
EXPRACE: Exploiting Kernel Races through Raising Interrupts

Yoochan Lee
Seoul National University

yoochan10@snu.ac.kr

Changwoo Min
Virginia Tech

changwoo@vt.edu

Byoungyoung Lee ∗

Seoul National University
byoungyoung@snu.ac.kr

Abstract
A kernel data race is notoriously challenging to detect, re-
produce, and diagnose, mainly caused by nondeterministic
thread interleaving. The kernel data race has a critical secu-
rity implication since it often leads to memory corruption,
which can be abused to launch privilege escalation attacks.
Interestingly, due to the challenges above, the exploitation of
the kernel data race is also challenging. Specifically, we find
that some kernel races are nearly impossible to exploit due
to their unique requirement on execution orders, which are
almost impossible to happen without manual intervention.

This paper develops a generic exploitation technique
for kernel data races. To this end, we first analyze kernel
data races, which finds an intrinsic condition classifying
easy-to-exploit and hard-to-exploit races. Then we develop
EXPRACE, a generic race exploitation technique for mod-
ern kernels, including Linux, Microsoft Windows, and MAC
OS X. EXPRACE turns hard-to-exploit races into easy-to-
exploit races by manipulating an interrupt mechanism during
the exploitation. According to our evaluation with 10 real-
world hard-to-exploit races, EXPRACE was able to exploit
all of those within 10 to 118 seconds, while an exploitation
without EXPRACE failed for all given 24 hours.

1 Introduction

Data races are concurrency bugs, which occur when multiple
threads access the same memory location while at least one
access modifies the location. Without employing a proper syn-
chronization mechanism (such as spinlocks, mutexes, etc.),
the data race ends up with inconsistent results, severely harm-
ing the security and reliability of underlying systems.

Data races are notoriously difficult to detect, reproduce,
and diagnose because they are inherently non-deterministic,
caused by thread interleaving or scheduling. This unique char-
acteristic and challenge of data races motivate many stud-
ies [3, 7, 9, 18, 27, 30, 40, 50, 57, 65, 66] to focus on assisting

∗Corresponding author

CVE Kernel Ver. Race Type Crash Type PoC

CVE-2016-8655 < Linux 4.8.12 Single-var. Use-after-free ✔
CVE-2017-2636 < Linux 4.10.1 Single-var. Double-free ✔
CVE-2017-7533 < Linux 4.12.3 Single-var. Heap overflow ✔
CVE-2017-17712 < Linux 4.14.6 Single-var. Uninitialized use ✗
CVE-2019-11486 < Linux 5.0.8 Single-var. Use-after-free ✔

CVE-2017-15265 < Linux 4.13.8 Multi-var. Use-after-free ✗
CVE-2019-1999 < Linux 4.19.37 Multi-var. Use-after-free ▲
CVE-2019-2025 < Linux 4.19.6 Multi-var. Use-after-free ▲
CVE-2019-6974 < Linux 4.20.8 Multi-var. Use-after-free ✗
11eb85ec... < Linux 5.6 Multi-var. Use-after-free ✗
1a6084f8... < Linux 5.6 Multi-var. Use-after-free ✗
20f2e4c2... < Linux4.19.97 Multi-var. Use-after-free ✗
4842e98f... < Linux 4.4 Multi-var. Use-after-free ✗
da1b9564... < Linux 4.14 Multi-var. NULL deref. ✗
e20a2e9c... < Linux 4.19.32 Multi-var. Double-Free ✗

Table 1: Real-world kernel data races in Linux. ✔ denotes an exploit
is publicly available; ▲ denotes an exploit is publicly available
but requires kernel modification; ✗ denotes no publicly available
exploits.

software developers in detecting, reproducing, and diagnosing
race issues.

Notably, data races in the kernel can be abused to launch
privilege escalation attacks. Data races often lead to tra-
ditional memory corruptions, including buffer overflows,
double-free, use-after-free, etc. Hence, unprivileged users can
exploit the memory corruption issue caused by the kernel data
race to gain its privilege illegally.

Interestingly, due to the aforementioned challenges related
to races, the exploitation of kernel data races is also challeng-
ing. Specifically, race exploitation requires precisely control-
ling the thread interleaving, but the kernel does not offer such
a feature for users. Hence race exploitation in practice relies
on a brute-force attack – i.e., simply keeping trying to trigger
the race until success. Such a brute-force attack works for
some kernel races and has been leveraged by most race-based
privilege escalation attacks. For instance, as shown in Table 1,
exploits known to the public annotated with a checkmark (✔)
do so with the brute-force attack. However, we observe that

the same brute-force attack is not effective at all for some
types of kernel races (i.e., annotated with a triangle ▲).

In particular, we tested those hard-to-exploit cases, CVE-
2019-1999 [23], and CVE-2019-2025 [24]. We confirmed that
the brute-force exploitation fails, which tried 5 billion times
and 15 million times of exploitation for 24 hours (more details
in §7.1). It is worth noting that these two kernel races were
confirmed to be vulnerabilities by kernel developers, but such
confirmation is done by manually modifying the kernel – i.e.,
manually inserting a sleep function between racing memory
accesses in hopes that the success chance of a brute-force
attack increases. In other words, when those were confirmed,
the testing environment was contrived, which cannot clearly
state its exploitability in real-world.1

This paper proposes EXPRACE, a generic exploitation tech-
nique for kernel data races. To this end, we attempt to answer
the following two research questions regarding kernel races;
Q1: Why some kernel races are exploitable through a brute-
force attack, while others are nearly impossible to exploit?;
Q2: Would it be possible to develop a new exploitation tech-
nique that augments the exploitability of hard-to-exploit ker-
nel races?

To answer the first question, we dissect the kernel data
races into two categories – 1) a single-variable race and 2)
a multi-variable race – and study the exploitability of each
category. Our study found a specific set of multi-variable
races (named non-inclusive multi-variable races), where its
probability of successful brute-force exploitation is near zero.
Specifically, exploitation of non-inclusive multi-variable races
imposes a unique execution order to trigger, which is nearly
impossible to occur without using extra debugging features
(e.g., inserting a sleep or installing a breakpoint).

To answer the second question, we develop EXPRACE,
a generic exploitation technique for non-inclusive multi-
variable races. The key idea of EXPRACE is to keep raising
interrupts to alter kernel thread’s interleaving indirectly. This
allows EXPRACE to transform hard-to-exploit multi-variable
races into easy-to-exploit multi-variable races. Executing this
idea involves several challenges. First, how to raise an inter-
rupt from userspace? An interrupt mechanism is only control-
lable from the kernel, and clearly, it is not directly accessible
from userspace. Second, even if EXPRACE is somehow able
to raise an interrupt, how can it impact the thread interleaving
in a controlled way? Races occur by multiple threads running
on multiple CPU cores. It is unclear how to deliver such an
interrupt to a specific thread to alter the thread interleaving
for exploitation. Hence, we systematically analyze interrupt
mechanisms in modern kernels, including Linux, Microsoft
Windows, and Mac OS X. Then EXPRACE proposes four new
race exploitation methods, where each leverages a different
interrupt mechanism (i.e., rescheduling IPI, TLB shootdown

1The term ‘exploitability’ in this paper means the reproducibility of the
race, but we use ‘exploitability’ throughout the paper as precisely triggering
a race is an essential step to exploit race condition vulnerabilities.

IPI, membarrier IPI, and hardware interrupts).
In order to demonstrate the exploitation effectiveness, we

evaluated EXPRACE with 10 real-world multi-variable races
in Linux. Our evaluation results confirm that EXPRACE truly
transformed hard-to-exploit races into easy-to-exploit races.
While a brute-force attack without EXPRACE failed to exploit
all of those for 24 hours, a brute-force attack with EXPRACE
has successfully exploited all those 10. The time taken to suc-
ceed the exploitation varies depending on each exploitation
method and vulnerability, but it takes from 10 seconds to 118
seconds.

We note that a clear understanding of the exploitability is
the key for security risk assessment and management. In this
regard, many works proposing new exploitation techniques
(such as heap sprays [14, 51], ASLR breaking attacks [26],
return-oriented programming [48], data-oriented program-
ming [25], etc.) significantly impact and help to design secure
systems. We believe EXPRACE also sheds a light on kernel
race exploitation, which is a relatively under-explored vulner-
ability type but emerging threats.

To summarize, this paper makes the following contribu-
tions:

• Analysis of Race Exploitability. We analyzed kernel data
races and found an intrinsic condition inherent to each race
bug, classifying easy-to-exploit races and hard-to-exploit
races.

• Race Exploitation Methods. EXPRACE presents several
new race exploitation methods for modern OSes, includ-
ing Linux, Microsoft Windows, and Mac OS X, against
those hard-to-exploit races. EXPRACE indirectly induces
the kernel to raise various interrupts, which transforms the
hard-to-exploit races into easy-to-exploit races.

• Evaluation with Real-World Races. We used EXPRACE
to exploit ten hard-to-exploit real-world kernel races. Our
evaluation show that EXPRACE can exploit all of those
within 10 to 118 seconds, while a simple brute-force attack
without EXPRACE failed for all in given 24 hours.

The organization of this paper is as follows. §2 analyzes
the race exploitability, and §3 describes the problem scope
and research approaches of EXPRACE. Then §4 provides a
background to understand EXPRACE. §5 presents race ex-
ploitation techniques for the Linux kernel, and §6 presents for
Microsoft Windows and Mac OS X. §8 presents the discus-
sion on EXPRACE. §7 evaluates EXPRACE, and §9 discusses
the related work of this paper. §10 concludes the paper.

2 Exploitability of Kernel Data Races

A kernel data race is a concurrency bug in the kernel, which
happens due to improper synchronization of data in its con-
current accesses. Data races in the kernel are notoriously chal-
lenging to exploit because its runtime behavior is inherently

Control dependency Data dependency

(a) Single-variable race

User thr for Taskyy:User thr for Taskxx:

Kernel thr for Taskxx: Kernel thr for Taskyy:

Core 1 (C1C1)Core 0 (C0C0)

Syscallxx() Syscallyy()

 TyTy W(M)W(M)B

 R(M)R(M)C

 R(M)R(M)A

(c) Non-inclusive multi-variable race

(Tx ≥ TyTx ≥ Ty)

 TxTx

User thr for Taskyy:User thr for Taskxx:

Kernel thr for Taskxx: Kernel thr for Taskyy:

Core 1 (C1C1)Core 0 (C0C0)

Syscallxx() Syscallyy()

B

C

 TyTy

 W(M1)W(M1)

 W(M2)W(M2)

D R(M2)R(M2)

A R(M1)R(M1)

 TxTx

(b) Inclusive multi-variable race

(Tx < TyTx < Ty)

User thr for Taskyy:User thr for Taskxx:

Core 1 (C1C1)Core 0 (C0C0)

Syscallxx() Syscallyy()

Kernel thr for Taskyy:

A R(M1)R(M1)

D R(M2)R(M2)

 TyTy

Kernel thr for Taskxx:

 TxTx

 W(M1)W(M1)B

C W(M2)W(M2)

Figure 1: Categorization of kernel data races according to its execution order requirement. Tx and Ty denote the time taken between two
instructions in Syscallx and Syscally, respectively.

non-deterministic (e.g., impacted by core/thread scheduling
orders). Since it involves complex thread interleaving, it is
difficult to understand the root cause and reproduce for debug-
ging. This, in fact, becomes a critical hurdle for adversaries
who want to exploit data races, which is the key motivation
of this paper

In the following, we dive into details of data races from an
exploitation perspective. To this end, we first categorize data
races into two common types [30, 38], a single-variable race,
and a multi-variable race. Then we analyze the exploitability
of each race type to motivate this paper.

2.1 Single-Variable Race

A single variable race is a concurrency bug pattern that an-
other task violates atomicity over a single variable (but not
correctly enforced by the code) in one task.

