem
because the browser developers should spend their time and
e�ort on the bugs, which actually do not exist.

3.2 Our Approach

Approach #1: Generating Render-Update Operations Only.

To address challenge #1, we build the pagemutator, which generates
render-update operations to change the page and trigger the render-
update. We do this based on the fact that the render-update is the
origin of the render-update bugs and the browser performs render-
update when it changes the page and has to re-render the page. In
this respect, the page mutator generates the mutation primitives
changing the DOM tree or the CSS style of the page. By executing
such mutation primitives, Metamong can �nd more render-update
bugs because the browser draws the page based on its DOM tree
and CSS style and performs render-update whenever the DOM tree
and CSS style are changed. We will describe the detail of the page
mutator at §4.2.

Approach #2: Exploiting an HTML Standard Rule to Build

Render-Update Oracle. To address challenge #2, we build the
render-update bug oracle which can identify the render-update bugs
without the false positive issues. The key assumption to build the
render-update oracle is that an initial-render can be used as a refer-
ence (or answer) render from the perspective of the render-update
bug. We can use this assumption because when the browser gener-
ates the initial-render, it does not perform render-update which is
the root cause of render-update bugs. To leverage this key assump-
tion, we exploit one of the HTML standard rules called yielding.
Yielding is when the browser encounters the javascript while pars-
ing an HTML �le, it �rst blocks the parsing, executes the javascript,
and then resumes parsing the HTML �le to build the page. By ex-
ploiting yielding, we can make the browser build the page that
we aim for without performing the render-update. In other words,
the browser only performs the render-initial on the page so that
we can get the reference render of the aimed page. To be speci�c,
Metamong generates two HTML �les where they build the same
page but one triggers the render-update and the other does not.

Metamong then leverages di�erential testing to check whether
their rendering outputs are the same. If they generate di�erent ren-
dering outputs, the render-update bug oracle determines this case as
a render-update bug. We will describe the detail of the render-update
oracle at §4.3.

4 DESIGN

We designMetamong, a framework for �nding render-update bugs
in the modern browsers through di�erential fuzz testing without
the false positive issue. First, we introduce the overall design of
Metamong (§4.1). Then, we introduce the page mutator, which
generates the mutation primitives in javascript to trigger the render-
update bug (§4.2).Metamong uses the HTML �le and the mutation
primitives to build the test page and get its rendering result, which
is used to determine the render-update bug later in §4.3. Lastly,
we present the render-update oracle that can detect the render-

update bugs without the false positive (§4.3). The render-update

oracle consists of two components: 1) integrator, and 2) render
checker. The integrator exploits yielding, which is the one of the
HTML standard rules. It merges the HTML �le and the mutation
primitives to construct the reference HTML �le, which is used
to get the reference rendering result of the test page. The render
checker compares the rendering result of test page and its reference
rendering result to determine whether the browser triggers the
render-update bug. If they are di�erent, Metamong considers it
as a render-update bug. It is worth noting that the render-update
oracle can be easily adopted to the other DOM fuzzer to detect the
render-update bugs.

4.1 Overview

The overall design and work�ow ofMetamong are shown in Fig-
ure 5.Metamong consists of two phases: 1) bug triggering phase,
and 2) bug detection phase. In the bug triggering phase,Metamong

�rst generates and opens an HTML �le (i.e.,ℎC4BC ) on the browser to
build the initial-page (i.e., ?8=8CC4BC ) and produce its corresponding ren-

dering output (i.e., initial-render) denoted as A 8=8CC4BC 1 . In this exam-

ple, the initial-page ?8=8CC4BC has a <body> node as a root and a <p> node
as a child. The <p> node has the id attribute and its value is “before”
so the style of the node <p> is calculated as background: plum. The
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afterbefore

body

button

Example color: seagreen;

id: “a”

body

button

Example color: seagreen;

id: “a”

fieldset

Append <field>

Render 
Update

a.insertAdjacentHTML('afterend', ‘<fieldset></fieldset>');JS

(a) DOM Node Insertion.

afterbefore

body

button

Example color: seagreen;

id: “a”

body

button

Example color: seagreen;

id: “a”

Add attribute “hidden”

Render 
Update

hidden:

hidden

a. setAttribute(‘hidden’, ‘hidden’);JS

(b) DOM Node Attribute Insertion.

afterbefore

body

button

Example color: seagreen;

id: “a”

body

button

Example color: seagreen;

id: “a”

Focus <button>

Render 
Update

a. focus()JS

(c) DOM Node Focus.

Figure 6: The examples of DOM mutation primitive.

browser draws the A 8=8CC4BC where the text “Example” is drawn inside
of the plum rectangle. Then, it uses the mutation API generator to
make the mutation primitives, which can trigger the render-update
2 . Metamong executes the mutation primitives on the page ?8=8CC4BC

to trigger the render-update bug 3 . After that, the browser up-

dates ?8=8CC4BC to the updated-page (i.e., ?
D?30C4
C4BC ′

) and performs the

render-update to update A 8=8CC4BC to the updated-render (i.e., A
D?30C4
C4BC ′

)

4 . In this example, ?8=8CC4BC becomes ?
D?30C4
C4BC ′

–the id attribute value
of the <p> node changes to “after” and its style also changes to
background: aqua. At the same time, the browser performs the

render-update and generates A
D?30C4
C4BC ′

where the text “Example” is
still drawn within the plum background.

In the bug detection phase, the render-update oracle uses the
integrator to combine the HTML �le ℎC4BC with the mutation prim-
itives to generate the reference HTML �le (i.e., ℎA4 5 ) 5 . Then,
the render-update oracle opens ℎA4 5 on the browser to get its ref-

erence render (i.e., A 8=8C
A4 5

), which is the correct rendering output

of ?
D?30C4
C4BC ′

6 . In this example, before the browser reaches to the
<script> tag, the page has the <body> node as a root and the <p>
node as a child with the id attribute “before”. When the browser
reaches to the <script> tag, the browser executes the mutation
primitive target.setAttibute(’id’, ’after’). It changes the id
attribute value from “before” to “after” so the style of the <p>
node is calculated as background: aqua. The browser then con-
ducts the render-initial to draw the A 8=8C

A4 5
where the text “Example”

is drawn inside of the aqua rectangle. Finally, it leverages the render
checker to determine the render-update bug by comparing two ren-

dering outputs, A
D?30C4
C4BC ′

and A 8=8C
A4 5

7 . If A
D?30C4
C4BC ′

is not same as A 8=8C
A4 5

,

Metamong determines this case as the render-update bug 8 . In
this example, the text “Example” should be drawn inside of the aqua
rectangle (i.e., A 8=8C

A4 5
) but the browser fails to update the background

color to aqua. In this respect, we can determine that the browser
triggers the render-update bug.

4.2 Page Mutator

It is important that the render-update bug can be triggered only
when the browser performs the render-update on the page. To make
the browser perform the render-update, the page should be updated
(or modi�ed) via javascript. To be speci�c, the work�ow of page

body

button

Example

color: seagreen;

background: plum;

id: “a”

body

button

Example
color: seagreen;

id: “a”

afterbefore

Render 
Update

Append CSS rule 
“background: plum”

document.styleSheets[0].insertRule('#a {background: plum;}', 1)JS

Figure 7: An example of CSS mutation primitive.

mutator is
9 ← �4=4A0C4"DC0C8>= ( )

?
D?30C4

C4BC ′
← %064*?30C4 (?8=8CC4BC , 9 )

A
D?30C4

C4BC ′
← '4=34A*?30C4 (A 8=8CC4BC , ?

D?30C4

C4BC ′
)

(3)

where (i)�4=4A0C4"DC0C8>= randomly generates themutation prim-
itives 9 , (ii) %064*?30C4 mutates the initial-page ?8=8CC4BC to the updated-

page ?
D?30C4
C4BC ′

by executing the mutation primitives 9 (in javascript)

and (iii) '4=34A*?30C4 updates the rendering output A 8=8CC4BC to the

A
D?30C4
C4BC ′

, which is the corresponding rendering output of ?
D?30C4
C4BC ′

.
As the browser draws the page based on its DOM tree and CSS style,
we employ two page-mutation methods: 1) DOM tree mutation;
and 2) CSS style mutation.