An example of a single variable race is illustrated in Fig-
ure 1-(a), where two tasks (Taskx and Tasky

2) are running
on its own CPU core. These two tasks invoke Syscallx and
Syscally, respectively. Syscallx’s handler executes an in-
struction B , and Syscally’s handler executes two instructions
A and C . All these three instructions access the same, single
memory variable M. Under this setting, if B overwrites the
variable M in the middle of A and C (i.e., Ty, which denotes
the time taken between two instructions in Syscally), the read
operation in C would get a different value of M compared to
the value read in A . In other words, the correct behavior may
require the atomicity of M over Ty (i.e., the value of M should
not change over Ty), but such atomicity is violated due to B .
Exploiting Single-Variable Race. To exploit the single-
variable race, one needs to precisely control the execution
timing involving two kernel threads, where each kernel thread

2In this paper, Task can refer to both a user process (or a heavyweight
user process) or a user thread (or a lightweight user process) if not explicitly
stated. The reason why we use this neutral term Task is that many race cases
are working the same for both the process and thread. For those race cases
showing different restrictions, we will specifically mention which one we
refer to.

corresponds to Taskx and Tasky, respectively, so that the ex-
ecution order is in A ≫ B ≫ C (p ≫ q denotes p hap-
pens before q). Since there is no way to precisely control
kernel threads’ execution order due to the non-deterministic
scheduling behavior, brute-force attacks are typically the only
exploitation option in practice. In other words, the attacker
keeps invoking Syscallx and Syscally from user threads of
Taskx and Tasky, respectively, in hopes that B is executed
within Ty at some point.

Hence, the probability of successful exploitation (i.e.,
Psingle) is roughly Ty

TSyscallx
, where TSyscallx denotes the time

taken to handle each Syscallx. Here, we focus on capturing
the exploitation probability when invoking a single Syscally.
Thus, we assume that if Syscallx terminates earlier than
Syscally, the same Syscallx invocation keeps being per-
formed until Syscally terminates, which is still a typical
brute-force exploitation strategy. Please note that we do not
consider the case TSyscallx ≤ Ty, because in most of single
variable race condition, TSyscallx is bigger than Ty. Although
Psingle may seem low, it clearly implicates that the exploitation
is feasible with many trials. In fact, the goal of most adver-
saries is completed if taking over the system once. Thus the
brute-force exploitation is effective and sufficient to exploit a
single-variable race. Roughly interpreting the practical impli-
cation of Psingle, the maximum number of TSyscallx is about 1
M cycles, and Ty is about 10 cycles according to our evalua-
tion. Then the brute-force would certainly succeed if Syscally
can be invoked more than 100 K times, which can be mostly
completed within one minute. Taking the real-world exploits
as another example, available privilege escalation exploits
(including CVE-2017-7533 [45], CVE-2017-2636 [44], and
CVE-2016-8655 [43]) succeed the brute-force exploitation
ranging from 5 to 30 seconds.

2.2 Multi-Variable Race
A multi- variable race violates the atomicity involving mul-
tiple variables. Taking the example in Figure 1-(b), suppose
instruction A and B access the variable M1, and instruction

C and D access the variable M2. In this case, if C overwrites
M2 in the middle of A and D (i.e., Ty), D would get different
M2 compared to the case not overwritten by C , leading to the
atomicity violation. Here, the key difference from a single
variable race is that such an atomicity violation involves mul-
tiple variables. Thus, in turn, the atomicity violation condition
imposes a more strict execution order: A ≫ B ≫ C ≫ D .

We note that it is reported that 34% of data races are multi-
variable races [38]. Particularly focusing on races in the ker-
nel, we suspect this is related to the fact that the kernel often
accesses the data in the following two steps, where each step
involves its own race variable: (i) the kernel first searches
for a location (i.e., a virtual address) holding data of interest.
This search process typically involves enumerating over a
well-defined data structure, such as a list, tree, etc.; (ii) once
identifying the location, the kernel either fetches the data (i.e.,
a read operation) or updates the data (i.e., a write operation).
Challenge: Exploiting Multi-Variable Race. Similar to ex-
ploiting the single-variable race, the best exploitation strategy
would be brute-forcing the multi-variable race. In other words,
the attacker keeps invoking Syscallx and Syscally in hopes
that the timeline of Tx (in Taskx) is placed within Ty (in Tasky).
Here, Tx denotes the time taken between two instructions in
Syscallx. As such, the probability of successful exploitation
(denoted as Pmulti) would roughly be like below:

Pmulti =

{
Ty−Tx

TSyscallx
if Tx < Ty

0 if Tx ≥ Ty.

This probability model assumes that if Syscallx terminates
earlier than Syscally, the same Syscallx keeps invoked to
complete the brute-force attack strategy (the opposite case is
also possible, but the probabilistic model is roughly the same).
If Tx < Ty (depicted in Figure 1-b), Pmulti is that Tx’s timeline
is completely overlapped by that of Ty while running each
Syscally. Compared to Psingle, this success probability would
not be much different from the attacker’s perspective – as we
mentioned before, a typical goal of an adversary is to take
over the system just once.

On the contrary, if Tx ≥ Ty (depicted in Figure 1-c), Pmulti
is near zero with brute force. That is because it is virtually
impossible to satisfy both execution orders when Tx ≥ Ty: A
≫ B and C ≫ D .

As a result, security researchers who report a multi-variable
race vulnerability often use an extra debugging feature to
confirm the exploitability (i.e., making the proof-of-concept
exploit similar to when Tx < Ty). However, such an extra de-
bugging feature cannot be used from userspace, so such a
proof-of-concept exploit is far from confirming the real-world
exploitability. For instance, to confirm CVE-2019-1999 [23]
and CVE-2019-2025 [24], researchers have manually inserted
a sleep function between A and D (i.e., modified the kernel
code) to increase Ty intentionally. Another example is to in-
tentionally install a breakpoint between A and D , artificially

 Environment Setting

 TxTx

User thr for Taskyy :User thr for Taskxx :

Kernel thr for Taskxx :

ioctl(fd, SND_SEQ_CREATE_PORT);

kfree(port);

Kernel thr for Taskyy :

list_for_each_entry(... p->list)) {
 if (p->addr.port == input) {
 port = p;

list_add_tail(&port->list, &p->list);

strlcpy(port->name, info->name,
 sizeof(port->name));

AB

DC

Race-stage

1 Create two tasks

Initialization-stage

thread/fork

Taskxx Taskyy

(≈≈ 35)

Core 1 (C1C1)Core 0 (C0C0)

 TyTy

port = kzalloc();

(≈≈ 450)

ioctl(fd, SND_SEQ_DELETE_PORT);

2

fd = open("/dev/snd/seq”)

Figure 2: A simplified multi-variable race: CVE-2017-15265

enforcing the execution orders. Note that above mentioned
debugging methods are also used in automated race detection
or fuzzing systems such as [19, 27, 29].

In the following, we use a real-world multi-variable race
vulnerability, CVE-2017-15265, to clearly describe why this
case is nearly impossible to exploit in practice.

Real-world Multi-Variable Race: CVE-2017-15265.
CVE-2017-15265 is a multi-variable race condition in the
Linux kernel’s sound driver (illustrated in Figure 2). In this
race condition, we assume that there are two tasks, Taskx and
Tasky (as shown in 1), where Taskx and Tasky can be either
the same process (i.e., one is created by pthread_create()
from another) or different processes (i.e., created through
fork()).

Then either Taskx or Tasky (or both if Taskx and Tasky are
different processes) opens the sound driver to get its file de-
scriptor (i.e., 2). Using this file descriptor, Tasky requests
to allocate a new port by invoking ioctl() with a create
command (i.e., SND_SEQ_CREATE_PORT). In response to this
allocation request, the kernel thread for Tasky allocates a
new buffer (i.e., port) and then inserts that new buffer to
the list (i.e., p->list), which shown in A . Then the buffer
(i.e., port->name) is initialized as user input in D .

Simultaneously, Taskx attempts to free the port, which is
allocated by Tasky through ioctl()with a free command (i.e.,
SND_SEQ_DELETE_PORT). In response to the free request, the
kernel thread for Taskx finds the corresponding buffer (i.e.,
port) from the list (i.e., p->list), which was also referenced
by Tasky (B). Then it frees the buffer (C).

Suppose these two tasks perform the behaviors above. In
that case, it may result in a multi-variable race, which involves
the following two variables: i) p->list, which is accessed by
A and B , and ii) port, which is accessed by C and D . More
specifically, the atomicity is violated if the execution order
follows A ≫ B ≫ C ≫ D . Under this execution order, Tasky
assumes that when it invokes D , port is active. However, port
is already freed by Taskx since no synchronization method,
such as spinlock is used to retain port. Therefore, Tasky uses
port after being freed, resulting in a well-known memory

corruption issue, use-after-free.
To fully exploit this vulnerability, we need to trigger the use-

after-free vulnerability three times. We first spray the file
pointers through msgsnd(). Next, we trigger the vulnerability
to partially overwrite the struct snd_seq_prioq *tickq
within struct snd_seq_queue to leak the sprayed
struct file pointer. Then, we trigger the vulnerabil-
ity to overwrite struct iovec [52] to perform the arbitrarily
address read attack, which reads struct *f_cred within
struct file. Finally, we trigger the vulnerability to
overwrite struct iovec once more to perform the arbi-
trary address write with the value zero, which eventually
overwrites the root privilege to the credential structure
(i.e., struct cred). This completes the privilege escalation
attack.

However, exploiting CVE-2017-15265 through bruteforc-
ing is virtually infeasible because Pmulti is zero when Tx > Ty.
More specifically, we observed that Tx is about 12 times longer
than Ty, according to our evaluation (§7.1), because there are
many instructions executed in between B and C . Our eval-
uation also has shown that the brute-force exploitation fails
even after trying for 24 hours, confirming that it is nearly
impossible to meet the violation execution order.

3 Problem Scope and Research Approaches

3.1 Problem Scope
This paper proposes EXPRACE, which aims at developing
a practical exploitation method for a non-inclusive multi-
variable race (i.e., when Tx > Ty as shown in §2). EXPRACE
assumes a typical privilege escalation attack scenario—
escalating its privilege from the user to the kernel privilege,
where an adversary already has access to the user privilege
so that she/he can invoke system calls that an underlying ker-
nel provides. As such, EXPRACE does not assume that the
adversary has the kernel privilege, meaning that the adversary
cannot leverage any kernel debugging features. Under this as-
sumption, EXPRACE develops user-level applications which
are designated to attack race issues. In particular, EXPRACE
presents exploitation methods for such race issues in the mod-
ern kernel, including Linux (§5), Microsoft Windows (§6.1),
and Mac OS X (§6.2).

A privilege escalation attack exploiting a race vulnerability
mostly takes the following two steps: 1) triggering a race,
which leads to memory corruption (such as buffer overflows,
double-free, use-after-free, etc.); 2) exploiting a memory cor-
ruption, which accordingly hijacks the control-flow (such as
ROP attacks [48]) or data-flow (such as DOP attacks [25]) to
escalate the privilege eventually. We focus on the first step,
triggering the race, and we do not cover the second step, ex-
ploiting memory corruption. This is because the second step
is not related to generic race issues but related to an exploita-
tion technique for a specific memory corruption issue studied

User thr for Taskyy:User thr for Taskxx:

Kernel thr for Taskxx: Kernel thr for Taskyy:

Core 1 (C1C1)Core 0 (C0C0)

Syscallxx() Syscallyy()

D R(M2)R(M2)

User thr for Taskintint :

Kernel thr for Taskintint :

Core 2 (C2C2)

Syscallintint()

 TxTx

C W(M2)W(M2)

 W(M1)W(M1)B
Send interrupt to C1C1Interrupt

handler Ty′Ty′ TETE

 TyTy

A R(M1)R(M1)

Control dependency Data dependency

Figure 3: A research approach of EXPRACE to exploit a non-
inclusive multi-variable race. Using Taskint , EXPRACE indirectly
causes the kernel to raise an interrupt, which in turn enlarges the
original Ty and thus transformed into exploiting an inclusive multi-
variable race.

by many previous works [14, 25, 48, 51, 64].

3.2 Research Approaches
The key insight behind EXPRACE is in intentionally enlarging
Ty in order to transform the hard-to-exploit non-inclusive
multi-variable race into the easy-to-exploit inclusive multi-
variable race (illustrated in Figure 3). To this end, EXPRACE
attempts to enlarge Ty by raising an interrupt. Specifically, Ty
can be enlarged if following two conditions meet: 1) correct
interrupt destination: an interrupt should be delivered to the
CPU core running the kernel thread of Tasky; and 2) precise
interrupt timing: an interrupt should be delivered when the
kernel thread of Tasky executes an instruction between A
and D ; If these two conditions were met, the core received
the interrupt will switch to the interrupt handler (so as to
immediately handle the interrupt), and after completing the
interrupt handling, that core will switch back to the kernel
thread of Tasky. As a result, due to the time handling the
interrupt (annotated as TE), the original Ty will be enlarged.
We denote such an enlarged time window as Ty′ such that
Ty′ = Ty +TE , and we call Ty′ as a race window.

To clearly understand the theoretical aspect of this exploita-
tion method, we model the probability of successful exploita-
tion as PEXPRACE

multi . This probability is modeled under the as-
sumption that EXPRACE can control that the interrupt can
be delivered to the destined core. We further assume that for
each Syscally invocation, both Syscallx and Syscallint kept
being executed without any noise.

PEXPRACE
multi =

Ty
TSyscallint

if TSyscallx ≤ Ty′

Ty
TSyscallint

∗ Ty′−Tx

TSyscallx
if TSyscallx > Ty′ and Tx < Ty′

0 if TSyscallx > Ty′ and Tx ≥ Ty′ .

For the first case (i.e., TSyscallx ≤ Ty′), the exploitation
would be successful if an interrupt is raised within Ty, be-

cause Tx is always overlapped within the race window Ty′ . For
the second case (i.e., TSyscallx > Ty′ and Tx < Ty′), following
two events should occur together to be a successful exploit: i)
an interrupt is raised within Ty and ii) Tx is overlapped with
the enlarged race window Ty′ during each Syscallx execution.
For the last case (i.e., TSyscallx > Ty′ and Tx < Ty′), the proba-
bility is zero because Tx is too large to be overlapped within
the extended race window, so the race would never occur.

Research Challenges. Since an interrupt mechanism is only
controllable from the kernel and thus non-controllable from
the user, following research challenges are arising to accom-
plish EXPRACE. First, how to raise an interrupt which can
be used with user privileges and affect kernel mode execu-
tion? There is no direct way to raise an interrupt since modern
kernels limit user’s control over interrupts. Moreover, there
are many different types of interrupts (from IPI to hardware
interrupts), and we do not know if any of those are control-
lable at some extent by users. Second, suppose EXPRACE is
somehow able to raise an interrupt, but how does EXPRACE
deliver the interrupt to the destined core? Modern kernels
are heavily optimizing its interrupt handling mechanism, as
it is very critical to its runtime responsiveness. As such, its
core affinity with respect to interrupt handling can be very
different for each type of interrupt, challenging EXPRACE for
exploiting non-inclusive multi-variable races.

4 Interrupt Handling in Linux

The exploitation mechanism of EXPRACE highly depends on
how it triggers an interrupt. Hence, this section provides the
necessary background on the interrupt handling mechanism
before presenting EXPRACE’s exploitation methods using an
indirect interrupt raising mechanism (§5). Specifically, we
describe the basic mechanism of interrupts and its different
types in this section. Note that most of the descriptions in
this section are Linux specific. Since its general working
mechanism is similar in other OSes, we will clearly state
its differences when describing the exploitation methods for
non-Linux systems in §6.

An interrupt is an input signal delivered to the processor,
notifying an event that requires immediate attention. As such,
an interrupt diverts the normal execution flow since a CPU
core, which received the interrupt, first handles the interrupt
after temporarily stopping the execution. While there are
many different types of interrupts, we focus on hardware in-
terrupts and inter processor interrupts (IPIs), which are the
most relevant to EXPRACE’s exploitation techniques. Hard-
ware interrupt request (IRQ) is an electric signal sent from
an external hardware device to a processor through IO-APIC.
This facilitates communication with operating systems. Inter
Processor Interrupt (IPI) is a special type of an interrupt in
multi-processor systems, which delivers the command from
a CPU core to another. In Linux, there are several different

Method Relation b/w
Taskx & Tasky

User functions
to send an interrupt

Metadata determining
a core to receive interrupts

Resched IPI
thread or
process

sched_setaffinity(),
read() – write()

cpu_set_t *mask,
Wait process’s core affinity

Func Call IPI
(TLB shootdown) process

mprotect(),
munmap()

struct mm_struct’s
cpu_bitmap

Func Call IPI
(membarrier) process membarrier()

struct mm_struct’s
membarrier_state

HW interrupt
thread or
process

Send request to a device
HW interrupt’s

affinity

Table 2: A list of EXPRACE’s exploitation methods in Linux

types of IPIs, rescheduling IPI, wake-up IPI, stop IPI, function
call IPI, etc., and each IPI transfers its own command across
CPU cores. Similar to the hardware interrupt, upon receiving
the IPI the respected CPU core immediately starts processing
the IPI.

It is worth noting that both hardware interrupts and IPIs
cannot be raised from user-level code, which we attempt to
address in the next section (§5).

5 Exploiting Kernel Races in Linux

This section proposes EXPRACE, a new race exploitation tech-
nique, which extends the race window by indirectly raising in-
terrupts. The rest of this section presents various exploitation
methods, particularly focusing on Linux systems: (i) using
reschedule IPI (§5.1); (ii) using non-reschedule IPI (TLB
Shootdown IPI (§5.2.1) and membarrier IPI (§5.2.2)); and
(iii) using hardware interrupts (§5.3).

For each IPI method, we first briefly introduce its basic
working mechanism. Then we present our technique to send
a corresponding IPI from the user-space. Lastly, we describe
step-by-step guides to extend the race window for race ex-
ploitation.

5.1 Reschedule IPI

Reschedule IPI sends a rescheduling request from one core
to another. Depending on which preemption mode the kernel
has been configured, the responsive behavior is different. If
CONFIG_PREEMPT [16] option is enabled, the core received an
IPI immediately performs the rescheduling unless preemp-
tion is not explicitly forbidden through preempt_disable(),
which in turn raises the context switch to another process.
Otherwise, the rescheduling will be deferred until the task
(running on the core which received the IPI) either yields the
schedule voluntarily or reaches a pre-configured preemption
point. However, this option is not affecting the result of our
attack.
Sending Reschedule IPI from Userspace. Resched-
ule IPI is the IPI sent by the internal kernel function,
smp_send_reschedule(). smp_send_reschedule() takes an

 TETE

IPI handler:

reschedule()

 TyTy

 Ty′Ty′

 TyTy

Instruction 1

Kernel thr for Taskyy :

Core 0 (C0C0)

Instruction 4

smp_send_reschedule()

User thr for Taskxx :

Kernel thr for Taskxx :

User thr for Taskyy :

Kernel thr for Taskyy :

Core 1 (C1C1) Core 2 (C2C2)

Race-stage

Instruction 2

Instruction 3

sched_setaffinity(C1C1)B

D

E

Rescheduling IPI to C1C1 C

F

Kernel thr for Taskintint :

User thr for Taskintint :

User thr for Taskintint :

Initialization-stage

 Create three tasks

fork/threadfork/thread

1 2 Pinning each task

sched_setaffintiy(C1C1)

sched_setaffintiy(C2C2)

sched_setaffintiy(C0C0)

Taskxx

Taskxx

Taskyy

Taskyy

TaskintintTaskintint

 TxTx

A Syscallxx() A Syscallyy()

Figure 4: EXPRACE’s exploitation method using Reschedule IPI

argument cpu, which specifies which core should receive the
IPI.

We found two different methods to trigger
smp_send_reschedule() from the user space in a con-
trolled way (i.e., specifying a specific core or task). One
method is to invoke the sched_setaffinity() syscall. This
syscall takes an argument pid and mask, which eventually
sets cpu of smp_send_reschedule() as a core running a
process with the specified pid.

Another method is through waking up a waiting thread,
which can be done as follows: 1) assign a specific core affinity
to task A and change the thread’s process state to waiting
through a syscall such as read(), and; 2) wakes up the waiting
thread from task B through a syscall such as write(). The
kernel then changes task A’s process state waiting to running
and sends a reschedule IPI to the core, which thread A has an
affinity.

Although both methods have the same result that sending
rescheduling IPI to a specific core, the first method yields
better performance than the second method for the two rea-
sons. First, the wait-wake method should use two processes
for sending IPI, but the method using sched_setaffintiy()
uses one process. Second, the sched_setaffintiy() method
can send more IPIs during the same time period than the
wait-wake method. More specifically, because the wake pro-
cess must wake after the wait process is completely waiting,
however, the wake process doesn’t have knowledge about
wait process’s process state immediately; it needs a time for
synchronization.
Extending Race Window with Reschedule IPI. Using
reschedule IPI, a race window can be extended with the fol-
lowing steps, as shown in Figure 4 (simplified implementa-
tion code is shown in Figure A.1). First, we create three tasks
(Taskx, Tasky, Taskint), where Taskx and Taskint can be either
a child process or concurrent thread of Tasky, respectively
(shown in 1). Taskx and Tasky will be used to invoke two
racy syscalls (i.e., Syscallx and Syscally), and these two
syscalls are assumed to raise a data race. Taskint will be used
to send the reschedule IPI to C1. Note that we assume an

attacker has full controls over all these user-level three tasks.
Next, each task is pinned to a specific core (i.e., Taskx is

pinned to C0, Tasky to C1, and Taskint to C2) by invoking
sched_setaffinity() (2). Each task is pinned to a different
core so as to avoid interference by each other, thereby easily
enlarging the race window. After that, Taskx and Tasky invoke
a race-raising syscall, i.e., Syscallx by Taskx and Syscally
by Tasky (A). Then Taskint invokes sched_setaffinity(C1)

(B). This makes the kernel to (i) migrate Taskint from C2’s
run queue to C1’s run queue and (ii) send a reschedule IPI to
C1 (C).

At this moment, if C1 receives the reschedule IPI when it
was executing any instruction within the race window (i.e.,
within Ty), C1 stops executing Tasky to handle the IPI (D).
After handling the IPI, it performs a context switch to Taskint
because this is what is instructed by the IPI (E). As a result,
the race window, Ty, is extended until Taskint is switched out,
and Tasky is scheduled in again (F).

5.2 Non-Reschedule IPI
Non-reschedule IPI refers to an IPI which is not related to
rescheduling. Non-reschedule IPI can be raised to send the
following commands: 1) TLB management and 2) memory
barriers. We found race-window extending methods using
either TLB management (§5.2.1) or memory barriers (§5.2.2),
as we describe next.

5.2.1 TLB Shootdown IPI

Translation Lookaside Buffer (TLB) is a cache for translating
an address from virtual to physical. Since each CPU core has
its own TLB, all TLB entries across different cores should be
synchronized in multi-processor systems. Otherwise, incor-
rect translation may be performed by the core, which refers
to outdated TLB entries (i.e., one core updates access per-
missions or release the memory page, but such an update is
not accordingly synchronized with other cores’ TLB entries).
As such, modern operating systems implement a TLB shoot-
down mechanism to ensure that TLB entries are synchronized
across different cores.

In order to implement the TLB shootdown mechanism, x86-
based operating systems rely on TLB shootdown IPI 3. More
specifically, since the kernel code running on one CPU core
cannot directly flush the TLB of other CPU cores, it sends
TLB shootdown IPI to other CPU cores. Once receiving the
IPI, the recipient CPU core immediately stops the currently
running task and flushes the TLB such that it does not refer
to outdated TLB entries.

More specifically, if any page table entry is to be updated
by a CPU core, the kernel has to send IPI to other CPU cores

3Not all architectures rely on IPI to implement the TLB shootdown. For
instance, ARM supports the tlbi instruction, which flushes the TLB of all
CPU cores.