DOMMutation Primitive. Metamong currently has three DOM
mutation operations: (1) DOM node insertion/deletion; (2) DOM
node attribute insertion/deletion; (3) DOM event; For DOM node
insertion, Metamong randomly selects where to insert and then
generates the DOM node. Then, it uses insertAdjacentElement
(position, element) DOM API to insert the node in the selected
position. Similarly, for DOM node deletion,Metamong randomly
selects and deletes the one of the DOM nodes via remove() DOM
API. The example of DOM node insertion is described in Figure 6a.
Before mutation, the page has the <body> node as a root and the
child node (i.e., the <button> node). The <button> node has the id
attribute with its value “a”, the text node Example, and the CSS
style color: seagreen. Here,Metamong selects the <body> node,
generates the <fieldset> node, and inserts it inside the <body>
node after its last child node (i.e., <button> node). After mutation,
the browser performs render-update to draw the <fieldset> node
below the text Example.
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For DOM node attribute insertion, Metamong randomly se-
lects the one of DOM nodes and inserts the attribute with the
value via setAttribute(name, value). Similarly, for DOM node
attribute deletion, Metamong randomly selects the one of DOM
nodes and deletes the one of selected node’s attribute names via
removeAttribute(name). The example of DOM node attribute in-
sertion is described in Figure 6b.Metamong selects the <button>
node and inserts the hidden attribute with the value “hidden”. After
mutation, the browser performs render-update to erase the <button>
node and its text node as well.

Metamong currently has three DOM event operations: (1) DOM
node focus, (2) DOM node scrolling, and (3) window resizing. For
DOM node focus, Metamong randomly selects and focuses one of
the DOM nodes via focus() DOM API. For DOM node scrolling,
Metamong randomly selects andmoves the scroll via scrollTo(x, y)
DOM API. For window resizing,Metamong randomly changes the
size of the browser window via resizeTo(width, height) DOM
API. An example of DOMnode focus is shown in Figure 6c.Metamong

selects and focuses the <button> node so the browser performs
render-update to thicken the outer edge of the <button> node.

CSS Mutation Primitive. Metamong currently has one CSS
mutation operation: CSS style insertion/deletion; For CSS style
insertion, Metamong randomly generates the CSS rule and se-
lects the index into which the CSS style rule is to be inserted via
insertRule(rule, index) API. Similarly, for CSS style deletion,
Metamong randomly selects and deletes one of the CSS style rules
via deleteRule(index) API. An example of CSS style insertion is
described in Figure 7.Metamong selects one as the index and in-
serts the CSS style rule “p {background: plum;}”. After mutation,
the browser performs render-update to paint the background of the
text “Example”.

4.3 Render-Update Oracle

Overview. The render-update bug is a semantic bug, which is
triggered if the browser incorrectly performs the render-update

when changing the page through the javascript. Due to the incorrect
render-update, it generates the incorrect rendering output. In order
to detect the render-update bug, we build the render-update oracle
based on the following assumption:

Assumption: Initial-render is the reference (or answer)

rendering result of the page. The updated-render should
be the same as the reference render (i.e., initial-render) if their
pages are the same.

This assumption is based on the following two properties of the
browser rendering process: i) each page has exactly one rendering
output, and ii) the browser only performs the render-initial phase,
not the render-update when generating the initial-render. Based on
these properties, if the initial-render and the updated-render are
generated from the same page, they should be the same. If they are
di�erent, this implies that at least one of them is incorrect. In this
paper, the initial-render is always correct based on our assumption
because we focus on �nding the render-update bug, which can be
only triggered in render-update phase, not in render-initial phase.

To this end, the render-update oracle determines a render-update
bug when the updated-render and the initial-render are di�erent.

To be speci�c, the render-update oracle is

ℎA45 ← �=C46A0C8>= (ℎC4BC , 9 )

?8=8CA4 5 ← �D8;3%064 (ℎA45 )

A 8=8CA4 5 ← �=8C'4=34A (?8=8CA4 5 )

A4BD;C ← '4=34A�ℎ42: (A 8=8CA4 5 , A
D?30C4

C4BC ′
)

(4)

where (i) �=C46A0C8>=merges the HTML �leℎC4BC with the mutation
primitives 9 to generate the reference HTML �leℎA4 5 ; (ii)�D8;3%064

builds the page with ℎA4 5 ; (iii) �=8C'4=34A renders the page ?
8=8C
A4 5

to

draw the reference (or answer) render A 8=8C
A4 5

; and (iv) '4=34A�ℎ42:

checks whether A
D?30C4
C4BC ′

is equal as A 8=8C
A4 5

and determines the render-

update bug if they are di�erent.