Instruction 2

Instruction 3

Initialization-stage

 Create three tasks

threadfork

1 2 Pinning each task 3 Allocate memory

 = mmap(0, 4096, 3, …)
sched_setaffintiy(C1C1)

sched_setaffintiy(C2C2)

sched_setaffintiy(C0C0)

User thr for Taskxx :

Kernel thr for Taskxx :

User thr for Taskyy :

Core 0 (C0C0) Core 1 (C1C1) Core 2 (C2C2)

Race-stage

Instruction 1

Instruction 4

smp_function_call_single()

7

Kernel thr for Taskyy :

Kernel thr for Taskyy :

IPI handler:
native_flush_tlb

_one_user()

mprotect(, 4096, 1)B

D

Kernel thr for Taskintint :

User thr for Taskintint :

Taskyy or Taskintint

TaskintintTaskintint

 TxTx

 TyTy

 TETE

 Ty′Ty′

 TyTy

A Syscallxx() A Syscallyy()

Taskxx

Taskxx

Taskyy

Taskyy

Function call IPI to C1C1C

Figure 5: EXPRACE’s exploitation method using TLB shootdown
IPI

having the same entry. Thus, the kernel refers to cpu_bitmap
in mm_struct, which has the list of cores that may have the
same page table entry [2].
Sending TLB Shootdown IPI from Userspace. From
userspace, TLB shootdown can be triggered through syscalls
that update the page table, such as mprotect() or munmap().
These syscalls first flush the TLB of the currently running
CPU core, and then send TLB shootdown IPI to other CPU
cores. Note that the IPI will be sent to the CPU cores, which
may have out-dated TLB entries as the kernel maintains the
information on which CPU cores may have out-dated TLBs
(i.e., cpu_bitmap in mm_struct).
Extending Race Window with TLB Shootdown IPI.
Leveraging TLB shootdown IPI, the race window can be
extended through the following steps, as shown in Figure 5
(simplified implementation code is shown in Figure A.2).
First, three tasks, Taskx, Tasky, and Taskint are created (shown
in 1), where Taskx should be the child process of Tasky and
Taskint should be a concurrent thread of Tasky. Taskx and
Tasky are for invoking race-triggering syscalls, Syscallx and
Syscally, respectively, and Taskint is for sending the TLB
shootdown IPI.

Note that Taskx and Tasky must not be the same process
(i.e., created through fork(), not through pthread_create()).
This is because Taskx and Tasky should not refer to the same
mm_struct. Also, using fork() ensures that Taskx and Tasky
have their own copy of mm_struct. If Taskx and Tasky are the
same processes (but different threads), they would reference
the same mm_struct. In this case, cpu_bitmap is set for both
Taskx and Tasky, so IPI will be sent to both C0 (the core
running Taskx) and C1 (the core running Tasky). For a similar
reason, Tasky and Taskint should be the same process.

Next, each task is pinned to different cores using
sched_setaffinity(), i.e., Taskx is pinned to C0, Tasky to
C1, and Taskint to C2 (2). Then either Tasky or Taskint allo-
cates a memory page (say M) using mmap(), which will be
used to raise the TLB shootdown (3).

After that, Taskx and Tasky invoke race-raising syscalls,
Syscallx, and Syscally, respectively (A). At this moment, if

Initialization-stage

membarrier(REGISTER)

3 Register task

Instruction 1

Instruction 4

smp_function_call_single()

7

User thr for Taskyy :

Kernel thr for Taskyy :

Kernel thr for Taskyy :

Core 1 (C1C1) Core 2 (C2C2)

Race-stage

IPI handler:

ipi_mb()

membarrier(EXPEDITED)B

D

Kernel thr for Taskintint :

User thr for Taskintint :

C Function call IPI to C1C1

 Create three tasks

threadfork

1 2 Pinning each task

sched_setaffintiy(C1C1)

sched_setaffintiy(C2C2)

sched_setaffintiy(C0C0)

Taskxx

Taskxx

Taskyy

Taskyy

TaskintintTaskintint

Taskyy or Taskintint

 TyTy

 TETE

 Ty′Ty′

Instruction 2

Instruction 3

User thr for Taskxx :

Kernel thr for Taskxx :

Core 0 (C0C0)

 TxTx

A Syscallxx() A Syscallyy()

 TyTy

Figure 6: EXPRACE’s exploitation method using membarrier IPI

Taskint modifies the permission of the previously allocated
memory page (i.e., M) using mprotect() (B), the kernel
first flushes the TLB of C2. Moreover, the kernel also sends
a function call IPI to C1 since C1 is set in cpu_bitmap in
struct mm_struct for the M (C). If C1 receives the func-
tion call IPI when executing the race window (i.e., within
Ty), C1 immediately stops executing Tasky and starts han-
dling IPI (D). As a result, the race window is extended
until the end of IPI handling (which is performed through
native_flush_tlb_one_user()).

5.2.2 Memory Barrier IPI

membarrier in Linux is a syscall, controlling the memory
access orders in multi-processor systems. Since membarrier
needs to activate a memory barrier on specific threads, it relies
on an IPI mechanism to notify specific cores running those
threads.
Sending Memory Barrier IPI from Userspace. Unlike
other IPIs that we introduced before, the Linux kernel pro-
vides the syscall interface membarrier, which sends the mem-
ory barrier IPI from the user space. Thus, a user task can
invoke the syscall membarrier to deliver the memory barrier
IPI.
Extending Race Window with Memory Barrier IPI. In or-
der to extend the race window, we utilize membarrier syscalls
in the following steps as shown in Figure 6 (implementation
code is shown in Figure A.3). First, two tasks, Taskx and
Tasky, are created (which will execute race-raising syscalls)
as well as Taskint to send Memory Barrier IPI (shown in 1).
Here, since Taskx and Tasky must have different mm, Taskx is
created through fork() from Tasky. On the contrary, since
Tasky and Taskint must have the same mm, Taskint is created
through pthread_create() from Tasky. Next, each task is
pinned to its own core using sched_setaffinity() (2). Then
Tasky or Taskint invokes the membarrier syscall to register the
process to use memory barrier (3).
Taskx and Tasky invoke race-raising syscalls, Syscallx,

and Syscally, respectively (A). After that, as Taskint in-
voke the membarrier syscall with expedited option (B), the

Initialization-stage

 Create three tasks Pinning each task

$ cat /proc/irq/122/smp_affinity
> 002 = Core 1

 Check IRQ affinity

Instruction 1

Instruction 4

ISR
ethernet
device

server

req

res

HW

interrupt

1 2 3

User thr for Taskyy :

Kernel thr for Taskyy :

Kernel thr for Taskyy :

Core 1 (C1C1) Core 2 (C2C2)

Race-stage

req

sk = socket()
connect(sk)B

C

D

User thr for Taskintint :

 TyTy

fork/threadfork/thread

sched_setaffintiy(C1C1)

sched_setaffintiy(C2C2)

sched_setaffintiy(C0C0)

Taskxx

Taskxx

Taskyy

Taskyy

TaskintintTaskintint

Instruction 2

Instruction 3

User thr for Taskxx :

Kernel thr for Taskxx :

Core 0 (C0C0)

 TxTx

A Syscallxx() A Syscallyy()

to C1C1

 TyTy

 TETE
 Ty′Ty′

Figure 7: EXPRACE’s exploitation method using HW interrupts

kernel sends the membarrier IPI to C1 (C). This is be-
cause Tasky (which is running on C1) reference the same
struct mm_struct as Taskint . Once receiving the membarrier
IPI, Tasky is switched out from C1 to handle the IPI through
ipi_mb() (D). If this IPI is delivered when executing Ty, the
race window is extended.

5.3 Hardware Interrupts
Hardware interrupt request (IRQ) is an electric signal sent
from an external hardware device to a processor through IO-
APIC. This facilitates communication with operating systems.
Sending Hardware Interrupts from Userspace. If the IRQ
is issued, an interrupt controller delivers the interrupt to a cer-
tain CPU core to handle the interrupt, which in turn executes
an interrupt service routine (ISR). The interrupt controller al-
lows the kernel to specify which CPU core is responsible for
which interrupt through bit masking. This allows the kernel to
optimize the performance as it directly delivers an interrupt
to a dedicated core instead of selecting the core using some
other algorithm (e.g., a round-robin).

In Linux, such a specification can be checked by reading the
file in procfs, /proc/irq/#/smp_affinity, where # denotes
an IRQ number. Taking an example in our experimental envi-
ronment, the default kernel configuration is that the enp2s0
device is assigned to IRQ 122, which is destined to be served
by CPU core 11.

This IRQ cannot be sent from userspace directly because it
requires the kernel privilege. Therefore, we devise an indirect
way to send the IRQ from userspace: i) send a request from
userspace to a device; ii) in response to the request, the de-
vice issues the IRQ to the kernel. We found several different
indirect ways: 1) send TCP request to the ethernet device and
the device issues IRQ to the kernel to process the packet;
2) send disk request using file read or write, disk controller
device(e.g., AHCI device) issues IRQ to the kernel to signal
that a disk request has been fulfilled.
Extending Race Window with Hardware Interrupts. The
race window can be extended with the following steps, as
shown in Figure 7 (implementation code is shown in Fig-
ure A.5). First, two tasks, Taskx and Tasky, are created (which

OS Reschedule IPI Function Call IPI
(TLB shootdown) HW interrupt

Windows ✔ ✔ ✔
OS X ✗ ✔ ✗

Table 3: EXPRACE’s exploitation summary on other OSes

will execute race-raising syscalls) as well as Taskint to send
the TCP request to the ethernet device (shown in 1). Note that
Taskx and Taskint can be either a child process or concurrent
thread of Tasky, respectively, because HW interrupt delivery
mechanism is irrespective of its process/thread relationship.
Next, by checking /proc/irq/#/smp_affinity, we retrieve
the CPU core number, which has an affinity to the subjected
IRQ (2). To simplify the description, we assume that the
ethernet device has an affinity for cpu C1.

Then, each task is pinned to a specific core (3). After that,
Taskx and Tasky invoke a race-raising syscall, i.e., Syscallx
by Taskx and Syscally by Tasky (A). Taskint sends the TCP
request to itself (i.e., an external IP address of a local machine)
(B). Then in order to process the request packet, the ethernet
device issues an IRQ to C1 (C).

If C1 receives the IRQ within the time frame of Ty, the
kernel thread for Tasky switches to the corresponding inter-
rupt service routine (ISR) (D). After completing the ISR, C1
returns back to the kernel thread for Tasky. As a result, the
race window (Ty) is extended as much as the execution time
of the ISR.

6 Exploiting Kernel Races in Other OSes

In order to understand if the race window extension mecha-
nism proposed in §5 works for other operating systems, this
section studies if it also works for two other popular operating
systems: Microsoft Windows (§6.1) and MAC OS X (§6.2).
The research challenge here is that these are proprietary ker-
nels, so their detailed internal mechanism is difficult to un-
derstand. Note that we have studied all the methods except
membarrier (§5.2.2), as membarrier is a unique feature only
available in Linux.

To summarize (shown in Table 3), in the case of Windows
we confirmed that all the race enlarging methods (except
membarrier) presented in §5 also work. In the case of MAC
OS X, we confirmed that the TLB shootdown IPI works but
reschedule IPI would not work. We were not able to do a
meaningful study on HW interrupts on OS X due to the lack
of internal information.

6.1 Microsoft Windows

Reschedule IPI. We found that Windows’s preemption mode
is mostly similar to that of Linux’s CONFIG_PREEMPT mode.
The key difference between Windows and Linux is that Win-
dows takes account of thread’s priority [42]. More precisely,

if a new thread is enqueued for rescheduling in Windows,
that new thread is only rescheduled if it has a higher priority
than a currently running thread. As a result, Windows keeps
elevating the priority of that new thread so that it can take a
chance to be rescheduled.

Therefore, compared to the reschedule IPI method for
Linux (§5.1), we modified two things to work for Windows:
(i) use a different syscall for setting up a thread’s CPU
affinity (i.e., SetThreadAffinityMask() in Windows) and (ii)
additionally invoke a syscall to set the high priority using
SetThreadPriority().
TLB Shootdown IPI. Similar to Linux, the TLB shoot-
down mechanism is carried out by sending IPI. Thus, we
confirmed that the race window could be mainly extended
by the same method introduced in §5.2.1. The difference is
platform-dependent syscall uses (more precisely, WinAPI in
the Windows terminology), i.e., we used VirtualAlloc(),
VirtualProtect(), and VirtualFree() to allocate, modify,
and free the memory page, respectively.
HW Interrupt. Windows also offers a kernel feature that
each device driver can configure an affinity policy, such
that each can declare a set of CPU cores to serve relevant
hardware interrupts. Specifically, the affinity policy can be
configured in the device’s INF file or registry settings (e.g.,
#Device ParametersInterrupt registry [41]).

However, in our experimental setup (§7), all device drivers
installed on the machine are configured to have no core
affinity. In other words, all device drivers are handled in a
round-robin order. Although this may imply that the exten-
sion method with HW interrupt (§5.3) cannot be used for
Windows, still this brings a significant benefit in extending
the race window. Theoretically, if there are k different cores
in the machine, the HW interrupt-based method in Windows
would have k times less efficient than Linux. This is because
in Windows it is possible that the IPI can be served by k−1
irrelevant cores due to the round-robin, while in Linux it is
always served by the dedicated core.

6.2 Mac OS X

Reschedule IPI. Although Mac OS X kernel is designed
to support a preemption mode, its default configuration is
a non-preemption mode, and the configuration cannot be
changed [20]. We developed the similar exploitation attack as
shown in §5.1, but the exploitation failed and it was challeng-
ing for us to simply understand why it fails due to the limited
internal information.
TLB Shootdown IPI. Similar to Linux, Mac OS X sends
an IPI to the CPU core which has a TLB entry to be flushed.
Since Mac OS X is UNIX-based operating systems, we con-
firmed that the race window extension method is shown
in §5.2.1 also works on Mac OS X as well—i.e., using sim-
ilar OS X system calls including mmap(), mprotect(), and

munmap(), we were able to raise TLB shootdown IPI, thereby
extending the race window (i.e., Ty).
HW Interrupt. OS X does not provide internal information
on hardware interrupts, so we could not understand whether
IRQ handling mechanisms in OS X involve the core affinity.
We developed a similar exploitation attack, as shown in §5.3,
but it does not work and we were not able to understand the
reason due to lack of information.

7 Evaluation

This section aims at evaluating the exploitation effectiveness
of EXPRACE. First, we used EXPRACE to exploit 10 real-
world multi-variable races in Linux (§7.1). Then to under-
stand more detailed aspects of real-world exploitation, we
developed and exploited synthetic multi-variable races in
Linux (§7.2). Lastly, we launched the synthetic multi-variable
races on Windows and Mac OS X, testing if EXPRACE also
works for OSes other than Linux (§7.3).
Experimental Setup. For the experiments on Linux, we ran
Ubuntu 18.04.3 LTS on Intel i7-8700 (3.20GHZ) with 32 GB
of memory, which enabled the CONFIG_PREEMPT_VOLUNTARY
option (which is a default configuration for desktop machines).
For the experiments on Microsoft Windows, we ran Win-
dows 10 version 1909 (OS build 18363.592) on Intel i7-8700
(3.20GHZ) with 32 GB of memory. For the experiments on
Mac OS X, we ran macOS 10.14 (19A583) on Mac mini
(2018) on Intel i5-8500B (3.00GHz) with 8 GB of memory.
Evaluation Methods. Throughout this evaluation sec-
tion, we varied the exploitation method as follows:
Baseline refers to the brute-force attack without EXPRACE.
Reschedule refers to the brute-force attack with EXPRACE’s
reschedule IPI method (§5.1). membarrier refers to
the brute-force attack with EXPRACE’s membarrier IPI
method (§5.2.2). TLB shootdown refers to the brute-force
attack with EXPRACE’s TLB shootdown IPI method (§5.2.1).
HW interrupt refers to the brute-force attack with
EXPRACE’s hardware interrupt method (§5.3).

7.1 Exploiting Real-World Races in Linux

Real-World Exploitation Setup. In order to demonstrate
that EXPRACE is truly effective in exploiting race vulnera-
bilities, we used EXPRACE to exploit 10 real-world multi-
variable races in Linux listed in Table 1. We utilized publicly
available exploits for CVE-2019-1999 and CVE-2019-2025.
Since the rest eight do not have publicly available exploits,
we developed an exploit for the rest eight. We run the vul-
nerable kernel version of each vulnerability to launch the ex-
ploitation: CVE-2017-15265 on v4.13.5; da1b9564 on v4.18-
rc3; 4842e98f on v4.4.19; and all the other vulnerabilities on
v4.19.0.

Kernel thr for Taskintint :P1 =1;

P2 = 0;

Interrupt handler

User thr for Taskyy :

Kernel thr for Taskyy :

Kernel thr for Taskyy :

Core 1 (C1C1) Core 2 (C2C2)

if(!P1)

if(!P2)

User thr for Taskxx :

Kernel thr for Taskxx :

Core 0 (C0C0)

Race-stage

Function()
(related to attack method)

User thr for Taskintint :

 return 0;

 return 0;

A
B

C

D

Send interrupt to C1C1

Initialization-stage

Environment setting

based on attack method

3

 Create three tasks

fork/threadfork/thread

1 2 Pinning each task

sched_setaffintiy(C1C1)

sched_setaffintiy(C2C2)

sched_setaffintiy(C0C0)

Taskxx

Taskxx

Taskyy

Taskyy

TaskintintTaskintint

 TxTx

 TyTy

 TyTy

 TETE Ty′Ty′
for(LOOPNUM_A);

for(LOOPNUM_B);

Syscallxx() Syscallyy()

Figure 8: A workflow of synthetic race exploitation evaluation

These 10 real-world vulnerabilities are non-inclusive multi-
variable races, and its Tx and Ty are measured, as shown in Ta-
ble 4. For each vulnerability, we attempted to exploit for 24
hours at maximum (i.e., simply taking an infinite loop to trig-
ger the race) while varying an exploitation method to enlarge
Ty. Note that once the exploitation is successful, we stopped
the experiment due to the following two reasons: i) kernel
crashes due to memory corruption; (ii) even if not crashing,
the kernel is in an abnormal state that the race cannot be trig-
gered again. The only reliable way is to reboot the system,
which requires non-trivial evaluation efforts.

Real-World Exploitation Results. The overall results are
shown in Table 4. Without EXPRACE, the 24-hours long ex-
ploitation attempts were failed for all 10 real-world vulner-
abilities as expected (shown in Baseline column). Using
Reschedule, three vulnerabilities were successfully exploited
within 66 seconds, while the rest seven cases were failed.
These failed cases were related to the fact that the length of
an enlarged race window Ty′ is smaller than Tx −Ty, which
we further study shortly. Using membarrier IPI, three cases
were successfully exploited. It failed to exploit five cases (i.e.,
CVE-2019-6974, CVE-2019-1999, 11eb85ec, 1a6084f8, and
e20a2e9c) due to the small Ty′ . With TLB shootdown, seven
cases were successfully exploited. With hardware interrupts,
all 10 cases were successfully exploited. Note that membarrier
and TLB shootdown cannot be applied to exploit CVE-2019-
6974 and da1b9564, as these require that the two racy syscalls
should be invoked from the same process, which cannot be
supported by these methods.

Accuracy of Probability Model. To interpret these re-
sults using the exploitation probability model (i.e., PEXPRACE

multi),
we also collected the number of relevant events during
the exploitation (shown in Table A.1). This confirms that
EXPRACE’s exploitation is feasible within a reasonable time
(i.e., at most 118 seconds).

7.2 Exploiting Synthetic Races in Linux
7.2.1 Design Synthetic Races

To perform an in-depth study on the effectiveness of
EXPRACE, we created a synthetic race vulnerability for Linux.
This vulnerability is implemented as a device driver, which
takes two syscalls from userspace, Syscallx and Syscally,
where two syscalls have multi-variable race vulnerability on
two global variables P1 and P2. In order to check if the race
exploitation was successful, we designed the vulnerability
such that Syscallx returns 0x1337 if successful. Otherwise,
it returns zero. We also inserted two for loops, one in be-
tween A and D and the other in between B and C , so that
we can control Tx and Ty by modifying the number of loop
iterations (i.e., LOOPNUM_A for Tx and LOOPNUM_B for Ty). Note
that we cannot precisely control CPU cycles of Tx and Ty as it
is indirectly impacted by executed instructions.

To successfully exploit this race, the initialization stage is
similar to the attack shown in §5. The important thing is that
the execution should occur in the following order: A ≫ B ≫
C ≫ D . When trying each race window enlarging method,
we performed the necessary steps to trigger IPI or interrupts
as described in §5 (i.e., creating Taskint and invoking a set of
syscalls from Taskint). Similar to the real-world exploitation
case, we kept invoking Syscallx and Syscally while varying
an exploitation method. We repeated the above mentioned
exploitation for one minute since one minute was enough to
collect a meaningful number of data as we show next.

7.2.2 Synthetic Race Exploitation Results

We launched an exploitation as described in §7.2.1 so as
to clearly interpret the exploitation result against real-world
races (shown in Table 4). In order to simulate Tx and Ty of
real-world cases, we picked four different Ty, and launched
the exploitation for each Ty while varying Tx. For each Tx
and Ty pair, we launched an exploitation for one minute and
measured the following information: the number of total trials,
the number of successful exploitation, and the number of
issued interrupts.

The results of the synthetic exploitation are shown in Fig-
ure 9. Each subfigure is the result of fixing Ty at around 17,
41, 130, and 1135 cycles, and X-axis represents Tx and Y-axis
represents the number of successful exploitation after trying
one minute.

Overall, the baseline method only shows the success case
if Tx < Ty (implicating the inclusive multi-variable race), and
it does not show any success case for if Tx > Ty (implicating
the non-inclusive multi-variable race). Moreover, TLB shoot-
down is the most effective when Tx is less than 1,500 cycles.
This is because it takes less time to invoke TLB shootdown
by Taskint , so it issues a large number of IPIs compared to
other exploitation methods. Hardware interrupts show the
stable success number over Tx, because TE (i.e., an enlarged

Vulnerability Success (Time taken until the first success) Average Cycles

Baseline Reschedule membarrier TLB shootdown HW interrupt Tx Ty TSyscallx TSyscally
CVE-2019-6974 ✗ (> 24 hours) ✗ (> 24 hours) ✗ (Cannot apply) ✗ (Cannot apply) ✔ (< 30 sec) 1,210 18 3,818 7,102
CVE-2019-2025 ✗ (> 24 hours) ✔ (< 34 sec) ✔ (< 10 sec) ✔ (< 10 sec) ✔ (< 25 sec) 600 50 8,131 227,538
CVE-2019-1999 ✗ (> 24 hours) ✗ (> 24 hours) ✗ (> 24 hours) ✔ (< 60 sec) ✔ (< 70 sec) 1,800 150 52,285 623,597
CVE-2017-15265 ✗ (> 24 hours) ✔ (< 66 sec) ✔ (< 60 sec) ✔ (< 60 sec) ✔ (< 80 sec) 450 35 9,893 17,893
11eb85ec... [35] ✗ (> 24 hours) ✗ (> 24 hours) ✗ (> 24 hours) ▲ (< 30 sec) ✔ (< 70 sec) 2,515 113 54,389 18,296
1a6084f8... [53] ✗ (> 24 hours) ✗ (> 24 hours) ✗ (> 24 hours) ▲ (< 40 sec) ✔ (< 60 sec) 2,363 158 56,275 13,499
20f2e4c2... [36] ✗ (> 24 hours) ✗ (> 24 hours) ✗ (> 24 hours) ✔ (< 20 sec) ✔ (< 45 sec) 1,580 122 50,755 6,392
4842e98f... [32] ✗ (> 24 hours) ✔ (< 31 sec) ✔ (< 15 sec) ✔ (< 10 sec) ✔ (< 25 sec) 730 120 11,704 28,363
da1b9564... [33] ✗ (> 24 hours) ✗ (> 24 hours) ✗ (Cannot apply) ✗ (Cannot apply) ✔ (< 118 sec) 2,250 18 349,342 176,165
e20a2e9c... [34] ✗ (> 24 hours) ✗ (> 24 hours) ✗ (> 24 hours) ▲ (< 30 sec) ✔ (< 30 sec) 13,121 1,153 109,873 19,503

Table 4: Exploitation results on real-world race vulnerabilities in Linux. ✔: the exploitation is successful within 24 hours; ▲: The extended
cycle by TLB shootdown IPI are vary depends on the number of pages. The exploitation with 1 page isn’t successful for given 24 hours but
successful with a number of pages; ✗: the exploitation has failed for given 24 hours. The time enclosed in a parentheses denotes the time taken
for the first exploitation success.

cycles) is larger than all plotted Tx values (i.e., according to
our measurement shown in §7.2.3, TE is measured to be about
14,103 cycles for hardware interrupts, respectively).