Integrator. The integrator generates the reference HTML �le,
which is used to get the reference rendering result of the updated-

page ?
D?30C4
C4BC ′

. To do so, it exploits yielding, one of HTML rules
de�ned in HTML standard [10]:

Yielding: When the browser encounters the javascript while
parsing (or loading) an HTML �le, it blocks the parsing, executes
the javascript, and then resumes to parse the HTML �le.

By using this property, we can get an initial-render (i.e., reference

render) of the page, which is the same as ?
D?30C4
C4BC ′

. That is, the
integrator can make the reference HTML �le that can be used

to build the same page as ?
D?30C4
C4BC ′

without the render-update. To
be speci�c, if we execute the javascript right before the browser
�nishes building the page, we can make the browser block the
rendering process and change the page. After the page changes, the
browser performs the render-initial so that we can get the reference
render of the page without triggering render-update.

To do so, the integrator wraps the primitives with <script> tag
and then appends it to the test HTML �le to generate the refer-
ence HTML �le. By doing so, when the browser loads the reference
HTML �le, the browser loads the HTML �le and executes the mu-
tation primitives to update the page. Then, it �nishes building the
page and performs the render-initial to draw the reference render
of the page.

Render Checker. After the integrator produces the reference
render A 8=8C

A4 5
, the render-update oracle leverages the render checker

to determine render-update bug. The render checker compares two

rendering outputs, A
D?30C4
C4BC ′

and A 8=8C
A4 5

, and determines as render-

update bug if they are di�erent. To compare the rendering outputs,
we adopt the same image comparison algorithm (i.e., phash [13])
and con�guration used by R2Z2 [49] because the render-update bugs
are very similar to the rendering bugs hunted by R2Z2. It is worth
noting that other image comparison algorithms also can be used to
detect render-update bugs. Finally, if the render checker determines
there is a render-update bug, it generates the bug report.

5 IMPLEMENTATION

We implementedMetamong on top of R2Z2 [49] to detect render-
update bugs from modern browsers. The prototype of Metamong
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Table 1: The number of render-update bugs detected by each

oracle.

Browser # of Bugs R2Z2 LQC Render-update Oracle

Chrome 15 0 (0%) 3 (20.0%) 15 (100%)
Firefox 13 0 (0%) 9 (69.2%) 13 (100%)

Total 28 0 (0%) 12 (42.9%) 28 (100%)

can fuzz Chrome and Firefox browsers. For the HTML generator,
we leveraged Domato fuzzer [7], a state-of-the-art grammar-based
DOM fuzzer. We modi�ed Domato fuzzer to generate the HTML
�le (i.e., an initial test page) without animations and Javascript. In
order to implement the page mutator, we selected DOM/CSS APIs
changing the DOM tree and CSS style from the grammar of Domato
fuzzer. We modi�ed R2Z2’s fuzzing implementation to implement
the integrator of render-update oracle. For the render checker, we
adapt R2Z2’s image comparison implementation and used the same
image comparison algorithm and con�guration of R2Z2. In terms of
the implementation complexity,Metamong is implemented with
2300 lines of Python.

6 EVALUATION

We evaluateMetamong by answering the following research ques-
tions:
• RQ 1. CanMetamong detect the render-update bugs?
• RQ2.Whichmutation primitive is e�ective to �nd render-update
bugs?
• RQ 3. How many bugs hasMetamong found?
For evaluation, we used a 24-core server running Ubuntu 20.04,

with Intel Xeon(R) Gold 5118 (2.30GHz) CPUs and 512GB of RAM.

6.1 E�ectiveness of Render-Update Oracle

6.1.1 Recall of Render-Update Oracle. In order to show the e�ec-
tiveness of render-update oracle in detecting bugs, we compared the
render-update oracle against two di�erent oracles, R2Z2 [49] and
LQC [12]. To be speci�c, we �rst selected the popular web browsers,
Chrome and Firefox. Then, we collected the render-update bugs
which were already reported in Chrome and Firefox bug trackers.
From the Chrome bug tracker, we searched the render-update bugs
that were reported from 2021 to 2022 and obtained 15 render-update
bugs [14]. From the Firefox bug tracker, we searched the render-
update bugs that were reported from 2020 to 2022 and obtained
13 render-update bugs [15]. After we collected the render-update
bugs, we simpli�ed bugs for evaluation and ran three oracles to
check whether they can detect these render-update bugs. Then,
we setup the experiment environment for each oracle. To run
R2Z2, we provided the similar experiment setup as described in
its paper. We �rst selected a beta version of each bug as B and a
stable version released at the time of B as A. Then, we selected the
independently-developed browser as the reference browser (i.e., R),
where the version of R is the closest of B. To run LQC, we used
the same experiment setup asMetamong.

Table 1 describes the number of render-update bugs detected by
three oracles. LQC identi�ed three render-update bugs in Chrome
and nine in Firefox (i.e., the recall of LQC is 42.9%). However, it was
not able to detect 12 Chrome bugs and four Firefox bugs that were
triggered by DOM events (e.g., scroll) because LQC only allows to

mutate the DOM tree and CSS style to prevent false positives. On
the other hand, R2Z2 failed to detect any of the 28 render-update
bugs, resulting in a recall rate of 0.0%. This failure is largely due to
the following two reasons. Firstly, R2Z2 is speci�cally tailored to
detect "regression" bugs, and render-update bugs did not fall under
this category. Secondly, R2Z2 can only identify render-update bugs
when the browser interoperability conditions are met (i.e., Chrome
and Firefox generate the same rendering result for a given input).
In the case of Chrome render-update bugs, only two out of 15 were
regression bugs, and R2Z2 successfully detected the di�erences
between versions A and B for two bugs. However, R2Z2 failed to
detect two Chrome render-update bugs due to the unique design
variations between Chrome and Firefox, which made R2Z2 fail to
meet the browser interoperability conditions. Furthermore, R2Z2
failed to detect any of the Firefox render-update bugs because there
were no regression bugs. Lastly, the render-update oracle was able
to detect all of 28 render-update bugs (i.e., the recall of render-update
oracle is 100%). This demonstratesMetamong’s strong practical
capability in detecting render-update bugs.

Case Study: Chrome Issue #1222734. This bug is interesting
because Metamong was able to detect the bug and did not report
the false positive even though the reference render is incorrect ac-
cording to DOM/CSS speci�cations. In other words, even if A 8=8C

A4 5
is

incorrect from the perspective of DOM/CSS speci�cations, it is cor-
rect from the perspective of the render-update bug. This is because
the initial-render can be generated only by render-initial phase and
the render-update bug can be caused only by the incorrect behavior
of render-update phase (i.e., the origin of render-update bug). In
this respect, the initial-render can be used as the reference render-
ing result (i.e., A 8=8C

A4 5
) to determine the render-update bug, making

Metamong avoid the false positive. Besides,Metamong was able

to detect this bug because A
D?30C4
C4BC ′

is di�erent to A 8=8C
A4 5

. This case

study signi�es that even if the reference result is incorrect accord-
ing to DOM/CSS speci�cations,Metamong does not generate the
false positive and is able to detect the bug if render-update triggers
a render-update bug.

6.1.2 Accuracy of Render-Update Oracle. Ideally, the render-update
oracle should not trigger the false positive issue. This is because
the render-update oracle compares two rendering outputs that are
generated from two same pages where one is updated and the
other is not. As each page has exactly one rendering output, there
must be a render-update bug if two rendering outputs are di�erent.
Our claim can be supported by our evaluation testingMetamong

because all of the 21 render-update bugs reported by Metamong

were con�rmed by the developers of each browser. That is, we could
not �nd any false positive case while evaluatingMetamong.

The limitation of LQC is it cannot detect render-update bugs
which can be triggered by DOM events because it employs only
DOM node and CSS style mutation primitives to prevent the false
positive. In this respect, if LQC is employed to detect render-update
bugs triggered by DOM events, it will su�er from the false positive
issues. For example, Figure 8 illustrates a false positive case of LQC
that can be caused by the DOM event (i.e., scroll). In this example,
Chrome draws the correct rendered result (as shown in Figure 8b)
after executing the function update_page() which moves the text
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1 <!DOCTYPE html>

2 <script>

3 function update_page() { target.scrollTo(0, 50); }

4 </script>

5 <body><div id="target" style="height: 100px; overflow: auto;">

6 <div style="height: 800px; background: coral">Example</div>

7 </div></body>

(a) PoC HTML code

(b) Actual Result (Correct) (c) Reference Result of LQC

(Incorrect)

Figure 8: A false positive example of LQC with scrollmuta-

tion primitive.
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Figure 9: The average number of bugs triggered by each mu-

tation primitive on 100K HTML testcases across three exper-

iments.