In each subfigure, annotated vertical lines indicate when Tx
and Ty are similar as those of real-world vulnerability. When
Ty is about 17 cycles (Figure 9-a-1), it can be explained why
da1b9564 can be exploited by the hardware interrupt—the
hardware interrupt maintains its success number even if Tx is
more than 2,250 cycles. All other methods failed to maintain
its success number before reaching 2,250 cycles of Tx. Note
that membarrier and TLB shootdown also failed to maintain
the success number, implying that even if it can be applied to
da1b9564 (irrespective of the process/thread issue), it would
have failed to exploit. In probability model Figure 9-a-2, hard-
ware interrupt only success when Tx is about 2,250 cycles.

The rest sub-figures, from Figure 9-b-1 to d-1, also show
consistent results as Figure 9-a-1. In particular, when Ty is
{41, 130, 1135} cycles, {CVE-2017-15265, CVE-2019-1999,
CVE-2019-2025, 11eb85ec, 1a6084f8, 20f2e4c2, 4842e98f,
e20a2e9c} can be exploited by all EXPRACE’s methods, re-
spectively. However, the baseline method failed for all the
above eight, showing consistent results as the real-world ex-
ploitation results. For CVE-2019-1999, only TLB shootdown
and HW interrupt were successful, which is also consistent
with the real-world exploitation results.

Figure 10 shows the number of related events — Syscallx,
Syscally, the number of interrupts (including both hardware
interrupts and IPIs) — during the exploitation. During this
one minute, the number of Syscallx were similar for all ex-
ploitation methods (i.e., about 250M) because the handling
mechanism of Syscallx is not impacted by varying the ex-
ploitation method.

On the contrary, the number of Syscally varies. The base-
line method had the biggest number because Syscally han-
dling was not interfered by the interrupt. All other methods
have less because execution of Syscally stalls for a while
once receiving an interrupt.

In terms of the number of interrupts, there were no in-

terrupts while trying baseline. membarrier had the biggest
number of interrupts, which seems to be related to the fact
the membarrier IPI is the lightest compared to the others, so
it can be quickly delivered. HW interrupt had the smallest
among EXPRACE’s exploitation methods, implying that its
interrupt issue logic is the slowest.
Accuracy of Probability Model. Overall, both synthetic
evaluation results and probability model results decrease
sharply at a specific x-axis value. As shown in Figure 9-
d-1, the number of successes is sharply decreased after Tx is
bigger than 16,000 cycles. Similarly, as shown in Figure 9-
d-2, the number of success is sharply decreased after Tx is
bigger than 15,000 cycles. We note that the slight difference
between these two results seems to be due to the measurement
errors. While all the cycles are fixed values in the probability
model, measured cycles in the synthetic experiments can have
measurement errors due to the noise.

7.2.3 Length of Enlarged Race Windows

To clearly see how much a race window is enlarged, we mea-
sured cycles of Ty′ when exploiting the synthetic race. More
specifically, we fixed Tx and Ty as 539 and 25 cycles, respec-
tively. Then we instrumented rdtsc at two places to measure
Ty′ : (i) right before line 23 in Figure A.4 (i.e., A in Figure 8)
and (ii) right after line 27 Figure A.4 (i.e., D in Figure 8).

Figure 11 shows the average of Ty′ for each exploitation
method. A filled circle denotes the average cycles when the
exploitation is successful, and a cross mark denotes when
failed. Here, the cycle difference between success and fail-
ure for each method indicates TE , because success means
the race window is extended (i.e., Ty′ = Ty +TE). Overall, all
exploitation methods show higher Ty′ when successful, and
each method shows a different enlargement. The hardware
interrupt is the largest (i.e., TE = 14,103 cycles), which ex-
plains why hardware interrupts have maintained the number
of success while varying Tx in Figure 9—for all Tx cycles,
Ty′ > Tx. The contrary example is Reschedule, which has

(a) Average cycles of TyTy is 17 cycles (TSyscallyTSyscally is about 675 cycles)

(b) Average cycles of TyTy is 41 cycles (TSyscallyTSyscally is about 730 cycles)

(c) Average cycles of TyTy is 130 cycles (TSyscallyTSyscally is about 829 cycles)

(a-1) Plotted using exploitation results (a-2) Plotted using the probability model

(b-1) Plotted using exploitation results (b-2) Plotted using the probability model

(c-1) Plotted using exploitation results (c-2) Plotted using the probability model

CVE-2019-6974CVE-2019-6974

11eb85ec

da1b9564da1b9564

CVE-2017-15265
CVE-2017-15265

CVE-2019-2025 CVE-2019-2025

4842e98 4842e98

20f2e4c2 20f2e4c2

CVE-2019-1999CVE-2019-1999

1a6084f8 1a6084f8

11eb85ec

(d) Average cycles of TyTy is 1135 cycles (TSyscallyTSyscally is about 1793 cycles)

(d-1) Plotted using exploitation results (d-2) Plotted using the probability model

e20a2e9c e20a2e9c

Figure 9: Exploitation results on the synthetic race vulnerability in Linux

T
h

e
 n

u
m

b
e
r

o
f

e
x
e
c
u

ti
o

n

Figure 10: The number of events while exploiting the synthetic race
vulnerability

shown 734 cycles of TE . Therefore, the number of success for
Reschedule always dropped earlier than other EXPRACE’s
methods in Figure 9.

7.3 Exploiting Other OSes

In order to check the effectiveness of exploiting other OSes
using EXPRACE, we launched the exploitation against the
synthetic race vulnerability (as described in §7.2.1) devel-
oped as a kernel driver for Windows and OS X, respectively.
Figure 12 shows exploitation results, where we fixed Ty as 17
cycles and launched an exploitation for one minute. Overall,
Reschedule and TLB shootdown has shown far more success
numbers than baseline, demonstrating the exploitation ef-
fectiveness of EXPRACE. One thing to n ote is that in Linux
the success number quickly drops when Tx > 1,400, but in
Windows and OS X such a drop occurs when Tx > 2,000.
We suspect this suggests that the TLB flushing in Linux is
processed faster than Windows and OS X.

Unfortunately, we were not able to include the real-world
exploitation cases for Windows and Mac OS X, because no

 TETE =

734.79734.79

 TETE =

913.85913.85

 TETE =

1493.541493.54

 TETE =

14103.4414103.44

A
v
e
ra

g
e
 c

y
c
le

s
 o

f
T
y
′

T
y
′

Figure 11: CPU cycles when exploiting the synthetic race vulnera-
bility. A blue filled circle denotes averaged CPU cycles of Ty when
the exploitation is successful; A orange cross denotes averaged CPU
cycles of Ty when failed. The cycle difference between success and
fail approximately shows an enlarged race window (i.e., TE).

 TxTx (cycles)

#987393

Fixing TyTy = 17 cycles (TSyscallyTSyscally = 2212 cycles)

T
h
e
 n

u
m

b
e
r

o
f

s
u
c
c
e
s
s
e
s

(a) Microsoft Windows

#987393

 TxTx (cycles)

Fixing TyTy = 17 cycles (TSyscallyTSyscally = 3881 cycles)

T
h
e
 n

u
m

b
e
r

o
f

s
u
c
c
e
s
s
e
s

(b) Mac OS X

Figure 12: Exploitation results against the synthetic race vulnerabil-
ity on Windows and OS X

public descriptions on non-inclusive race vulnerabilities on
these platforms were available. We further discuss this limita-
tion of EXPRACE on other OSes in §8.1.

8 Discussion

In this section, we first discuss the possibility of exploiting
other OSes using EXPRACE (§8.1). Then we discuss how the
new threats introduced by EXPRACE can be mitigated (§8.2).

8.1 Possibility of Exploiting Other OSes

Our evaluation in §7.3 suggests that it is possible to launch
exploitation with EXPRACE on synthetic race issues. How-
ever, as we were not able to perform the real-world case study,
it is very premature to confirm the exploitation possibility
using EXPRACE on other OSes. Thus it requires more studies
in the future. Nevertheless, because there are no significant
differences between Linux and Windows/Mac OS X from the
perspective of race issues, we believe the attacking method in-
troduced by EXPRACE may still be valid for these platforms
as well.

8.2 Mitigation
In order to mitigate new exploitation threats introduced by
EXPRACE, there can be two potential mitigation approaches:
1) identifying an abnormal frequency of interrupts and 2)
avoiding preemption by userspace-originated interrupts.

The first approach is based on the fact that EXPRACE im-
poses very frequent interrupts. Thus, exploitation attempts
with EXPRACE can be captured with the kernel-level moni-
tor, which checks if too many interrupts were raised within a
short period of time. While this approach would be simple to
implement and deploy, it may have false positives (i.e., some
benign behaviors may entail frequent interrupts), which needs
further investigation.

The second approach is to avoid any preemption of ker-
nel execution context if an interrupt is indirectly raised by
a user. With this avoidance, the user will not be able to en-
force the preemption within the race window, thereby mitigat-
ing EXPRACE’s exploitation technique. While this approach
would have more precise detection capability than the first
one, it requires heavy kernel modification to keep track of the
origins of all interrupt events, which may hinder its practical
adoption as well as imposing runtime tracking overheads.

To summarize, we expect adopting these two approaches
needs careful investigation so as not to break the original
semantics and backward compatibility of existing kernel ser-
vices. We further hope this paper provokes interesting dis-
cussions on the fundamental design of interrupt handling in
operating systems, particularly from security perspectives—
asking if the interrupt timing controls by unprivileged users
should be allowed or not.

9 Related work

Detecting Races. For the sake of detecting race condition,
many works attempted to use either a static analysis ap-
proach [5, 15, 17, 39, 58–60, 63] or a dynamic analysis ap-
proach [7, 9, 28, 30, 31, 40, 47, 49, 50], or both [27]. Most
race detectors using static analysis are based on lockset analy-
sis [5, 15, 17, 58, 59]. WHOOP [15] uses symbolic pairwise
lockset analysis for detecting race condition in the Linux
kernel driver. Deadline [63] uses static analysis to find multi-
reads in the kernel and employs symbolic checking to check
each multi-read satisfies the constraints to be a double-fetch
bug. Memory sampling techniques [7, 9, 18, 28, 40] selec-
tively monitor memory accesses to detect race conditions.
SNORLAX [30] utilizes a coarse interleaving hypothesis,
which relies on a dynamic-static interprocedural pointer and
type analysis, to diagnose the root causes of concurrency bugs.
Razzer [27] first extracts a set of race candidates through
the static analysis and then starts fuzzing while setting up
the breakpoints (fuzzing) to discover races in an efficient
way. Compared to EXPRACE, these studies were focusing
on automating the race condition detection, while EXPRACE

focuses on how to exploit the real-world race condition issues.
Avoiding Races. Previous works employ deterministic exe-
cution to avoid concurrency bugs [4, 6, 12, 13, 37]. Grace [6]
turns the multi-threaded program into a sequential program
using fork-join parallelism. DThread [37] keeps track of mem-
ory modification sites using virtual memory protection and
ensures deterministic update orders by each thread. PERE-
GRINE [12] proposed a hybrid scheduling mechanism, which
uses mem-schedule for the racy part and sync-schedule for
the non-racy part, thereby guaranteeing a deterministic multi-
threading system. Parrot [13] orders thread synchronization
in the well-defined round-robin order.
Automating Exploitation of Memory Corruptions.
APEG [8] identifies missing sanitization checks by compare
patched and unpatched binary using binary analysis and
generate an input to trigger the difference. AEG [54] and
mayhem [10] use symbolic execution (or hybrid symbolic
execution) to generate shell spawning exploit. FUZE [62]
and Revery [61] identify and further analyze the root
cause of vulnerabilities, and they automatically generate an
exploit. KOOBE [11] evaluates the exploitability of kernel’s
out-of-bound write vulnerabilities using capability-guided
fuzzing for automated exploit generation.
Performance Degradation. Many researchers leveraged per-
formance degradation factors (e.g., interrupt [22, 46, 55, 56]
or cache eviction [1, 21]) to launch or assist side-channel
attacks. While these and EXPRACE both degrade the per-
formance to launch attacks, the difference is that EXPRACE
focuses on attacking race issues where previous works cannot
be applied.