False Positive 10 pixels upwards. The problem here is that LQC
does not consider the DOM event when generating the reference
result. As a result, LQC generates the incorrect reference result
(shown in Figure 8c) and triggers the false positive as both results
(i.e., Figure 8 and Figure 8c) are di�erent.

6.2 E�ectiveness of Page Mutator

The e�ectiveness of mutation primitives are important as they
are the key to trigger render-update bugs. To evaluate their impact,
we conducted three experiments measuring the number of bugs
triggered by each mutation primitive using the same set of 100,000
HTML test cases on both Chrome and Firefox. Figure 9 describes
the average number of render-update bugs for each mutation primi-
tive on Chrome and Firefox across three experiments. According
to this evaluation, Focus and Style delete are the best mutation
primitives triggering render-update bugs in Chrome and Firefox,
respectively. Node insert and Style delete are e�ective mutation
primitives on both browsers as they can change many parts of the
page. On the other hand, Attribute delete and scroll are the
worst mutation primitives triggering render-update bugs in Chrome
and Firefox, respectively. In this experiment, we were unable to
identify patterns of e�ective mutation primitives because the num-
ber of render-update bugs for varies depending on the browser. We
leave this as a future work.

1 <!DOCTYPE html>

2 <script>

3 function update_page() { document.styleSheets[0].deleteRule(0); }

4 </script>

5 <style>

6 #update { offset-path: path(’M 0 1 L -1 0’); }

7 #update { transform: translatez(0); }

8 #child {width: 100px; height: 100px; background: lightblue;}

9 </style>

10 <body><dl id="update"><div id="child"></div></dl></body>

(a) PoC HTML code.

(b) Before (c) After (Actual) (d) After (Expected)

Figure 10: A case study of Chrome Issue #1365255.

6.3 New Render-Update Bugs Discovered by
Metamong

To discover render-update bugs, we ran Metamong on Chrome 89
and Firefox 85, which were the latest browser versions at the time
of performing our experiment. Then we conducted an additional
experiment on the latest version of Chrome (i.e., Chrome 108) in
order to uncover more render-update bugs. During the �rst ex-
periment, Metamong found �ve and four render-update bugs in
Chrome 89 and Firefox 85, respectively, and total of nine render-
update bugs were con�rmed by each browser vendor. Furthermore,
it was con�rmed that �ve of the Chrome and two out of four Fire-
fox bugs were new render-update bugs. In additional experiment,
Metamong found 12 render-update bugs in Chrome 108, and the
Chrome developers con�rmed that total of 12 render-update bugs
were true and new render-update bugs.

To summarize, Metamong has found 17 and four render-update
bugs (21 in total) and 17 and 2 of them (19 in total) were new render-

update bugs in Chrome and Firefox, respectively. The list of 21
render-update bugs found byMetamong is shown in Table 2. All
of 21 render-update bugs were con�rmed by the developers of each
browser vendor, 19 of them were new render-update bugs, and �ve
of them were �xed so far, showing the e�fectiveness ofMetamong

for detecting render-update bugs. In addition, the Chrome devel-
oper has shown a positive reaction, mentioning that the design
of Metamong is interesting [9]. It is di�cult for us to clearly
measure how long it takes to �nd a certain vulnerability, as we
kept running Metamong and Metamong’s behavior (particularly
its mutation) is mostly random. Overall we ranMetamong for two
months, which includes the time to detect and analyze the bug as
well as updatingMetamong.

Case Study: Chrome Issue 1365255. This render-update bug
occurs when Chrome performs render-update on the node that
has the child node and the transform CSS style. Chrome should
update the node and its child node when the CSS style of the
node is changed. However, due to the performance optimization
on transform CSS style, Chrome only updates the node and does
not update the child node, triggering the render-update bug. The
snippet of a PoC code is shown in Figure 10a. First, Chrome opens
the PoC HTML code and draws the rendering output (Figure 10b).
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Table 2: The list of 21 render-update bugs found byMetamong in Chrome and Firefox.

Browser Issue ID Correct Incorrect New Fixed Description

Chrome

(89.0.4329.0)

#1154662 ✓ The dashed underline is incorrect after removing an

element.

Chrome

(89.0.4329.0)

#1162740 ✓ The text in <dl> moves to the wrong position after

removing a CSS rule "content".