Nemesis [56] used interrupts to leak instruction timings
against Intel SGX. SGX-Step [55] used APIC timer interrupts
to track page table entries directly from user space. Hahnel et
al. [22] use timer interrupt to achieve higher temporal and
spatial resolution. Cachezoom [46] consecutively sends in-
terrupts to amplify the cache side channel. However, they
assume the attacker already had full control over the kernel.
This allows the attacker to generate interrupts as desired. On
the contrary, EXPRACE assumes that the attacker only has
user-level privileges, so the interrupt generation cannot di-
rectly be performed.

Thomas et al. [1] amplified the result of side-channel at-
tacks using cache eviction. Compared to EXPRACE, this
method does not slow down a specific target core but slows
down entire cores. Thus, this attack would increase both Tx
and Ty, which cannot be applied for EXPRACE.

10 Conclusion

This paper studies the exploitability of kernel data races. We
analyzed real-world kernel races and found an intrinsic con-
dition separating easy-to-exploit and hard-to-exploit races.
Then we developed EXPRACE, a generic race exploitation

technique for Linux, Windows, OS X. Through evaluating
with real-world race vulnerabilities, EXPRACE demonstrated
that it truly augments the exploitability of kernel races.

11 Acknowledgment

We sincerely thank anonymous reviewers and our shepherd,
Vasileios P. Kemerlis, for their insightful comments, which sig-
nificantly improved the final version of this paper. The authors
would like to thank Dae R. Jeong who provided the initial idea
and insights of this work. This work was supported by Na-
tional Research Foundation (NRF) of Korea grant funded by
the Korean government MSIT (NRF-2019R1C1C1006095),
Institute for Information & communications Technology Pro-
motion (IITP) grant funded by the Korea government (MSIP)
(No.2020-0-01840, Analysis on technique of accessing and
acquiring user data in smartphone), and US Office of Naval
Research under grants N00014-18-1-2022. The Institute of
Engineering Research (IOER) and Automation and Systems
Research Institute (ASRI) at Seoul National University pro-
vided research facilities for this work. The Institute of En-
gineering Research at Seoul National University provided
research facilities for this work.

References
[1] T. Allan, B. B. Brumley, K. Falkner, J. Van de Pol, and Y. Yarom.

Amplifying side channels through performance degradation. In Pro-
ceedings of the Annual Computer Security Applications Conference
(ACSAC), 2016.

[2] N. Amit. Optimizing the TLB Shootdown Algorithm with Page Access
Tracking. In Proceedings of the 2017 USENIX Annual Technical
Conference (ATC), Santa Clara, CA, July 2017.

[3] Z. Anderson, D. Gay, R. Ennals, and E. Brewer. Sharc: Checking data
sharing strategies for multithreaded c. In Proceedings of the 2008
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Tucson, Arizona, June 2008.

[4] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-enforced
deterministic parallelism. Communications of the ACM, 55(5):111–119,
2012.

[5] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu. Effective static analysis
of concurrency use-after-free bugs in linux device drivers. In Pro-
ceedings of the 2019 USENIX Annual Technical Conference (ATC),
RENTON, WA, July 2019.

[6] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe multithreaded
programming for c/c++. In Proceedings of the 24th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), Orlando Florida, Oct. 2009.

[7] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: proportional
detection of data races. In Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), Toronto, Canada, June 2010.

[8] D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic patch-
based exploit generation is possible: Techniques and implications. In
Proceedings of the 29th IEEE Symposium on Security and Privacy
(Oakland), Oakland, CA, May 2008.

[9] Y. Cai, J. Zhang, L. Cao, and J. Liu. A deployable sampling strategy
for data race detection. In Proceedings of the 24th ACM SIGSOFT

Symposium on the Foundations of Software Engineering (FSE), Seattle,
WA, Nov. 2016.

[10] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing
mayhem on binary code. In Proceedings of the 33rd IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2012.

[11] W. Chen, X. Zou, G. Li, and Z. Qian. Koobe: Towards facilitating
exploit generation of kernel out-of-bounds write vulnerabilities. In Pro-
ceedings of the 28th USENIX Security Symposium (Security), BOSTON,
MA, Aug. 2020.

[12] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient deterministic
multithreading through schedule relaxation. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP), Cascais,
Portugal, Oct. 2011.

[13] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A.
Gibson, and R. E. Bryant. Parrot: a practical runtime for deterministic,
stable, and reliable threads. In Proceedings of the 24th ACM Symposium
on Operating Systems Principles (SOSP), Farmington, PA, Nov. 2013.

[14] M. Daniel, J. Honoroff, and C. Miller. Engineering heap overflow
exploits with javascript. In Proceedings of the 2nd USENIX Workshop
on Offensive Technologies (WOOT), SAN JOSE, CA, July 2008.

[15] P. Deligiannis, A. F. Donaldson, and Z. Rakamaric. Fast and precise
symbolic analysis of concurrency bugs in device drivers (t). In Proceed-
ings of the 30rd IEEE/ACM International Conference on Automated
Software Engineering (ASE), Lincoln, Nebraska, Sept. 2015.

[16] F. Electrons. Realtime in embedded linux systems. 2004.

[17] D. Engler and K. Ashcraft. Racerx: effective, static detection of race
conditions and deadlocks. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP), Bolton Landing, NY, Oct.
2003.

[18] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective
data-race detection for the kernel. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Vancouver, Canada, Oct. 2010.

[19] P. Fonseca, R. Rodrigues, and B. B. Brandenburg. Ski: Exposing
kernel concurrency bugs through systematic schedule exploration. In
Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Broomfield, Colorado, Oct. 2014.

[20] L. G. Gerbarg. Advanced synchronization in mac os x: Extending unix
to smp and real-time. In BSDCon, pages 37–45, 2002.

[21] D. Gruss, R. Spreitzer, and S. Mangard. Cache template attacks: Au-
tomating attacks on inclusive last-level caches. In Proceedings of the
24th USENIX Security Symposium (Security), Washington, DC, Aug.
2015.

[22] M. Hähnel, W. Cui, and M. Peinado. High-resolution side channels
for untrusted operating systems. In Proceedings of the 2017 USENIX
Annual Technical Conference (ATC), Santa Clara, CA, July 2017.

[23] J. Horn. Android: binder use-after-free of vma via race between reclaim
and munmap, 2018. https://bugs.chromium.org/p/project-zero/issues/
detail?id=1720.

[24] J. Horn. Android: binder use-after-free via racy initialization of -
>allow_user_free, 2018. https://bugs.chromium.org/p/project-zero/
issues/detail?id=1721&q=cve-2019-1999.

[25] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang.
Data-oriented programming: On the expressiveness of non-control data
attacks. In Proceedings of the 37th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2016.

[26] Y. Jang, S. Lee, and T. Kim. Breaking kernel address space layout ran-
domization with intel tsx. In Proceedings of the 23rd ACM Conference
on Computer and Communications Security (CCS), Vienna, Austria,
Oct. 2016.

[27] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin. Razzer: Find-
ing kernel race bugs through fuzzing. In Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland), SAN FRANCISCO,

CA, May 2019.

[28] Y. Jiang, Y. Yang, T. Xiao, T. Sheng, and W. Chen. Drddr: a lightweight
method to detect data races in linux kernel. The Journal of Supercom-
puting, 72(4):1645–1659, 2016.

[29] G. Jin, W. Zhang, and D. Deng. Automated concurrency-bug fixing.
In Proceedings of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Hollywood, CA, Oct. 2012.

[30] B. Kasikci, W. Cui, X. Ge, and B. Niu. Lazy diagnosis of in-production
concurrency bugs. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP), Shanghai, China, Oct. 2017.

[31] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye. Efficient scalable
thread-safety-violation detection: finding thousands of concurrency
bugs during testing. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP), Ontario, Canada, Oct. 2019.

[32] Linux. Linux commit log 4842e98f26dd80be3623c4714a244ba52ea096a8.,
2017. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=4842e98f26dd80be3623c4714a244ba52ea096a8.

[33] Linux. Linux commit log da1b9564e85b1d7baf66cbfabcab27e183a1db63.,
2018. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=da1b9564e85b1d7baf66cbfabcab27e183a1db63.

[34] Linux. Linux commit log e20a2e9c42c9e4002d9e338d74e7819e88d77162.,
2019. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=e20a2e9c42c9e4002d9e338d74e7819e88d77162.

[35] Linux. Linux commit log 11eb85ec42dc8c7a7ec519b90ccf2eeae9409de8.,
2020. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=11eb85ec42dc8c7a7ec519b90ccf2eeae9409de8.

[36] Linux. Linux commit log 20f2e4c228c712158113583947f4e16691e951f6.,
2020. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=20f2e4c228c712158113583947f4e16691e951f6.

[37] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: efficient determin-
istic multithreading. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP), Cascais, Portugal, Oct. 2011.

[38] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a com-
prehensive study on real world concurrency bug characteristics. In
Proceedings of the 13th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS), Seattle, WA, Mar. 2008.

[39] Y. Luo, P. Wang, X. Zhou, and K. Lu. Dftinker: Detecting and fixing
double-fetch bugs in an automated way. In International Conference
on Wireless Algorithms, Systems, and Applications, pages 780–785.
Springer, 2018.

[40] D. Marino, M. Musuvathi, and S. Narayanasamy. Literace: effective
sampling for lightweight data-race detection. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Dublin, Ireland, June 2009.

[41] Microsoft. Interrupt affinity, 2017. https://docs.microsoft.com/en-
us/windows-hardware/drivers/kernel/interrupt-affinity-and-priority.

[42] Microsoft. Scheduling priorities., 2018. https://docs.microsoft.com/en-
us/windows/win32/procthread/scheduling-priorities.

[43] MITRE. CVE-2016-8655., 2016. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2016-8655.

[44] MITRE. CVE-2017-2636., 2017. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-2636.

[45] MITRE. CVE-2017-7533., 2017. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-7533.

[46] A. Moghimi, G. Irazoqui, and T. Eisenbarth. Cachezoom: How sgx
amplifies the power of cache attacks. In Proceedings of the 2017 Cryp-
tographic Hardware and Embedded Systems (CHES), Taipei, Taiwan,
Sept. 2017.

[47] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-

https://bugs.chromium.org/p/project-zero/issues/detail?id=1720
https://bugs.chromium.org/p/project-zero/issues/detail?id=1720
https://bugs.chromium.org/p/project-zero/issues/detail?id=1721&q=cve-2019-1999
https://bugs.chromium.org/p/project-zero/issues/detail?id=1721&q=cve-2019-1999
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4842e98f26dd80be3623c4714a244ba52ea096a8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4842e98f26dd80be3623c4714a244ba52ea096a8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=da1b9564e85b1d7baf66cbfabcab27e183a1db63
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=da1b9564e85b1d7baf66cbfabcab27e183a1db63
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e20a2e9c42c9e4002d9e338d74e7819e88d77162
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e20a2e9c42c9e4002d9e338d74e7819e88d77162
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=11eb85ec42dc8c7a7ec519b90ccf2eeae9409de8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=11eb85ec42dc8c7a7ec519b90ccf2eeae9409de8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=20f2e4c228c712158113583947f4e16691e951f6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=20f2e4c228c712158113583947f4e16691e951f6
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/interrupt-affinity-and-priority
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/interrupt-affinity-and-priority
https://docs.microsoft.com/en-us/windows/win32/procthread/scheduling-priorities
https://docs.microsoft.com/en-us/windows/win32/procthread/scheduling-priorities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8655
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8655
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2636
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2636
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7533
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7533

mentation (PLDI), San Diego, CA, June 2007.

[48] M. Prandini and M. Ramilli. Return-oriented programming. In Proceed-
ings of the 33rd IEEE Symposium on Security and Privacy (Oakland),
San Francisco, CA, May 2012.

[49] M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schuster, A. Fogh, and
S. Mangard. Automated detection, exploitation, and elimination of
double-fetch bugs using modern cpu features. In Proceedings of the
13th ACM Symposium on Information, Computer and Communications
Security (ASIACCS), Incheon, Korea, May–June 2018.

[50] K. Serebryany and T. Iskhodzhanov. Threadsanitizer: data race detec-
tion in practice. In Proceedings of the Workshop on Binary Instrumen-
tation and Applications, pages 62–71. ACM, 2009.

[51] A. Sotirov. Heap feng shui in javascript. Black Hat Europe, 2007,
2007.

[52] M. Stone. Bad binder: Android in-the-wild exploit, 2019.
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-
in-wild-exploit.html.

[53] Syzkaller. Syzkaller log 1a6084f827bc586c4361b6256040c593f4c19f5b.,
2020. https://syzkaller.appspot.com/bug?id=
1a6084f827bc586c4361b6256040c593f4c19f5b.

[54] H. A. Thanassis, C. S. Kil, and B. David. Aeg: Automatic exploit gen-
eration. In ser. Network and Distributed System Security Symposium,
2011.

[55] J. Van Bulck, F. Piessens, and R. Strackx. Sgx-step: A practical attack
framework for precise enclave execution control. In Proceedings of the
2nd Workshop on System Software for Trusted Execution, pages 1–6,
2017.

[56] J. Van Bulck, F. Piessens, and R. Strackx. Nemesis: Studying mi-
croarchitectural timing leaks in rudimentary cpu interrupt logic. In
Proceedings of the 25th ACM Conference on Computer and Communi-
cations Security (CCS), Toronto, Canada, Oct. 2018.

[57] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy. De-
tecting and surviving data races using complementary schedules. In
Proceedings of the 23rd ACM Symposium on Operating Systems Prin-
ciples (SOSP), Cascais, Portugal, Oct. 2011.

[58] V. Vojdani, K. Apinis, V. Rõtov, H. Seidl, V. Vene, and R. Vogler. Static
race detection for device drivers: the goblint approach. In Proceed-
ings of the 31rd IEEE/ACM International Conference on Automated
Software Engineering (ASE), Singapore, Singapore, Sept. 2016.

[59] J. W. Voung, R. Jhala, and S. Lerner. Relay: static race detection on
millions of lines of code. In Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. ACM, 2007.

[60] P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro. How double-
fetch situations turn into double-fetch vulnerabilities: A study of double
fetches in the linux kernel. In Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, BC, Canada, Aug. 2017.

[61] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu, K. Chen,
and W. Zou. Revery: From proof-of-concept to exploitable. In Proceed-
ings of the 25th ACM Conference on Computer and Communications
Security (CCS), Toronto, Canada, Oct. 2018.

[62] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou. {FUZE}:
Towards facilitating exploit generation for kernel use-after-free vul-
nerabilities. In Proceedings of the 27th USENIX Security Symposium
(Security), BALTIMORE, MD, Aug. 2018.

[63] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim. Precise and scal-
able detection of double-fetch bugs in os kernels. In Proceedings of
the 39th IEEE Symposium on Security and Privacy (Oakland), SAN
FRANCISCO, CA, May 2018.

[64] Z. Xu, G. Liu, T. Wang, and H. Xu. Exploitations of uninitialized uses
on macos sierra. In Proceedings of the 11th USENIX Workshop on
Offensive Technologies (WOOT), VANCOUVER, BC, Aug. 2017.

[65] T. Zhang, D. Lee, and C. Jung. Txrace: Efficient data race detection

using commodity hardware transactional memory. In Proceedings of
the 21st ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Atlanta,
GA, Apr. 2016.

[66] T. Zhang, C. Jung, and D. Lee. Prorace: Practical data race detection
for production use. In Proceedings of the 22nd ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Xi’an, China, Apr. 2017.

A Appendix

1 void pin_this_task_to(int cpu) {
2 cpu_set_t cset;
3 CPU_ZERO(&cset);
4 CPU_SET(cpu, &cset);
5

6 // if pid is NULL then calling thread is used
7 if(sched_setaffinity(0, sizeof(cpu_set_t), &cset))
8 err(1, "affinity");
9 }

10

11 void target_thread(void *arg) {
12 // Suppose that a victim thread is running on core 2.
13 pin_this_task_to(2);
14 while(1) {
15 // There is a data race in this thread.
16 }
17 }
18

19 int main() {
20 pthread_t thr;
21 pthread_create(&thr, NULL, target_thread, NULL);
22 // Send rescheduling IPI to core 2 to extend the race window.
23 pin_this_task_to(2);
24 }

Figure A.1: The simplified code of EXPRACE’s Reschedule IPI
exploitation method

1 int map_size = 0x1000;
2

3 void sendIPI() {
4 char buf[8];
5 void *addr;
6

7 // Allocate memory for tlb shootdown
8 addr = mmap(0, map_size, (PROT_READ | PROT_WRITE),
9 MAP_SHARED | MAP_ANON, -1, 0);

10 // Access memory to update tlb
11 memcpy(buf, addr, 1);
12 // Modify memory permission for TLB shootdown
13 mprotect(addr, map_size, PROT_READ);
14 }
15

16 void target_thread(void *arg) {
17 while(1){
18 // There is a data race in this thread
19 }
20 }
21

22 int main(void) {
23 pthread_t thread;
24 pthread_create(&thread, NULL, (void *)target_thread, NULL);
25 sendIPI();
26 }

Figure A.2: The simplified code of EXPRACE’s TLB shootdown
IPI exploitation method

https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://syzkaller.appspot.com/bug?id=1a6084f827bc586c4361b6256040c593f4c19f5b
https://syzkaller.appspot.com/bug?id=1a6084f827bc586c4361b6256040c593f4c19f5b

Vulnerability Baseline Reschedule membarrier TLB shootdown HW interrupt

Pmulti Syscallx Syscally interrupt PEXPRACE
multi Syscallx Syscally interrupt PEXPRACE

multi Syscallx Syscally interrupt PEXPRACE
multi Syscallx Syscally interrupt PEXPRACE

multi Syscallx Syscally interrupt

CVE-2019-6974 0 198 B 81 B 0 0 190 B 72 B 39 B ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 3.92e-04 30 K 4 K 14 K
CVE-2019-2025 0 150 B 5 B 0 4.42e-05 59 M 1 M 15 M 4.4e-04 30 M 39 K 9 M 1.38e-03 20 M 30 K 5 M 1.09e-03 43 M 1.3 M 250 K
CVE-2019-1999 0 19 M 19 M 0 0 12 M 12 M 37 B 0 14 M 14 M 78 B 2.95e-05 50 K 50 K 26 M 7.79e-04 140 K 140 K 1.1 M
CVE-2017-15265 0 6 B 130 M 0 4.43e-05 6 M 50 K 29 M 3.47e-04 5 M 60 K 54 M 9.13e-04 5 M 100 K 26 M 7.63e-04 6 M 113 K 1.3 M
11eb85ec... 0 2.7 M 2.7 M 0 0 1.9 M 1.9 M 12 M 0 2.2 M 2.2 M 14 M 0 2 K 2 K 46 K 5.30e-04 5 K 5 K 1 M
1a6084f8... 0 4.1 M 4.1 M 0 0 2.8 M 2.8 M 13 M 0 3.5 M 3.5 M 14 M 0 3 K 3 K 53 K 1.02e-03 5 K 5 K 1 M
20f2e4c2... 0 33 B 66 B 0 0 32 B 43 B 36 B 0 32 B 43 B 80 B 2.01e-05 7 M 15 M 10 M 6.63e-04 9 M 17 M 56 K
4842e98f... 0 7 B 51 M 0 4.99e-05 3 M 10 K 13 M 6.12e-04 1.1 M 7 K 14 M 2.16e-03 810 K 8 K 5 M 2.61e-03 2 M 13 K 417 K
da1b9564... 0 5 M 5 M 0 0 3.3 M 3.3 M 37 B ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 1.33e-05 9 K 9 K 2 M
e20a2e9c... 0 50 M 50 M 0 0 35 M 35 M 36 B 0 43 M 43 M 80 B 0 1 K 1 K 71 B 4.88-e4 1 K 1 K 44 K

Table A.1: Detailed exploitation results on real-world race vulnerabilities in Linux. ✗ denotes that the exploitation was not performed as the
corresponding exploitation method does not work for the subjected race vulnerability.

1 void sendIPI(void) {
2 membarrier(
3 MEMBARRIER_CMD_PRIVATE_EXPEDITED, 0);
4 }
5

6 void registerIPI(void) {
7 membarrier(
8 MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED, 0);
9 }

10

11 void target_thread(void *arg) {
12 while(1){
13 // There is a data race in this thread
14 }
15 }
16

17 int main() {
18 pthread_t thread;
19 registerIPI();
20 pthread_create(&thread, NULL, target_thread, NULL);
21 sendIPI();
22 }

Figure A.3: The simplified code of EXPRACE’s membarrier IPI
exploitation method

1 int P1, P2;
2

3 // __attribute__((optimize("O0")))
4 long Syscallx(ulong LOOPNUM_A) {
5 if(!P1)
6 // Failed to exploit.
7 return 0;
8

9 for(int i = 0; i < LOOPNUM_A; i++);
10

11 if(!P2)
12 // Failed to exploit.
13 return 0;
14

15 // Race exploitation is successful.
16 return 0x1337;
17 }
18

19 // __attribute__((optimize("O0")))
20 long Syscally(ulong LOOPNUM_B) {
21 P2 = 1;
22 // rdtsc(); // to measure Ty
23 P1 = 1;
24

25 for(int i = 0; i < LOOPNUM_B; i++);
26

27 P2 = 0;
28 // rdtsc(); // to measure Ty
29 P1 = 0;
30

31 return 0;
32 }

Figure A.4: Synthetic race vulnerability code

1 int map_size = 0x1000;
2

3 void pin_task_to(int pid, int cpu) {
4 cpu_set_t cset;
5 CPU_ZERO(&cset);
6 CPU_SET(cpu, &cset);
7

8 // if pid is NULL then calling thread is used
9 if(sched_setaffinity(pid, sizeof(cpu_set_t), &cset))

10 err(1, "affinity");
11 }
12

13 void sendIRQ() {
14 int sk;
15 struct sockaddr_in addr;
16

17 addr.sin_family = AF_INET;
18 addr.sin_addr.s_addr = inet_addr(IP);
19 addr.sin_port = htons(PORT);
20

21 // Create socket
22 sk = socket(AF_INET, SOCK_STREAM, 0);
23

24 // Connect to server
25 // HW interrupt will occurs when reply packet arrive
26 connect(sock, (struct sockaddr *)&server_addr, \
27 sizeof(struct sockaddr_in));
28 }
29

30 void target_thread(void *arg) {
31 // pin process to IRQ’s affinity
32 pin_task_to(0, 11);
33 while(1){
34 // There is a data race in this thread
35 }
36 }
37

38 int main(void) {
39 pthread_t thread;
40 pthread_create(&thread, NULL, (void *)target_thread,
41 NULL);
42 sendIPI();
43 }

Figure A.5: The simplified code of EXPRACE’s HW interrupt ex-
ploitation method

	Introduction
	Exploitability of Kernel Data Races
	Single-Variable Race
	Multi-Variable Race

	Problem Scope and Research Approaches
	Problem Scope
	Research Approaches

	Interrupt Handling in Linux
	Exploiting Kernel Races in Linux
	Reschedule IPI
	Non-Reschedule IPI
	TLB Shootdown IPI
	Memory Barrier IPI

	Hardware Interrupts

	Exploiting Kernel Races in Other OSes
	Microsoft Windows
	Mac OS X

	Evaluation
	Exploiting Real-World Races in Linux
	Exploiting Synthetic Races in Linux
	Design Synthetic Races
	Synthetic Race Exploitation Results
	Length of Enlarged Race Windows

	Exploiting Other OSes

	Discussion
	Possibility of Exploiting Other OSes
	Mitigation

	Related work
	Conclusion
	Acknowledgment
	Appendix