Chrome

(89.0.4329.0)

#1163006 ✓ ✓ The <details> moves to a wrong position after remov-

ing CSS rules "column" and "position".

Chrome

(89.0.4329.0)

#1163031 ✓ The height of <dd> is larger than expected after remov-

ing a CSS rule "height".

Chrome

(89.0.4329.0)

#1164643 ✓ ✓ The position of <h4> is incorrect after adding a CSS

rule "position"

Chrome

(108.0.5305.0)

#1364376 ✓ The width of <keygen> does not change after removing

a CSS rule "border-style".

Chrome

(108.0.5305.0)

#1365243 ✓ ✓ The text is larger than expected after removing a CSS

rule "scale".

Chrome

(108.0.5305.0)

#1365244 ✓ The position of <dialog> is incorrect after removing a

CSS rule "backdrop-�lter".

Chrome

(108.0.5305.0)

#1365252 ✓ The size of <th> is incorrect after removing a CSS rule

"writing-mode".

Chrome

(108.0.5305.0)

#1365255 ✓ ✓ The border line of <�eldset> is not updated after re-

moving a CSS rule "o�set-path".

Chrome

(108.0.5305.0)

#1365746 ✓ The height of <�eldset> does not decrease after remov-

ing a CSS rule "margin-right".

Chrome

(108.0.5305.0)

#1366233 ✓ ✓ The shape of <q> is incorrect after removing a CSS rule

"font-weight".

Chrome

(108.0.5305.0)

#1366280 ✓ The height of <th> is incorrect after removing a CSS

rule "margin-left".

Chrome

(108.0.5305.0)

#1370936 ✓ The border line is incorrect after removing a CSS rule

"-webkit-border-end".

Chrome

(108.0.5305.0)

#1370962 ✓ The size of <table> is incorrect after removing a CSS

rule "@font-face".

Chrome

(108.0.5305.0)

#1370987 ✓ The position of quote is incorrect after removing an

element.

Chrome

(108.0.5305.0)

#1371003 ✓ The location of text is incorrect after adding an element.

Firefox

(85.0a1)

#1680232 ✓ The line moves to a wrong position after adding a CSS

rule "display".

Firefox

(85.0a1)

#1683814 ✓ The size of <dir> is bigger unexpectly after adding an

element.

Firefox

(85.0a1)

#1683820 The position of <dialog> is incorrect after adding an

element.

Firefox

(85.0a1)

#1684290 The position of <label> is incorrect after removing a

CSS rule "input".

Then, it executes the function update_page() to delete the CSS rule
#update {offset-path: path(’M 0 1 L -1 0’);}. The correct be-
havior is that Chrome removes the CSS rule from the <dl> node
and its child node <div> and performs render-update to update the
rendering output. The correct rendering output is shown in Fig-
ure 10d. However, as Chrome does not update the child node <div>,
it generates the incorrect rendering output (Figure 10c) introduced
by the render-update bug.

Figure 11 illustrates a potential negative consequence of this
render-update bug. Consider a scenario where a website is selling
a new laptop, and users can view the laptop image by clicking a
button. The intended correct behavior is once the button is clicked,
the CSS offset-path is removed and the laptop image should be
placed below the button (as depicted in Figure 11b). Unfortunately,
as illustrated in Figure 11a, Chrome fails to move the laptop image

due to the render-update bug, disturbing users from viewing the
laptop image.

7 RELATED WORK

Browser Layout Testing. Previous research has suggested testing
methods to aid web application developers in �nding cross-browser
incompatibilities in their web applications [29, 30, 43]. They dis-
covered cross-browser incompatibilities in web applications by
checking whether two independently-implemented browsers pro-
duce di�erent rendering outputs from the same page. They deter-
mine the bug if two browsers produce di�erent rendering outputs.
Note that, unlike the previous research, Metamong focuses on
detecting render-update bugs in web browsers, not in web applica-
tions. In addition, Metamong does not trigger any false positive
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(a) Actual Result (Incorrect). (b) Expected Result (Correct).

Figure 11: A possible negative consequence of the render-

update bug by Chrome Issue #1365255. The laptop image

should be placed below the button once clicked, but the image

does not move due to the bug.

issue, but the previous research su�ers from the false positive issue
due to benign cross-browser incompatibilities. Another previous
research has used the manually-implemented oracle with image
comparison technique to detect HTML presentation failures in web
applications [40, 41]. Note thatMetamong does not require man-
ual e�ort and domain knowledge to build the oracle which is the
key contribution of our paper. There is another work, R2Z2 [49],
which detects regression rendering bugs from web browsers. It
combines cross-browser testing, cross-version testing, and WPT
tests to avoid false positive issues. Nonetheless, it still su�ers from
the false positive issue due to the missing WPT tests. LQC [12] de-
tects render-update bugs in web browsers using di�erential testing.
It �rst updates the page, reloads the updated page, and compares
pages before and after reloading. It determines the bug if pages
before and after reloading are di�erent. However, this approach
cannot detect render-update bugs that DOM events can trigger due
to the characteristic of page reloading. Note thatMetamong can
detect render-update bugs triggered by DOM events, meaning better
practical ability in bug detection.

Browser Layout Veri�cation. Several works partially formalized
the browser layout algorithm [44–46]. They used static analysis
techniques to verify the overall implementation of the browser’s
rendering component. To do so, they translated the HTML and
CSS speci�cations into the formalized rules for the static analy-
sis. However, this approach has the critical limiation–writing the
formalized rules not only requires domain knowledge but also is
very labor-intensive and error-prone. In this respect, this approach
su�ers from the false positive issue when the formalized rules are
incorrect or insu�cient.

Semantic Bug Fuzzing. DiFuzzRTL [35] proposes a new coverage
metric to capture the states of an RTL design and detect CPU bugs.
R2Z2 [49] combines the cross-browser and cross-version testings
to detect the regression rendering bugs from the browser. Several
works �nd semantic bugs in Java Virtual Machine (JVM) implemen-
tations via di�erential testing [24, 27, 28]. Some studies leveraged
the fuzzing to �nd the semantic bugs from the deep learning li-
braries [32, 51]. [32] automatically infers the relational APIs to �nd
the inconsistencies from the deep learning libraries. [51] leverages
the open source to infer the API input parameter types for e�ective
deep learning library fuzzing. PGFuzz [37] proposes a policy-guided

fuzzer to detect policy violations from robotic vehicle control pro-
grams. FuzzOrigin [38] proposes a static origin tagging mechanism
to detect UXSS vulnerabilities in browsers.

8 DISCUSSION

Su�cient Number of Mutation Primitives. Metamong cur-
rently has three DOM and one CSS mutation primitives. Com-
pared to other DOM fuzzers such as Domato [7] and FreeDOM [53],
Metamong leverages a few number of DOM and CSS APIs. One
might think using a small number of APIs extremely limits the
bug �nding. However, while evaluating the recall of render-update
oracle (§6.1.1), we observed that all 28 render-update bugs can be
triggered byMetamong’s mutation primitives. This shows that the
current implementation of Metamong does not limit the render-
update bug �nding.

Lack of Guiding Methods. Metamong employs Domato fuzzer to
generate HTML �les. Domato is a grammar-based generation fuzzer
and it does not use guidance methods such as coverage-guiding for
testcase generation. Thus, it is possible that the render-update bug is
hidden deep in the browser’s rendering implementation and Domato
fuzzer cannot generate the HTML �le triggering the render-update
bug. However, the unsuitable guiding method can further disturb
�nding bugs. For instance, FreeDOM guided by coverage triggers 3.8X
fewer crashes in DOM fuzzing compared to its generation fuzzing.
Nonetheless, we think leveraging a suitable guiding approachwould
de�nitely enhanceMetamong’s bug-�nding capability. We leave
this as future work.

9 CONCLUSION

This paper proposedMetamong, a framework tailored for detect-
ing render-update bugs in web browsers without false positives.
Metamong consists of two key components: a page mutator, and
a render-update oracle. The page mutator generates the mutation
primitives changing the DOM tree and CSS styles, to trigger render-
update bugs. The render-update oracle exploits an HTML standard
rule, yielding, to detect render-update bugs without false positives.
With the prototype implementation ofMetamong, it discovered 19
new render-update bugs in Chrome and Firefox browsers without
false positives, demonstrating its e�ectiveness and practical ability
in �nding render-update bugs.

10 DATA AVAILABILITY

We disclosed the source code ofMetamong and as well as the data
used in this paper at https://�gshare.com/s/d3c228e614672f9aa811.
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